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1 Introduction

In the qualitative theory of nonautonomous dynamical systems an important
role is played by the dichotomy and trichotomy properties. These concepts
were studied in an extensive manner from the point of view of uniform,
nonuniform, exponential and polynomial behaviors ( see, for example: [1],
[2], [3], [5], [8], [9], [11], [13], [15], [16], [17], [18], [19] ).

As natural generalizations of the above behaviors are successfully modeled
by the properties of (h, k)-dichotomy and (h, k)-trichotomy. These concepts
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were studied in a large number of papers containing many interesting results.
For more recent works we refer the reader to [4], [6], [7], [10], [12], [14], [20],
[21] and the references therein.

In this paper we introduce two general concepts of (h, k)-dichotomy re-
spectively (h, k)-trichotomy for dynamical systems defined by an evolution
operator in a Banach space. We consider simultaneously the general cases
of nonautonomous, noninvertible and nonuniform dynamics with arbitrary
growth rates. These concepts include as particular cases some uniform (nonuni-
form) exponential or polynomial dichotomy respectively trichotomy.

Our main aim is to prove the equivalence between (h, k)-trichotomy of
an evolution operator U and (h, k)-dichotomy of two evolution operators
associated to U.

As consequences, we obtain characterizations of nonuniform exponential
trichotomy and nonuniform polynomial trichotomy for differential equations
in Banach spaces.

2 Evolution operators and families of projections

Let X be a real or complex Banach space and let B(X) be the Banach algebra
of all bounded linear operators on X. The norms on X and on B(X) will be
denoted by || · ||.

We also denote by

∆ = {(t, s) ∈ R2 with t ≥ s ≥ 0} and T = ∆×X.

Definition 2.1. An operator valued U : ∆ → B(X) is called an evolution
operator on X if

(e1) U(t, t) = I (the identity operator on X) for every t ≥ 0;

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s) and (s, t0) ∈ ∆.

Definition 2.2. An operator valued P : R+ → B(X) is said to be a family
of projections if

P (t)2 = P (t) for every t ≥ 0.

Definition 2.3. Given an evolution operator U : ∆→ B(X), we say that a
family of projections P : R+ → B(X) is invariant for U , if

U(t, s)P (s) = P (t)U(t, s) for all (t, s) ∈ ∆.
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In the dichotomy theory are used families of two projections. In this aim
we introduce

Definition 2.4. If P1, P2 : R+ → B(X) are two families of projections on
X, then we say that P = {P1, P2} is

(i) orthogonal, if P1(t) + P2(t) = I for every t ≥ 0;

(ii) compatible for the evolution operator U : ∆→ B(X), if P is orthogonal
and P1, P2 are invariant for U.

In the trichotomy theory are used families of three projections. For these
families we give

Definition 2.5. Let P1, P2, P3 : R+ → B(X) be three families of projections
on X. We say that P = {P1, P2, P3} is

(i) orthogonal, if

(o1) P1(t) + P2(t) + P3(t) = I for every t ≥ 0;

(o2) Pi(t)Pj(t) = Pj(t)Pi(t) = 0 for all t ≥ 0 and i, j ∈ {1, 2, 3} with
i 6= j;

(o3) ||Pi(t)x + Pj(t)x||2 = ||Pi(t)x||2 + ||Pj(t)x||2 for all t ≥ 0, x ∈ X
and i, j ∈ {1, 2, 3} with i 6= j;

(ii) compatible with the evolution operator U : ∆→ B(X), if P is orthog-
onal and P1, P2 and P3 are invariant for U.

Definition 2.6. Let P+ = {P+
1 , P

+
2 } and P− = {P−1 , P−2 } be compatible

with the evolution operator U. We say that P+ and P− are supplementary if

(s1) P+
1 (t)P−2 (t) = P−2 (t)P+

1 (t) = 0,

(s2) P+
2 (t)P−1 (t) = P−1 (t)P+

2 (t) = P+
2 (t)− P−2 (t) = P−1 (t)− P+

1 (t),

(s3) ||P+
1 (t)x+ P−2 (t)x||2 = ||P+

1 (t)x||2 + ||P−2 (t)x||2,

(s4) ||P+
2 (t)x− P−2 (t)x||2 = ||P+

2 (t)x||2 − ||P−2 (t)x||2,

(s5) ||P−1 (t)x− P+
1 (t)x||2 = ||P−1 (t)x||2 − ||P+

1 (t)x||2

for all t ≥ 0 and x ∈ X.

