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1 Introduction

Some recent researchers led to generalizations of the notion of fuzzy set that
introduced by Zadeh in 1965 [15]. The generalization of the crisp set to
fuzzy sets relied on spreading positive information that fit the point {1}
into the interval [0, 1]. In order to provide a mathematical tool to deal
with negative information, Jun et. al. introduced N-structures, based on
negative-valued functions [6]. In 1966, Y. Imai and K. Iseki [3] introduced
two classes of abstract algebras: BCK-algebras and BCI-algebras. It is
known that the class of BCK-algebras is a proper subclass of the class of
BCI-algebras. H. S. Kim and Y. H. Kim defined a BE-algebra [5]. Biao Long
Meng, defined notion of CI-algebra as a generalization of a BE-algebra [9]. It
is Known that any BE-algebra is a CI-algebra. Hence, every BE-algebra is
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a weaker structure than CI-algebra, thus we can consider in any CI-algebra
a weaker structure as BE-algebra. Jun et. al. discussed the notion of N

-structures in BCH/BCK/BCI-algebras and investigated their properties
in [6, 7]. They introduced the notions of N-ideals of subtraction algebras
and N-closed ideals in BCK/BCI-algebras. We introduce the notions of N-
subalgebras and N-filters in CI-algebras and give a number of their properties
and The relationship between N-subalgebras and N-filters was discussed in
[14]. Also, we discuss on Smarandache CI-algebra and investigated some of
their useful properties in [2]. Beside, we introduced the notion of anti fuzzy
set and stated the relationship with the N-function of CI-algebra X. We
showed that every anti fuzzy filter is an anti fuzzy subalgebra in [1]. K. J.
Lee and Y. B. Jun introduced the notion of N-subalgebras and N-ideals based
on a sub-BCK-algebra of a BCI-algebras and their relations/properties are
investigated in [8].
In the present paper, we continue study of CI-algebras and apply the N-
structures to the filter theory in CI-algebras and Smarandache CI-algebras,
also investigate the relationship between N-subalgebra and N-filters based
on Smarandache CI-algebras. We show that any N(Q, f)-closed filter is an
N(Q, f)-subalgebra. We give some conditions for N-subalgebras(filters) to
be N(Q, %)-subalgebras(resp. filters).

2 Preliminaries

In this section we review the basic definitions and some elementary aspects
that are necessary for this paper.

Definition 2.1. [9] An algebra (X; ∗, 1) of type (2, 0) is called a CI-algebra
if it satisfying the following axioms:

(CI1) x ∗ x = 1,

(CI2) 1 ∗ x = x,

(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

A CI–algebra X satisfying the condition x∗1 = 1 is called a BE-algebra.
In any CI-algebra X one can define a binary relation “ ≤ ” by x ≤ y if and
only if x ∗ y = 1.
A CI-algebra X has the following properties:

(i) y ∗ ((y ∗ x) ∗ x) = 1,
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(ii) (x ∗ 1) ∗ (y ∗ 1) = (x ∗ y) ∗ 1,

(iii) if 1 ≤ x, then x = 1, for all x, y ∈ X.

A non-empty subset S of a CI-algebra X is called a subalgebra of X if
x ∗ y ∈ S whenever x, y ∈ S. A mapping f : X → Y of CI -algebra is called
a homomorphism if f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ X. A non-empty
subset F of CI-algebra X is called a filter of X if (1) 1 ∈ F , (2) x ∈ F
and x ∗ y ∈ F implies y ∈ F. A filter F of CI-algebra X is said to closed if
x ∈ F implies x ∗ 1 ∈ F. A nonempty subset S of a CI-algebra X is called a
subalgebra of X if x ∗ y ∈ S, for all x, y ∈ S. For our convenience, the empty
set ∅ is regarded as a subalgebra of X. Denote by Q(X, [−1, 0]) the collection
of functions from a set X to [−1, 0]. We say that an element of Q(X, [−1, 0])
is a negative-valued function from X to [−1, 0] (briefly, N-function on X).
By an N-structure we mean an ordered pair (X, f) of X and an N-function
f on X.

In what follows, let X denote a CI-algebra and f an N-function on X
unless otherwise specified.

