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Timişoara
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Abstract. It is proved a necessary and sufficient condition for
the existence of at least one Ψ− bounded solution of a linear non-
homogeneous Lyapunov matrix differential equation. In addition,
it is given a result in connection with the asymptotic behavior of
the Ψ− bounded solutions of this equation.
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1 Introduction

The purpose of our paper is to give a necessary and sufficient condition so
that the nonhomogeneous Lyapunov matrix differential equation

X ′ = A(t)X + XB(t) + F (t) (1.1)

has at least one Ψ− bounded solution on R+ for every continuous and Ψ−
bounded matrix function F on R+ = [0,∞).

In present paper, Ψ will be a continuous matrix function. The introduc-
tion of the matrix function Ψ permits to obtain a mixed asymptotic behavior
of the components of the solutions.

Recently, the existence of at least one Ψ− bounded solution of equation
(1.1) on R+ or R for various types of functions F has been studied in [4]-[6],
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[8]. In [7], the authors have been studied the problem of Ψ− boundedness
of solutions for the corresponding Kronecker product system (2.1) associated
with (1.1) (see a comment in [4]).

The approach used in our paper is essentially based on the technique of
Kronecker product of matrices (which has been successfully applied in simi-
lar problems - see, e.g. [4]-[8]) and on a decomposition of the underlying
space at the initial moment (see, e.g. [4]-[8] for finite-dimensional spaces and
[9]-[10] in general case of Banach spaces).

Thus, we obtain results which contain and extend the recent results re-
garding the boundedness of solutions of the equation (1.1) (see [2]-[4], [7]).

2 Preliminaries

In this section we present some basic definitions, notations, hypotheses and
results which are useful later on.

Let Rn be the Euclidean n - dimensional space. For x = (x1, x2, ..., xn)T ∈
Rn, let ‖ x ‖ = max{| x1 |, | x2 |, ..., | xn |} be the norm of x ( T denotes
transpose).

Let Mm×n be the linear space of all m× n matrices with real entries.
For a n× n real matrix A = (aij), we define | A | by | A |= sup

‖x‖≤1
‖ Ax ‖ .

It is well-known that | A |= max
1≤i≤n

{
n∑

j=1

| aij|}.

Definition 2.1. ([1]) Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q.
The Kronecker product of A and B written A ⊗ B is defined to be the block
partitioned matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB


Obviously, A⊗B ∈Mmp×nq.

Lemma 2.1. The Kronecker product has the following properties and rules,
provided that the dimension of the matrices are such that the various expres-
sions exist:

1). A⊗ (B ⊗ C) = (A⊗B)⊗ C;
2). (A⊗B)T = AT ⊗BT ;
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3). (A⊗B)−1 = A−1 ⊗B−1;
4). (A⊗B) · (C ⊗D) = AC ⊗BD;
5). A⊗ (B + C) = A⊗B + A⊗ C;
6). (A + B)⊗ C = A⊗ C + B ⊗ C;

7). Ip ⊗ A =


A O · · · O
O A · · · O
...

...
...

...
O O · · · A

;

8). (A(t)⊗B(t))′ = A′(t)⊗B(t)+A(t)⊗B′(t); (here, ′ denotes derivative
d
dt

).

Proof. See in [1].

Definition 2.2. The application V ec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij), is called the vectorization operator.

Lemma 2.2. The vectorization operator V ec : Mn×n −→ Rn2
, is a linear and

one-to-one operator. In addition, Vec and Vec−1 are continuous operators.

Proof. See Lemma 2, [4].

Remark 2.1. Using Definition 2.2, we can see that if F is a continuous
matrix function on R+, then f = V ec(F ) is a continuous vector function on
R+ and reciprocally.

Lemma 2.3. If A,B,M ∈Mn×n, then
1). Vec(AMB) = (BT ⊗ A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
3). Vec(AM) = (In ⊗ A) · Vec(M);
4). Vec(AM) = (MT ⊗ A) · Vec(In).

Proof. It is a simple exercise.

Let Ψi : R+ −→ (0,∞), i = 1, 2, ..., n, be continuous functions and

Ψ = diag [Ψ1,Ψ2, · · ·Ψn].