A first connection between these concepts is given by
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Proposition 2.1. If P = {P1, P2, P3} is compatible with the evolution oper-
ator U then

P+ = {P+
1 , P

+
2 } and P− = {P−1 , P−2 },

where

P+
1 = P1, P

+
2 = P2 + P3, P

−
1 = P1 + P3, P

−
2 = P2,

are supplementary.

Proof. It is obvious that if P = {P1, P2, P3} is compatible with U then P+

and P− are also compatible with U.
Moreover, we have

(s1) P+
1 P

−
2 = P1P2 = 0 = P2P1 = P−2 P

+
1

and

(s2) P+
2 P

−
1 = P−1 P

+
2 = P+

2 − P−2 = P−1 − P+
1 = P3.

The following conditions (s3), (s4) and (s5) from Definition 2.6 are verified
because

(s3) ||P+
1 (t)x+ P−2 (t)x||2 = ||P1(t)x+ P2(t)x||2

= ||P1(t)x||2 + ||P2(t)x||2 = ||P+
1 (t)x||2 + ||P−2 (t)x||2,

(s4) ||P+
2 (t)x− P−2 (t)x||2 = ||P3(t)x||2 = ||P2(t)x+ P3(t)x||2

− ||P2(t)x||2 = ||P+
2 (t)x||2 − ||P−2 (t)x||2,

(s5) ||P−1 (t)x− P+
1 (t)x||2 = ||P3(t)x||2 = ||P1(t)x+ P3(t)x||2

− ||P1(t)x||2 = ||P−1 (t)x||2 − ||P+
1 (t)x||2

for all (t, s, x) ∈ T.

A converse of Proposition 2.1 is given by

Proposition 2.2. If P+ = {P+
1 , P

+
2 } and P− = {P−1 , P−2 } are supplementary

then P = {P1, P2, P3}, where

P1 = P+
1 , P2 = P−2 , P3 = P−1 P

+
2

is compatible with the evolution operator U.
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Proof. If P+ and P− are supplementary then

(o1) P1 + P2 + P3 = P+
1 + P−2 + P−1 P

+
2 = P+

1 + P−2 + P+
2 − P−2 =

= P+
1 + P+

2 = I,

(o2) P1P2 = P+
1 P

−
2 = P−2 P

+
1 = P2P1 = 0,

P1P3 = P+
1 P

−
1 P

+
2 = P+

1 P
+
2 P

−
1 = 0 = P−1 P

+
2 P

+
1 = P3P1

and

P2P3 = P−2 P
+
2 P

−
1 = 0 = P−1 P

+
2 P

−
2 = P3P2,

(o3) ||P1(t)x+ P2(t)x||2 = ||P+
1 (t)x+ P−2 (t)x||2

= ||P+
1 (t)x||2 + ||P−2 (t)x||2 = ||P1(t)x||2 + ||P2(t)x||2,

||P1(t)x+ P3(t)x||2 = ||P−1 (t)x||2 = ||P+
1 (t)x||2 + ||P−1 (t)x||2

− ||P+
1 (t)x||2 = ||P+

1 (t)x||2 + ||P−1 (t)x− P+
1 (t)x||2

= ||P1(t)x||2 + ||P3(t)x||2,
||P2(t)x+ P3(t)x||2 = ||P+

2 (t)x||2 = ||P−2 (t)x||2

+ ||P+
2 (t)x− P−2 (t)x||2 = ||P2(t)x||2 + ||P3(t)x||2

for all (t, s, x) ∈ T.
It results that P is orthogonal. If P+ and P− are supplementary, then

P±1 , P
±
2 are invariant for U. It follows that P1 = P+

1 , P2 = P−3 and P3 =
P−1 − P+

1 are invariant for U, i.e. P is invariant for U.
Finally, we obtain that P is compatible with U.

3 (h, k)-dichotomy

We say that an increasing function h : R+ → [1,+∞) is a growth rate, if
lim
t→∞

h(t) = +∞.
Let h, k : R+ → [1,+∞) be two growth rates.