Definition 2.2. [14] By a subalgebra of X based on N-function f (briefly,
N-subalgebra of X), we mean an N-structure (X, f) in which f satisfies the
following assertion:

f(x ∗ y) ≤ max{f(x), f(y)}, for all x, y ∈ X.

Definition 2.3. [14] By a filter of X based on N-function f (briefly, N-
filter of X), we mean an N-structure (X, f) in which f satisfies the following
conditions:

(i) f(1) ≤ f(y),

(ii) f(y) ≤ max{f(x ∗ y), f(x)}, for all x, y ∈ X.

Definition 2.4. [2] A Smarandache CI-algebra X is defined to be a CI–
algebra X in which there exists a proper subset Q of X such that satisfies the
following conditions:

(S1) 1 ∈ Q and |Q| > 2,

(S2) Q is a BE-algebra under the operation of X.
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Example 2.1. [2] Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 a a d
b 1 1 1 a d
c 1 1 1 1 d
d d d d d 1

Then X is a CI-algebra and Q = {1, a, b, c} is a BE-algebra.

Definition 2.5. [2] A nonempty subset F of CI-algebra X is called a Smaran-
dache filter of X related to Q (or briefly, Q-Smarandache filter of X) if it
satisfies:

• (SF1) 1 ∈ F,

• (SF2) (∀y ∈ Q)(∀x ∈ F )(x ∗ y ∈ F ⇒ y ∈ F ).

Definition 2.6. [11] A fuzzy set µ : X → [0, 1] is called an anti fuzzy
subalgebra of X if it satisfy:

µ(x ∗ y) ≤ max{µ(x), µ(y)}, for all x, y ∈ X.

Definition 2.7. [1] A fuzzy set µ : X → [0, 1] is called an anti fuzzy filter of
X if it satisfies:

• (AFF1) µ(1) ≤ µ(x),

• (AFF2) µ(y) ≤ max{µ(x ∗ y), µ(x)}, for all x, y ∈ X.

3 Smarandache N-subalgebras

Definition 3.1. Let X be a Q-Smarandache CI-algebra and % ∈ [−1, 0]. An
N-structure (X, f) is called an N-subalgebra of X based on Q and % (briefly,
N(Q, %)-subalgebra of X) if it is an N-subalgebra of X such that satisfies the
following condition:

• (type 1) (∀x ∈ Q) (∀y ∈ X \Q) (f(x) ≤ % ≤ f(y)),

• (type 2) (∀x ∈ Q) (∃y ∈ X \Q) (f(x) ≤ % ≤ f(y)),

• (type 3) (∃x ∈ Q) (∀y ∈ X \Q) (f(x) ≤ % ≤ f(y)),
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• (type 4) (∃x ∈ Q) (∃y ∈ X \Q) (f(x) ≤ % ≤ f(y)).

Note. If % := 0, then f(y) = 0, for all y ∈ X \ Q. So, (Q, f) is
an N-subalgebra. If % := −1, then f(x) = −1, for all x ∈ Q. And so
(X, f) = N(Q, %).

Example 3.1. a) In Example 2.1, an N-structure (X, f) in which f is defined
by f(1) = f(a) = −0.7, f(b) = −0.4, f(c) = −0.6 and f(d) = −0.3 is an
N(Q, %)-subalgebra of all types onX, for % ∈ [−0.4,−0.3] andQ = {1, a, b, c}.

b) In Example 2.1, an N-structure (X, g) in which g is defined by g(1) =
g(a) = −0.7, g(b) = −0.2, g(c) = −0.6 and g(d) = −0.3 is not an N(Q, %)-
subalgebra of X because g(d) = −0.3 ≯ g(b) = −0.2.

c) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) =
f(a) = −0.7, f(b) = −0.4, f(c) = −0.5 and f(d) = −0.3 is an N(Q, %)-
subalgebra of type 2, type 3 and type 4 on X, for % ∈ [−0.4,−0.3] and
Q = {1, a, b}, but it is not of type 1, because f(c) � %.

d) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) =
f(a) = −0.7, f(b) = −0.2, f(c) = −0.3 and f(d) = −0.1 is an N(Q, %)-
subalgebra of type 3 and type 4 on X, for % ∈ [−0.7,−0.3] and Q = {1, a, b},
but it is not of type 1 and type 2 on X, because f(b) � %.

e) In Example 2.1, an N-structure (X, f) in which f is defined by f(1) =
f(a) = −0.7, f(b) = −0.2, f(c) = −0.5 and f(d) = −0.3 is an N(Q, %)-
subalgebra of type 4 on X, for % ∈ [−0.7,−0.3] and Q = {1, a, b}, but it is
not of type 1, type 2, type 3 on X.