Definition 2.3. ([2]) A function f : R+ −→ Rn is said to be Ψ− bounded
on R+ if Ψf is bounded on R+ (i.e. sup

t≥0
‖ Ψ(t)f(t) ‖< +∞).

Below, we extend this definition for matrix functions.
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Definition 2.4. ([4]) A matrix function M : R+ −→ Mn×n is said to be
Ψ− bounded on R+ if the matrix function ΨM is bounded on R+ (i.e. sup

t≥0
| Ψ(t)M(t) |< +∞).

Now, we shall assume that A, B and F are continuous n × n - matrices
on R+.

By a solution of (1.1), we mean a continuously differentiable n × n −
matrix function X satisfying the equation (1.1) for all t ≥ 0.

The following lemmas play a vital role in the proof of the main results.

Lemma 2.4. ([4]) The matrix function X(t) is a solution of (1) if and only
if the vector valued function x(t) = V ec(X(t)) is a solution of the differential
system

x′ = (In ⊗ A(t) + BT (t)⊗ In)x + f(t), (2.1)

where f(t) = Vec(F (t)).

Proof. See Lemma 7, [4].

Definition 2.5. The above system (2.1) is called “corresponding Kronecker
product system associated with (1.1)”.

Lemma 2.5. ([4]) The matrix function M(t) is Ψ− bounded on R+ if and
only if the vector function Vec(M(t)) is In ⊗Ψ − bounded on R+.

Proof. See Lemma 5, [4].

The next Lemma is Lemma 1 of [7]. Because the proof is incomplete, we
presented it with a complete proof in [4], as Lemma 6.

Lemma 2.6. ([4]) Let X(t) and Y (t) be the fundamental matrices for the
equations

X ′(t) = A(t)X(t) (2.2)

and
Y ′(t) = Y (t)B(t) (2.3)

respectively.
Then, the matrix Z(t) = Y T (t) ⊗ X(t) is a fundamental matrix for the

system
z′(t) = (In ⊗ A(t) + BT (t)⊗ In)z(t). (2.4)

If, in addition, X(0) = In and Y (0) = In, then Z(0) = In2 .

Proof. See Lemma 6, [4].
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Now, let Z(t) the above fundamental matrix for the system (2.4) with
Z(0) = In2 .

Let X̃1 denote the subspace of Rn2
consisting of all vectors which are

values of In ⊗Ψ− bounded solutions of (2.4) on R+ for t = 0 and let X̃2 an

arbitrary fixed subspace of Rn2
, supplementary to X̃1. Let P̃1 and P̃2 denote

the corresponding projections of Rn2
onto X̃1, X̃2 respectively.

Finally, we remind two theorems which will be used in the proofs of our
main results.

Theorem 2.7. ([3]) If A is a continuous d× d real matrix on R+ then, the
system x′ = A(t)x +f(t) has at least one Ψ− bounded solution on R+ for
every continuous and Ψ− bounded function f on R+ if and only if for the
fundamental matrix Y(t) of the system x′ = A(t)x there exists a positive
constant K such that, for t ≥ 0,∫ t

0

| Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s) | ds +

(2.5)

+

∫ ∞
t

| Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s) | ds ≤ K.

Theorem 2.8. ([3]) Suppose that:
1◦. The fundamental matrix Y(t) of the system x′ = A(t)x satisfies the

condition (2.5) for all t ≥ 0, where K is a positive constant;
2◦. The continuous and Ψ− bounded function f : R+ −→ Rd is such that

lim
t→+∞

‖ Ψ(t)f(t) ‖ = 0.

Then, every Ψ− bounded solution x of the system x′ = A(t)x + f(t) is
such that

lim
t→+∞

‖ Ψ(t)x(t) ‖ = 0.

Remark 2.2. In these theorems, P1 and P2 are supplementary projections
as P̃1 and P̃2, for the system x′ = A(t)x.