Definition 3.1. We say that the evolution operator U : ∆→ B(X) is (h, k)-
dichotomic, if there are two families of projections P1, P2 : R+ → B(X) and
three constants N ≥ 1, d > 0 and ε ≥ 0 such that

(d0) P = {P1, P2} is compatible with U ;

(d1) h(t)d||U(t, s)P1(s)x|| ≤ Nh(s)dk(s)ε||P1(s)x||;
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(d2) h(t)d||P2(s)x|| ≤ Nh(s)dk(t)ε||U(t, s)P2(s)x||

for all (t, s, x) ∈ T.

If ε = 0 or when the function k is constant, then we say that the evolution
operator U is uniformly h-dichotomic.

The constants N, d and ε are called dichotomy constants.

Remark 3.1. As particular cases of (h, k)-dichotomy we remark that

(i) if h(t) = k(t) = et for all t ≥ 0, then we recover the notion of nonuni-
form exponential dichotomy and in particular when the function k is
constant or ε = 0, we obtain the classical notion of uniform exponential
dichotomy ;

(ii) if h(t) = k(t) = t + 1 for all t ≥ 0, then we obtain the property of
nonuniform polynomial dichotomy and in particular when ε = 0 or
the function k is constant, we recover the classical notion of uniform
polynomial dichotomy.

The following example shows that for every two growth rates h, k : R+ →
[1,+∞) and for all constants N ≥ 1, d > 0 and ε ≥ 0 there exists an
evolution operator U and a family of projections P = {P1, P2} compatible
with U such that U is (h, k)-dichotomic with respect to P and with the
dichotomic constants N, d and ε.

Example 3.1. On X = R3 endowed with the norm

||(x1, x2, x3)|| = |x1|+ |x2|+ |x3|

we consider the family P = {P1, P2}, where P1, P2 : R3 → B(X) are defined
by

P1(t)(x1, x2, x3) = (x1, 0, 0)

respectively

P2(t)(x1, x2, x3) = (0, x2, x3)

for all t ≥ 0 and x = (x1, x2, x3) ∈ X.
Given the growth rates h, k : R+ → [1,+∞) and the constants N ≥

1, d > 0 and ε ≥ 0, we consider the evolution operator U : ∆ → B(X),
defined by

U(t, s)(x) =

((
h(s)

h(t)

)d(
k(s)

k(t)

)ε

x1,

(
h(t)

h(s)

)2d(
k(s)

k(t)

)ε

x2,
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(
h(t)

h(s)

)2d(
k(s)

k(t)

)ε

x3

)
for all (t, s) ∈ ∆, x = (x1, x2, x3) ∈ X.
It is easy to verify that the projections family P = {P1, P2} is compatible

with U.
Moreover, we have that

(d1) h(t)d||U(t, s)P1(s)x|| = h(s)d
(
k(s)

k(t)

)ε

||P1(s)x||

≤ Nh(s)dk(s)ε||P1(s)x||

and

(d2) h(t)d||P2(s)x|| = h(t)d(|x2|+ |x3|) ≤ h(t)dk(s)ε(|x2|+ |x3|)

= h(t)dk(s)ε
(
h(s)

h(t)

)2d(
k(t)

k(s)

)ε

||U(t, s)P2(s)x||

= h(s)dk(t)ε
(
h(s)

h(t)

)d

||U(t, s)P2(s)x||

≤ Nh(s)dk(t)ε||U(t, s)P2(s)x||

for all (t, s) ∈ ∆ and all x = (x1, x2, x3) ∈ X.
Finally, it results that U is (h, k)-dichotomic with respect to P = {P1, P2}

and with the dichotomic constants N, d and ε.