Now, in the following diagram we summarize the results of this definition.
The mark A→ B, means that A implies B.

type 2

%%

��

type 1

99

//

%%

type 4

type 3

99

In this paper, we focus on N(Q, %)-subalgebra of type 1 and from now on
X is a Q-Smarandache CI-algebra.
The following example shows that there exists an N-structure (X, f) in X
such that it satisfies the condition (type 1), but it is not an N-subalgebra of
X.

Example 3.2. In Example 2.1, an N–structure (X, f) in which f is defined
by f(1) = −0.7, f(a) = −0.2, f(b) = −0.4, f(c) = −0.6 and f(d) = −0.3.
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Then (X, f) satisfies the condition (2.1) for % ∈ [−0.2,−0.1], but it is not an
N-subalgebra. Because

f(b ∗ c) = f(a) = −0.2 ≮ −0.4 = max{f(b), f(c)}.

Proposition 3.1. If an N–structure (X, f) satisfies the following condition:

(∀x ∈ Q)(∀y ∈ X \Q)(f(x) ≤ f(y)),

then (X, f) is an (Q, %)–subalgebra of X, for every % ∈ [
∨
x∈Q

f(x),
∧

y∈X\Q

f(y)].

Theorem 3.2. Let % ∈ [−1, 0]. If (X, f) is an N(Q, %)-subalgebra of X, then

(i) Q ⊆ C(f ; %),

(ii) (∀β ∈ [−1, 0]) (β < %⇒ C(f ; β) is a subalgebra of Q).

Proof. Let (X, f) be a N(Q, %)-subalgebra of X. Obviously, Q ⊆ C(f ; %).
If β ∈ [−1, 0] be such that β < %, then C(f ; β) ⊆ Q. Let x, y ∈ C(f ; β).
Then f(x) ≤ β and f(x) ≤ β. Thus f(x ∗ y) ≤ max{f(x), f(y)} ≤ β, and so
x ∗ y ∈ C(f ; β). Thus C(f ; β) is a subalgebra of Q.

In the following theorem we give some conditions for an N–subalgebra to
be an N(Q, %)-subalgebra.

Theorem 3.3. Let % ∈ [−1, 0]. If (X, f) is an N-subalgebra of X satisfies the
conditions (i) and (ii) in Theorem 3.2, then (X, f) is an N(Q, %)-subalgebra
of X.

Proof. Let x ∈ Q and y ∈ X\Q. Then by Theorem 3.2(i), x ∈ C(f ; %), and so
f(x) ≤ %. Let f(y) = β. If β < %, then by Theorem 3.2(ii), y ∈ C(f ; β) ⊆ Q,
which is a contradiction. Hence f(x) ≤ % ≤ β = f(y). Thus (X, f) is an
N(Q, %)-subalgebra of X.

4 Smarandache N-filters

Definition 4.1. Let X be a Q-Smarandache CI-algebra and % ∈ [−1, 0].
An N-structure (X, f) is called an N-filter of X based on Q and % (briefly,
N(Q, %)-filter of X) if it satisfies the following conditions:

(i) (∀x ∈ Q) (∀y ∈ X \Q) (f(1) ≤ f(x) ≤ % ≤ f(y)).
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(ii) (∀x, y ∈ Q) (f(y) ≤ max{f(x ∗ y), f(x)}).

Example 4.1. In Example 2.1, an N–structure (X, f) in which f is defined
by f(1) = −0.6, f(a) = −0.4, f(b) = −0.5, f(c) = −0.4 and f(d) = −0.3 is
an N(Q, %)–filter of X for % ∈ [−0.4,−0.3].