3 The main result

In this section we present the main result of our paper in connection with
the existence of Ψ− bounded solutions for the nonhomogeneous Lyapunov
matrix differential equation (1.1).
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Theorem 3.1. Let A and B be continuous n × n real matrix function on
R+ and let X and Y be the fundamental matrices of the homogeneous linear
equations (2.2) and (2.3) respectively for which X(0) = Y (0) = In.

Then, the equation (1.1) has at least one Ψ− bounded solution on R+ for
every continuous and Ψ− bounded matrix function F : R+ −→ Mn×n if and
only if there exists a positive constant K such that, for all t ≥ 0,∫ t

0

| (Y T (t)⊗ (Ψ(t)X(t)))P̃1((Y
T (s))−1 ⊗ (X−1(s)Ψ−1(s))) | ds +

(3.1)

+

∫ ∞
t

| (Y T (t)⊗ (Ψ(t)X(t)))P̃2((Y
T (s))−1 ⊗ (X−1(s)Ψ−1(s))) | ds ≤ K.

Proof. First, we prove the “only if” part.
Suppose that the equation (1.1) has at least one Ψ− bounded solution

on R+ for every continuous and Ψ− bounded matrix function F : R+ −→
Mn×n.

Let f : R+ −→ Rn2
be a continuous and In ⊗ Ψ− bounded function on

R+. From Lemma 2.5, it follows that the matrix function F (t) = Vec−1(f(t))
is continuous and Ψ− bounded on R+. From the hypothesis, the equation

X ′ = A(t)X + XB(t) + Vec−1(f(t))

has at least one Ψ− bounded solution X(t) on R+.
From Lemma 2.4 and Lemma 2.5, it follows that the vector valued func-

tion x(t) = Vec(X(t)) is a In⊗Ψ− bounded solution on R+ of the differential
system

x′ = (In ⊗ A(t) + BT (t)⊗ In)x + f(t).

Thus, this system has at least one In ⊗ Ψ− bounded solution on R+ for
every continuous and In ⊗Ψ− bounded function f on R+.

From Theorem 2.7, for a fundamental matrix Z(t) of (2.4), there exists a
positive constant K such that∫ t

0

| (In ⊗Ψ(t))Z(t)P̃1Z
−1(s)(In ⊗Ψ(s))−1 | ds +∫ ∞

t

| (In ⊗Ψ(t))Z(t)P̃2Z
−1(s)(In ⊗Ψ(s))−1 | ds ≤ K,

for all t ≥ 0.
By Lemma 2.6, we have Z(t) = Y T (t) ⊗X(t). Now, a calculation shows

that (3.1) holds.
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Now, we prove the “if” part.
Suppose that (3.1) holds for some K > 0 and for all t ≥ 0.
Let F : R+ −→Mn×n a continuous and Ψ− bounded matrix function on

R+.
From Lemma 2.5, it follows that the vector valued function f(t) = Vec(F (t))

is continuous and In ⊗Ψ− bounded function on R+.
From this, (3.1), Lemma 2.6 and Theorem 2.7, it follows that the differ-

ential system

x′(t) = (In ⊗ A(t) + BT (t)⊗ In)x(t) + f(t)

has at least one In ⊗Ψ− bounded solution on R+. Let x(t) be this solution.
From Lemma 2.4 and Lemma 2.5, it follows that the matrix function

X(t) = Vec−1(x(t)) is a Ψ− bounded solution on R+ of the equation (1.1)
(because F (t) = Vec−1(f(t))).

Thus, the differential equation (1.1) has at least one Ψ− bounded solution
on R+ for every continuous and Ψ− bounded matrix function F on R+.

The proof is now complete.

Remark 3.1. Theorem 3.1 generalizes Theorem 1, [3].

Indeed, in the particular case B(t) = On, we have Y = In and then
Z(t) = In ⊗X(t). If, in addition

F (t) =


f1(t) f1(t) · · · f1(t)
f2(t) f2(t) · · · f2(t)

...
...

...
...

fn(t) fn(t) · · · fn(t)

 ,

it is easy to see that the solutions of (1) are

X(t) =


x1(t) x1(t) · · · x1(t)
x2(t) x2(t) · · · x2(t)

...
...