4 (h, k)-trichotomy

A natural generalization of the (h, k)-dichotomy property is introduced by

Definition 4.1. The evolution operator U : ∆ → B(X) is called (h, k)-
trichotomic, if there are three families of projections P1, P2, P3 : R+ → B(X)
and four constants N ≥ 1, α > 0, β ≥ 0 and ε ≥ 0 such that

(t0) P = {P1, P2, P3} is compatible with U ;

(t1) h(t)α||U(t, s)P1(s)x|| ≤ Nh(s)αk(s)ε||P1(s)x||;

(t2) h(t)α||P2(s)x|| ≤ Nh(s)αk(t)ε||U(t, s)P2(s)x||;

(t3) h(s)β||U(t, s)P3(s)x|| ≤ Nh(t)βk(s)ε||P3(s)x||;
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(t4) h(s)β||P3(s)x|| ≤ Nh(t)βk(t)ε||U(t, s)P3(s)x||

for all (t, s, x) ∈ T.

In the particular case when ε = 0 or k is a constant function, we say that
U is uniformly h-trichotomic.

The constants N, α, β and ε are called trichotomy constants.

Remark 4.1. As particular cases of (h, k)-trichotomy we have that

(i) if h(t) = k(t) = et for all t ≥ 0, then we obtain the property of
nonuniform exponential trichotomy and in particular when ε = 0 or
the function k is constant we recover the classical notion of uniform
exponential trichotomy ;

(ii) if h(t) = k(t) = t + 1 for all t ≥ 0, then we recover the notion of
nonuniform polynomial trichotomy respectively the property of uniform
polynomial trichotomy ( when ε = 0 or k is constant);

(iii) if P3(t) = 0 for every t ≥ 0 we obtain the notion of (h, k)-dichotomy,
i.e. the (h, k)-dichotomy is a particular case of (h, k)-trichotomy.

It is obvious that if U is uniformly h-trichotomic then it is (h, k)-trichotomic
for every growth rate k.

The converse is not valid, phenomenon illustrated by

Example 4.1. On X = R3 endowed with the norm

||(x1, x2, x3)|| = max{|x1|, |x2|, |x3|}

we consider the families of projections P1, P2, P3 : R3 → B(X) defined by

P1(t)(x1, x2, x3) = (x1, 0, 0),

P2(t)(x1, x2, x3) = (0, x2, 0),

P3(t)(x1, x2, x3) = (0, 0, x3)

for all t ≥ 0 and x = (x1, x2, x3) ∈ X.
Given the growth rates h, k : R+ → [1,+∞) and the constants N ≥

1, α > 0, β ≥ 0 and ε ≥ 0, we consider the evolution operator U : ∆ →
B(X), defined by

U(t, s)(x1, x2, x3) =

(
h(s)

h(t)

)α
k(s)ε sin

2 s

k(t)ε sin
2 t
P1(s)x+

(
h(t)

h(s)

)α(
k(s)

k(t)

)ε

P2(s)x
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+

(
h(t)

h(s)

)β (
k(s)

k(t)

)ε

P3(s)x

for all (t, s, x) ∈ T.
We observe that P = {P1, P2, P3} is compatible with U and

(t1) h(t)α||U(t, s)P1(s)x|| = h(s)α
k(s)ε sin

2 s

k(t)ε sin
2 t
||P1(s)x||

≤ Nh(s)αk(s)ε||P1(s)x||,

(t2) h(t)α||P2(s)x|| = h(s)α
(
k(t)

k(s)

)ε

||U(t, s)P2(s)x||

≤ Nh(s)αk(t)ε||U(t, s)P2(s)x||,

(t3) h(s)β||U(t, s)P3(s)x|| = h(t)β
(
k(s)

k(t)

)ε

||P3(s)x||

≤ Nh(t)βk(s)ε||P3(s)x||,

(t4) h(s)β||P3(s)x|| = h(s)β
(
h(s)

h(t)

)β (
k(t)

k(s)

)ε

||U(t, s)P3(s)x||

= h(t)β
(
h(s)

h(t)

)2β (
k(t)

k(s)

)ε

||U(t, s)P3(s)x||

≤ Nh(t)βk(t)ε||U(t, s)P3(s)x||,

for all (t, s, x) ∈ T.
Thus U is (h, k)-trichotomic with the trichotomy constants N, α, β, ε.
If we suppose that U is uniformly h-trichotomic, there is N ≥ 1 such that

k(s)ε sin
2 s ≤ Nk(t)ε sin

2 t for every (t, s) ∈ ∆.

For t = (2n + 1)π, s = (2n + 1)π
2

and n → +∞ in the above relation, we
obtain a contradiction.