Theorem 4.1. Let {N(Qi, %i) : i ∈ ∆} be a family of N(Qi, %i)-subalgebras
(filters) of X where ∆ 6= Ø and %i ∈ [−1, 0], for all i ∈ ∆.
Then N(∩Qi,min{%i})i∈∆, is a subalgebra (filter) of X, too.

Theorem 4.2. Let % ∈ [−1, 0]. If (X, f) is an N(Q, %)-filter of X, then

(i) Q ⊆ C(f ; %),

(ii) (∀β ∈ [−1, 0]) (β < %⇒ C(f ; β) is a filter of Q).

Proof. Let (X, f) be an N(Q, %)-filter of X. Obviously, Q ⊆ C(f ; %). Let
β ∈ [−1, 0] be such that β < %. If x ∈ C(f ; β), then f(x) ≤ β < %, and
so x ∈ Q. Hence C(f ; β) ⊆ Q. by Definition 4.1(i), f(1) ≤ f(x), for all
x ∈ X. Hence f(1) ≤ f(x) ≤ β for all x ∈ C(f ; β), and so 1 ∈ C(f ; β). Let
x, y ∈ Q be such that x ∗ y ∈ C(f ; β) and x ∈ C(f, β). Then f(x ∗ y) ≤ β
and f(x) ≤ β. If x, y ∈ C(f ; β), then f(x) ≤ β. Now by Definition 4.1(ii),
f(y) ≤ max{f(x ∗ y), f(x)} ≤ β. Thus y ∈ C(f ; β). Therefore, C(f ; β) is a
filter of Q.

For a Q-Smarandache CI–algebra X and % ∈ [−1, 0], the following ex-
ample shows that an N-filter (X, f) of X may not be an N(Q, %)-filter of
X.

Example 4.2. Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c c c c 1

Then X is a CI-algebra and Q := {1, a, b} is a BE-algebra [13]. Define
an N-structure (X, f) in which f is defined by f(1) = −0.7, f(a) = −0.2,
f(b) = −0.4, f(c) = −0.2. Then (X, f) is an N-filter of X. But it is not an
N(Q, %) of X for % ∈ [−0.7,−0.3]. Because f(a) = −0.2 > %.

In the following theorem we give conditions for an N-filter to be an
N(Q, %)-filter.
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Theorem 4.3. Let % ∈ [−1, 0] and (X, f) be an N-filter of X satisfies the
conditions (i) and (ii) of Theorem 4.2. Then (X, f) is an N(Q, %)–filter of
X.

Proof. Let x ∈ Q and y ∈ X\Q. Then by Theorem 4.2(i), x ∈ C(f ; %), and so
f(x) ≤ %. Let f(y) = β. If β < %, then by Theorem 4.2(ii), y ∈ C(f ; β) ⊆ Q,
which is a contradiction. Hence % ≤ β = f(y). Since f(1) ≤ f(x) for all
x ∈ X, it follows that f(1) ≤ f(x) ≤ % ≤ β = f(y) so that condition (i)
of Definition 4.1 is valid. Since f is an N-filter of X, the condition (ii) of
Definition 4.1 is obvious. Therefore, (X, f) is an N(Q, %)-filter of X.

The following example shows that an N(Q, %)-subalgebra may not be an
N(Q, %)-filter.

Example 4.3. Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 a a d
b 1 1 1 a d
c 1 1 1 1 d
d d d d d 1

Then X is a CI-algebra and Q = {1, a, b, c} is a BE-algebra. Define an
N-structure (X, f) in which f is defined by f(1) = −0.4, f(a) = −0.4,
f(b) = −0.3, f(c) = −0.2 and f(d) = −0.1. Then (X, f) is an N-subalgebra,
for % ∈ [−0.2, 0], but it is not an N-filter because

f(c) = −0.2 ≮ −0.3 = max{f(b ∗ c), f(b)}.

Definition 4.2. An N-function on X is called closed N-filter if f satisfies:

f(x ∗ 1) ≤ f(x) ≤ max{f(y ∗ x, f(y)}, for all x, y ∈ X.