...
...

xn(t) xn(t) · · · xn(t)

 ,

where x = (x1(t), x2(t), · · · , xn(t))T is the solution of the system

x′(t) = A(t)x(t) + f(t),

with f(t) = (f1(t), f2(t), · · · , fn(t))T .
In this case, the condition (3.1) becomes the condition (2.5).
Thus, Theorem generalizes the result from [3].
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We prove finally a theorem in which we will see that the asymptotic
behavior of solutions of (1.1) is completely determined by the asymptotic
behavior of F (t) as t −→∞.

Theorem 3.2. Suppose that:
1). The fundamental matrices X(t) and Y (t) of (2.2) and (2.3) respec-

tively (X(0) = Y (0) = In) satisfy the condition (3.1) for some K > 0 and
for all t ≥ 0;

2). The continuous matrix function F : R+ −→ Mn×n satisfies the con-
dition

lim
t→∞

| Ψ(t)F (t) | = 0.

Then, every Ψ− bounded solution X(t) of (1.1) satisfies the condition

lim
t→∞

| Ψ(t)X(t) | = 0.

Proof. Let X(t) be a Ψ − bounded solution of (1.1). From Lemma 2.4 and
Lemma 2.5, it follows that the function x(t) = Vec(X(t)) is a In ⊗ Ψ−
bounded solution on R+ of the differential system

x′ = (In ⊗ A(t) + BT (t)⊗ In)x + f(t),

where f(t) = Vec(F (t)).
Also, from the proof of Lemma 2.5, we have

‖ (In ⊗Ψ(t)) · f(t) ‖Rn2 ≤ | Ψ(t)F (t) |, t ≥ 0

and then,
lim
t→∞

‖ (In ⊗Ψ(t)) · f(t) ‖Rn2= 0.

From the Theorem 2.8, it follows that

lim
t→∞

‖ (In ⊗Ψ(t)) · x(t) ‖Rn2= 0.

Now, from the proof of Lemma 2.5 again, we have

| Ψ(t)X(t) | ≤ n ‖ (In ⊗Ψ(t)) · x(t) ‖Rn2 , t ≥ 0

and then
lim
t→∞

| Ψ(t)X(t) | = 0.

The proof is now complete.

Remark 3.2. Theorem 3.2 generalizes Theorem 2.2, [3].
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Remark 3.3. Note that if we do not have lim
t→∞

| Ψ(t)F (t) | = 0, then, the

Ψ− bounded solution X(t) may be such that | Ψ(t)X(t) | 9 0 as t→∞.

This is shown by the next

Example 3.1. Consider the linear equation (1.1) with

A(t) =

(
2 0
0 −2

)
, B(t) =

(
1 0
0 −2

)
, and F (t) =

(
e4t 0
e−2t 0

)
.

The fundamental matrices for the equations (2.2) and (2.3) are

X(t) =

(
e2t 0
0 e−2t

)
, Y (t) =

(
et 0
0 e−2t

)
respectively.

Consider

Ψ(t) =

(
e−4t 0
0 e2t

)
.

It is easy to see that the condition of Theorem 3.2 is satisfied with

P̃1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , P̃2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and K = 2.

On the other hand, we have | Ψ(t)F (t) | = 1, for all t ≥ 0.
The solutions of the equation (1.1) are

X(t) =

(
c1e

3t + e4t c3
c2e
−t − e−2t c4e

−4t

)
, c1, c2, c3, c4 ∈ R.

The Ψ− bounded solutions of the equation (1.1) are

X(t) =

(
c1e

3t + e4t c3
−e−2t c4e

−4t

)
, c1, c3, c4 ∈ R.

It is easy to see that for every Ψ− bounded solution of (1.1) we have

lim
t→∞

| Ψ(t)X(t) | = 1.

Note that the asymptotic properties of the components of the solutions
are not the same. On the other hand, we see that the asymptotic properties
of the components of the solutions are the same, via matrix function Ψ. This
is obtained by using a matrix function Ψ rather than a scalar function.

Remark 3.4. This Example shows that the hypothesis 2 of Theorem 3.2 is
an essential condition for the conclusion of the theorem.
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