5 The main results

Let h, k : R+ → [1,+∞) be two growth rates and let U : ∆ → B(X) be an
evolution operator on the Banach space X.
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For every b > 0 we associate to the evolution operator U the following
two evolution operators B+

h , B
−
h : ∆→ B(X) defined by

B+
h (t, s) =

(
h(t)

h(s)

)b

U(t, s)

and respectively

B−h (t, s) =

(
h(t)

h(s)

)−b
U(t, s)

for all (t, s) ∈ ∆.
If P1, P2, P3 : R+ → B(X) are three families of projections on X with the

property that P = {P1, P2, P3} is compatible with the evolution operator U
then we shall denote by

P+ = {P+
1 , P

+
2 } and P− = {P−1 , P−2 }

the supplementary families defined in Proposition 2.1.
A first result which states that a particular case for (h, k)-trichotomy of

the evolution operator U implies (h, k)-dichotomy of B+
h and B−h for a some

constant b > 0.
Thus we prove

Theorem 5.1. Let P = {P1, P2, P3} be a family of projections which is com-
patible with the evolution operator U. If U is (h, k)-trichotomic with respect
to P and the trichotomic constants N ≥ 1, α > β ≥ 0 and ε ≥ 0 then there
exist

(i) two supplementary families P+ = {P+
1 , P

+
2 } and P− = {P−1 , P−2 };

(ii) two constants b ∈ (β, α) and d ∈ (0, b] such that

(ii)+ B+
h is (h, k)-dichotomic with respect to P+ and the dichotomic

constants N, d, ε;

(ii)− B−h is (h, k)-dichotomic with respect to P− and the dichotomic
constants N, d, ε;

Proof. Suppose that U is (h, k)-trichotomic with respect to families of pro-
jections P = {P1, P2, P3} and the trichotomic constants N ≥ 1, α > β ≥ 0
and ε ≥ 0.

Let P+ = {P+
1 , P

+
2 } respectively P− = {P−1 , P−2 } be the supplementary

families of projections given by Proposition 2.1.
If we denote

b =
α + β

2
and d =

α− β
2
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then b ∈ (β, α), d ∈ (0, b] and d = α− b = b− β.
(d1)

+ We observe that by condition (t1) from Definition 4.1 it results
that

h(t)d||B+
h (t, s)P+

1 (s)x|| = h(t)d+bh(s)−b||U(t, s)P1(s)x||
≤ Nh(t)d+b−αh(s)α−bk(s)ε||P1(s)x||
= Nh(s)dk(s)ε||P+

1 (s)x||

for all (t, s, x) ∈ T.
(d2)

+ Similarly, by the condition (t2) and (t4) from Definition 4.1 we
obtain

h(t)2d||P+
2 (s)x||2 = h(t)2d(||P2(s)x||2 + ||P3(s)x||2)
≤ N2h(t)2dk(t)2ε(h(s)2αh(t)−2α||U(t, s)P2(s)x||2

+ h(t)2βh(s)−2β||U(t, s)P3(s)x||2)
= N2h(t)2dk(t)2ε(h(s)2α+2bh(t)−2α−2b||B+

h (t, s)P2(s)x||2

+ h(t)2β−2bh(s)2b−2β||B+
h (t, s)P3(s)x||2)

= N2h(s)2α−2bk(t)2ε(h(s)4bh(t)−4b||B+
h (t, s)P2(s)x||2

+ h(t)2α+2β−4bh(s)4b−2α−2β||B+
h (t, s)P3(s)x||2)

= N2h(s)2dk(t)2ε(h(s)4bh(t)−4b||B+
h (t, s)P2(s)x||2

+ ||B+
h (t, s)P3(s)x||2) ≤ N2h(s)2dk(t)2ε(||P2(t)B

+
h (t, s)x||2

+ ||P3(t)B
+
h (t, s)x||2) = N2h(s)2dk(t)2ε||P+

2 (t)B+
h (t, s)x||2

= N2h(s)2dk(t)2ε||B+
h (t, s)P+

2 (s)x||2

and hence

h(t)d||P+
2 (s)x|| ≤ Nh(s)dk(t)ε||B+

h (t, s)P+
2 (s)x||

for all (t, s, x) ∈ T.
The properties (d1)

+ and (d2)
+ show that B+

h is (h, k)-dichotomic with
respect to P+ and with the dichotomic constants N, d and ε.