Example 4.4. Let X := {1, a, b} be a set with the following table:

∗ 1 a b
1 1 a b
a a 1 1
b a 1 1

Then X is a CI-algebra [10]. Define an N-function f : X → [0, 1] by f(1) =
−0.7, f(a) = −0.3 and f(b) = −0.4. Then (X, f) is an N-filter of X. But it
is not an N-closed filter because

f(b ∗ 1) = f(a) = −0.3 � f(b) = −0.4.
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Example 4.5. In Example 4.4, if define N-function f : X → [0, 1] by f(1) =
−0.7, f(a) = −0.4 and f(b) = −0.4. Then (X, f) is an N-closed filter of X.

Proposition 4.4. Let (X, f) be an N-closed filter. Then f(1) ≤ f(x), for
all x ∈ X.

Proof. Let x ∈ X. Now, by Definition 4.2, we have

f(1) ≤ max{f(x ∗ 1), f(x)} ≤ max{f(x), f(x)} = f(x).

Theorem 4.5. Let (X, f) be an closed N-filter and % ∈ [−1, 0]. Then every
N(Q, %)-filter is N(Q, %)-subalgebra of X.

Proof. Let (X, f) be N(Q, %)-filter and x, y ∈ X. Then by (CI3) and Defini-
tion 4.2, we have

f(x ∗ y) ≤ max{f(y ∗ (x ∗ y)), f(y)}
= max{f(x ∗ (y ∗ y)), f(y)}
= max{f(x ∗ 1), f(y)}
≤ max{f(x), f(y)}.

Therefore, (X, f) is an N-subalgebra of X.

Theorem 4.6. Let (X, f) and (X, g) be N(Q1, %1) and N(Q2, %2)-subalgebra
(filter) of X respectively. Then (X×X, f×g) is an N(Q1×Q2,max{%1, %2}-
subalgebra(filter) of X ×X.

Proof. Let (x, y) ∈ (Q1 × Q2) and (z, t) ∈ (X × X) \ (Q1 × Q2). Then we
have

(f × g)(1, 1) = max{f(1), g(1)} ≤ max{f(x), g(y)}
≤ max{%1, %2}
≤ max{f(z), f(t)} = (f × g)(z, t).

Now, let (x1, x2), (y1, y2) ∈ (Q1 ×Q2). Then

(f × g)((x1, x2) ∗ (y1, y2)) = (f × g)((x1 ∗ y1), (x2 ∗ y2))

= max{f(x1 ∗ y1)), g(x2 ∗ y2)}
≤ max{max{f(x1), f(y1)},max{g(x2), g(y2)}}
= max{max{f(x1), g(x2)},max{f(y1), g(y2)}}
= max{(f × g)(x1, x2), (f × g)(y1, y2)}.

Hence (X ×X, f × g) is an N(Q1×Q2,max{%1, %2})-subalgebra(resp. filter)
of X ×X.
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Proposition 4.7. Let Q1 and Q2 be two BE-algebras which are properly con-
tained in X, Q1 ⊆ Q2 and % ∈ [−1, 0]. Then every N(Q2, %)-subalgebra(filter)
of X is an N(Q1, %)-subalgebra(filter) of X.

Note. By the following example we show that the converse of above
theorem is not correct in general.

Example 4.6. Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c c c c 1

Then Q1 = {1, a}, Q2 = {1, a.b} are BE-algebras which are properly con-
tained in X and f(1) = −0.7, f(a) = −0.4, f(b) = −0.2 and f(c) = −0.1.
Then (X, f) is an N(Q1, %)-subalgebra, for all % ∈ [−0.4, 0], but it is not an
N(Q2, %)-subalgebra, because, if % := −0.3, then f(b) = −0.2 ≮ −0.3.

5 Conclusion

A Smarandache structure on a set A means a week structure W on A such
that there exist a proper subset B of A which is embedded with a strong
structure S. It is that any BE-algebra is a CI-algebra. Hence, every BE-
algebra is a weaker structure than CI-algebra, thus we can consider in any
CI-algebra a weaker structure as BE-algebra.

In this paper, we have introduced the concept of N-subalgebra (filter)
based on Smarandache CI-algebras and some related properties are investi-
gated. We show that any N(Q, f)-closed filter is an N(Q, f)-subalgebra. We
give some conditions for an N -subalgebras (filters) to be N(Q, %)-subalgebras
(filters).
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