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Abstract. This paper considers three general trichotomy con-
cepts for noninvertible linear discrete-time systems in Banach
spaces. Characterizations of these concepts are obtained from the
point of view of the projections sequences. Some illustrative ex-
amples are given in order to prove that these concepts are distinct.

AMS Subject Classification (2000). 34D05, 39A06
Keywords. Strong (a, b, ¢)-trichotomy, (a, b, ¢)-trichotomy, weak
(a, b, c)-trichotomy linear discrete-time systems

1 Introduction

The notion of trichotomy plays a central role in the qualitative theory of
discrete -time systems, which has an impressive development. As a natural
generalization of the dichotomy property, concepts of trichotomy have been
introduced by R. S. Sacker and G. R. Sell in [13] and S. Elaydi and O. Hajek
in [4]. The case of discrete-time systems was considered by S. Elaydi and
K. Janglajew in [5]. In the last decades a substantial part of the trichotomy
theory was dedicated to the extension of the methods used in dichotomy
theory to the trichotomy case (see [1], [2], [3], [6], [7], [8], [9], [10], [11], [12]).
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This paper presents three general trichotomy concepts ( (a,b,c)- tri-
chotomy, strong (a,b,c)- trichotomy and weak (a,b, c)-trichotomy) for non-
invertible discrete linear systems. Connections between these concepts are
given. These concepts contain as particular cases some uniform and nonuni-
form concepts of exponential or polynomial trichotomies.

2 Preliminaries

Let X be a real or complex Banach space and let B(X) be the space of all
bounded linear operators on X. The norms on X and on B(X) will be denoted
by || - [|. We also denote by I and O the identity operator and respectively
the null operator on X, A the set of all pairs of natural numbers (m, n) with
m>n,T=AxX.

Let (A,) be a sequence in B(X). We consider the linear discrete-time

system
Tpy1 = Apn, n € N. (A)

Every solution x = (z,,) of the system (A) is given by
T = A 2y,

for all (m,n) € A, where A: A — B(X) is defined by

I, ifm=n

e {Aml...An, it m>n

Remark 2.1. We have that
Ap AP = AP

for all (m,n) and (n,p) € A.

Definition 2.1. A sequence (P,) is called a projections sequence on X,
if
P:=p,

for every n € N.
A projections sequence (F,) with the property
Pn+1An = Anpn

for all n € N, is called invariant for the system (A).
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Remark 2.2. The projections sequence (P,) is invariant for (A) if and only if
A" P, = P, A"
for all (m,n) € A.

Definition 2.2. A projections sequence (P,) is called strongly invariant
for the system (A), if it is invariant for (A) and for every (m,n) € A the
restriction of A}, on RangeP, is an isomorphism from RangeP, to RangeP,,.

Remark 2.3. If the projections sequence (F,) is strongly invariant for the
system (A) then there exists B : A — B(X) such that

b)) Al B! P, = P,;
be) B Ar P, = P,;

bs) B P, = P,B P,;
for all (m,n) € A.

Definition 2.3. Three projections sequences (P!),(P2),(P3?) are called
supplementary if

s1) Pl + P?+4+ P3 =1, for every n € N;
s9) PL-PI =0, forallmn € Nand all 4,5 € {1,2,3} with 7 # j.

If P = {(P}),(P?),(P3)} is a family of three supplementary projections
sequences which are invariant for (A) then we say that the pair (A, P) is a
trichotomic pair.

Definition 2.4. A family P = {(P!), (P?),(P3)} of three supplementary
projections sequences is called compatible with the system (A) if

c1) (Pl) is invariant for (A);

c2) (P?) and (P3?) are strongly invariant for (A).

3 (a,b,c)- trichotomy

Let (A, ?P) be a trichotomic pair and let a = (a,),b = (b,) and ¢ = (¢,) be
three nondecreasing sequences of positive real numbers with a,, > 1,0, > 1
and ¢, > 1 for all n € N.
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Definition 3.1. We say that the pair (A, P) is (a,b,c)-trichotomic if there
exists N > 1 such that

t1) aml| APzl < Napby|| P, x|;

ta) am||Pizl| < Nanby| A7, Pl

ts) call A Prl| < Nbycnm| | Px|;

ta) call Pzl < Nbmenl| An Piz|;

for all (m,n,z) € T.
In the particular case when the sequence (b,) is constant, we say that

(A, P) is uniformly (a,c)-trichotomic.

Remark 3.1. As particular cases of (a,b, c) — trichotomy we observe that

i) if a, = e® and ¢, = €’ with a,3 > 0 then we recover the notion
of nonuniform exponential trichotomy and in particular when the

sequence (b,,) is constant we obtain the classical notion of nonuniform
exponential trichotomy;

i) if a, = (n+1)* and ¢, = (n+1)” with a, 8 > 0 then we recover
the notion of nonuniform polynomial trichotomy and in particular
when the sequence (b,,) is constant we obtain the notion of uniform
polynomial trichotomy:;

ii7) if P3 = O for every n € N, then we recover the property of (a,b) di-
chotomy nonuniform exponential dichotomy (for a, = e*" with
a > 0), uniform exponential dichotomy (for a,, = ¢*" and (b,,) con-
stant), nonuniform polynomial dichotomy (for a,, = (n + 1)* with
« > 0) and uniform polynomial dichotomy (when a, = (n+ 1)“
and (b,,) constant.)

A characterization of (a,b,c)-trichotomy is given by

Theorem 3.1. Let (A, P) be a trichotomic pair with the property that (P)
is compatible with (A). Then the pair (A,P) is (a,b,c) — trichotomic if and
only if there exists a constant N > 1 such that

ty) am|| Ay, Pazll < Nanby|| Pyzl;
ty) am| By Przll < Nanby||Phal;

tg’,) CNHA?nPg)xH < anCmHPstf
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ty) call By Pzl < Nbmew || Poll;
for all (m,n,z) € T.

Proof. Tt is sufficient to prove that (£5) < (t,) and (t4) < (t,). For to prove
that (t,) = (t,) we observe that

| By Pt = am|| Py By, Pr|

< Naybul| A P2BL P2
< Napb,||A" B P2 ||

mT—mT m

= NanbmHPixH

for all (m,n,x) € T.
Similarly, for to prove the implication (¢,) = (t5) we observe that

am||PZx|| = an||B; P2 A" P2x||

< NanbmHPr%LA:LnPZxH
= Nanbn || A5, Pra|
for all (m,n,x) € T.
(ty) = (t,). If we suppose that (t4) is satisfied then
col| By ol = el P By, P

< Nbpom || AL PEBE P x|
= Nby,cpn|| A" B P2 2|

= mecmHP,ixH

for all (m,n,z) € T and hence the inequality (¢,) in holds. (t,) = (t,). If
(t,) holds then
call Pl = eall B, AL Pz
< Nbpen|| P2 AD P
= Nbucn | An Pz

for every (m,n,z) € T and hence the inequality (¢4) is verified. O
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4 Strong (a,b,c)- trichotomy

Let (A,P) be a trichotomic pair and let a = (a,),b = (b,) and ¢ = (¢,) be
three nondecreasing sequences of positive real numbers with a,, > 1,b, > 1
and ¢, > 1 for all n € N.

Definition 4.1. We say that the pair (A, P) is stongly (a,b,c)-trichotomic
if there exists NV > 1 such that

st1) am||A%Plz| < Nayb,|z|;
sta) am||z]| < Nanbn||Ap, Plxl|;
sts) cul| A% P3z|| < Nbycp||z];
sty) col|7| < Nbpcn|| AT Plxl);
for all (m,n,z) € T.

Proposition 4.1. If the pair (A, P) is strongly (a,b,c)-trichotomic then it is
also (a,b,c)- trichotomic.

Proof. If (A,P) is strongly (a,b,c)-trichotomic then by substituting = by
Plx in (sty), x by P2x in (sty), respectively x by P3z in (st3) and (st,)
then we obtain that (t1), (t2), (t3) and (t4) are satisfied and hence (A, P) is
(a,b,c) — trichotomic.

Remark 4.1. The converse of the implication from Proposition 4.1 is not
generally true. (see Example 6.3)

Definition 4.2. Let P = {(P}), (P?), (P3
tary projections sequences and let b = (b
positive real numbers with b,, > 1.

)} be a family of three supplemen-
») be a nondecreasing sequence of

We say that P is b-bounded, if there exists M > 1 such that
1P < Mb,
for all n € N and all j € {1,2,3}.

Proposition 4.2. If the pair (A, P) is strongly (a,b,c)-trichotomic then P is
b-bounded.

Proof. If (A,P) is strongly (a,b,c)-trichotomic then for m = n in the in-
equalities (st1) and (st3) we obtain |P|| < Nb,, ||P3|| < Nb, for alln € N.
Then || P?|| < 1+ ||PY| + ||P3|| < 3Nb, for everyn € N.

Finally it results that P is b-bounded.
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5 Weak (a,b,c)- trichotomy

Let (A,?P) be a trichotomic pair and let a = (a,),b = (b,) and ¢ = (¢,) be
three nondecreasing sequences of positive real numbers with a,, > 1,b, > 1
and ¢, > 1 for all n € N.

Definition 5.1. We say that the pair (A, P) is weakly (a,b,c)-trichotomic
if there exists N > 1 such that

wt1) @ || A5 Pl < Nanba|| Py s
wta) am||PEll < Napbn|| AL PL;
wts) cnl| Ap P3| < Nbpep || PJ;
wta) ol BLl| < Nbpew || A7 P s
for all (m,n) € A.

Proposition 5.1. If the pair (A, P) is (a, b, c) — trichotomic then it is also
weakly (a,b,c)- trichotomic.

Proof. Tt follows from Definition 3.1 by taking the supremum with respect
to ||z|| < 1. O

Corollary 5.1. If (A,P) is strongly (a,b,c)- trichotomic then it also weakly
(a,b,c)-trichotomic.
Proof. It is a consequence of the Proposition 4.1 and 5.1.

A characterization of weak (a,b,c)-trichotomy is given by

Theorem 5.1. Let (A, P) be a trichotomic pair with the property that (P) is
compatible with (A. If the pair (A,P) is weakly(a,b,c) — trichotomic then
there exists a constant N > 1 such that

wty) || An Pyl < Naybo|| Pyl

t

g

|| By, Poll < Nanby|| P3|l

wt Cn”A%P;Z’H SancmHPSH:'

D)
2)
5)
wty) | BpPall < Nbmen|| P3|

for all (m,n) € A,

Proof. 1t is similar to the proof of Theorem 3.1. O
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6 Examples

Firstly, we present a pair (A, P) which is (a, b, ¢) — trichotomic.

Ezample 6.1. Let P = {(P}), (P?), (P3)} be a family of three supplementary
projections sequences with the following properties

(i) P2P! = P2P3=0 and P2P? = P2 for all (m,n) € N?
(i1) ||P?z|| < ||P%z] for every (m,n,z) € T.

For an example of such family see Example 6.2.

Let a = (a,),b = (b,) and ¢ = (¢,) be three nondecreasing sequences of

positive real numbers with a,, > 1,b, > 1 and ¢,, > 1 for all n € N.
Consider the linear discrete-time system (A) generated by sequence

an Cn ps

n

A, =

Ap+1
Py + 2P, +
Ap+1 ap Cn+1

Then (A,P) is a trichotomic pair with

An = Snpty dmp2 | Snps

m n m

n
am n m

Anpl = dnpt ynp2_ Gmp2 g ps _ Cnps
a
Moreover we have that
t) aml| A5 Pyl = an|| Pyl < anby| Py xl;
£2) mll P23l] < | P2:2]) = 00| A2, P23 < byl AT, P2
1) call AL P3]| < el PR < bucol| P
ta) el Plxll = enll AL Pzl < bpewm || A7, Poxll;
for all (m,n,z) € T.
Thus (A, P) is uniformly (a, c) — trichotomic and hence it is also (a,b, c) —
trichotomic for every nondecreasing sequence (by,).

This example shows that for every triplet of sequences (a, b, ¢) there exists a
trichotomic pair (A, P) which is (a, b, ¢) — trichotomic.

An example of a strong(a, b, c¢) — trichotomic pair is presented in
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Ezample 6.2. On X = R? endowed with the norm

||($1, T, 903)” = max{|x1|, |$2|a |$3|}

We consider the family P = {(P}), (P?), (P?)} of three supplementary pro-
jections sequences defined by

Pl(xy, 19, 13) = (71 + 29Dy, 0,0)

PS(wla X2, 'CC3) - (_:L‘any X2, O)
Pg(ilfl, T, .1'3) = (0, O, [I§'3>.

Where b,, is a nondecreasing real sequence with b,, > 1.
It is easy to see that P satisfies the properties (i) and (i) from Example 6.1.
Moreover ||P?|| < 2b, for all n € N and all j € {1,2,3}.
Thus P is b-bounded.
If we consider the system (A) defined in previous example then (A, P) satisfies
the inequalities (st1), (st2), (st3) and (st4) and hence (A, P) is strongly (a, b, ¢)—
trichotomic.

An example of a (a, b, ¢) —trichotomic pair which is not strongly (a,b,c)—
trichotomic is given in

Ezample 6.3. On X = R3 with the same norm as in the previous example
we consider the family P = {P! P2 P3} given by

Pé(l‘l, T, 'T3) = (‘Tl + x2b7217 07 0)
P2 (x1, 22, 3) = (—a2b2, 22, 0)
Ps(wla T2, $3) = (07 07 l’g)
and the linear discrete-time system (A) generated by the sequence
1 1
A,=-Pl+eP’+-P.
e e

For a,, = b, = ¢, = €" we have that the pair (A, P) is (a,b, ¢) — trichotomic
and because (P2) is not b-bounded it follows that (A,P) is not strongly-
wnvariant.
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