(d1)
− Similarly, as in the proof of (d2)

+, the conditions (t1) and (t3)
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from Definition 4.1 imply that

h(t)2d||B−h (t, s)P−1 (s)x||2 = h(t)2d−2bh(s)2b||U(t, s)(P1(s)x+ P3(s)x)||2

= h(t)2d−2bh(s)2b||P1(t)U(t, s)x+ P3(t)U(t, s)x||2

= h(t)2d−2bh(s)2b(||P1(t)U(t, s)x||2 + ||P3(t)U(t, s)x||2)
= h(t)2d−2bh(s)2b(||U(t, s)P1(s)x||2 + ||U(t, s)P3(s)x||2)
≤ N2h(t)2d−2bh(s)2bk(s)2ε(h(t)−2αh(s)2α||P1(s)x||2

+ h(t)2βh(s)−2β||P3(s)x||2)
= N2h(t)2d+2b−2αh(s)−2b+2αk(s)2ε(h(t)−4bh(s)4b||P1(s)x||2

+ h(t)2β−4b+2αh(s)4b−2β−2α||P3(s)x||2)
≤ N2h(s)2dk(s)2ε(||P1(s)x||2 + ||P3(s)x||2)
= N2h(s)2dk(s)2ε||P−1 (s)x||2

and hence

h(t)d||B−h (t, s)P−1 (s)x|| ≤ Nh(s)dk(s)ε||P−1 (s)x||

for all (t, s, x) ∈ T.
(d2)

− From the condition (t2) from Definition 4.1 we obtain

h(t)d||P−2 (s)x|| = h(t)d||P2(s)x|| ≤ Nh(t)d−αh(s)αk(t)ε||U(t, s)P2(s)x||
= Nh(t)d−α+bh(s)α−bk(t)ε||B−h (t, s)P−2 (s)x||
= Nh(s)dk(t)ε||B−h (t, s)P−2 (s)x||

for all (t, s, x) ∈ T.
Thus, we obtain that and B−h is (h, k)-dichotomic with respect to P− and

with the dichotomic constants N, d and ε.

A converse of the previous theorem is

Theorem 5.2. Suppose that there are:

(i) two supplementary families of projections P+ = {P+
1 , P

+
2 } and P− =

{P−1 , P−2 } which are compatible with the evolution operator U ;

(ii) four constants N ≥ 1, b > 0, d ∈ (0, b] and ε ≥ 0 such that

(ii)+ B+
h is (h, k)-dichotomic with respect to P+ and the dichotomic

constants N, d, ε;

(ii)− B−h is (h, k)-dichotomic with respect to P− and the dichotomic
constants N, d, ε.
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Then there exist two constants α > β ≥ 0 and a family of projections P =
{P1, P2, P3} which is compatible with U such that U is (h, k)-trichotomic with
respect to P and the trichotomic constants N, α, β, ε.

Proof. If b and d are the constants from hypothesis then we shall denote

α = b+ d and β = b− d.

Then α > β, b ∈ (β, α) and d = α− b = b− β.
Let P = {P1, P2, P3} be the family of projections given by Proposition

2.2.
(t1) From (ii)+ and (d1)

+ it results that

h(t)α||U(t, s)P1(s)x|| = h(t)α−bh(s)b||B+
h (t, s)P+

1 (s)x||
≤ Nh(t)α−b−dh(s)b+d||P+

1 (s)x||
≤ Nh(s)αk(s)ε||P1(s)x||

for all (t, s, x) ∈ T.
(t2) Similarly, from (ii)− and (d2)

− we obtain

h(t)α||P2(s)x|| = h(t)α||P−2 (s)x|| ≤ Nh(t)α−dh(s)dk(t)ε||B−h (t, s)P−2 (s)x||
= Nh(t)α−d−bh(s)b+dk(t)ε||U(t, s)P2(s)x||
= Nh(s)αk(t)ε||U(t, s)P2(s)x||

for all (t, s, x) ∈ T.
(t3) The conditions (ii)− and (d1)

− imply

h(s)β||U(t, s)P3(s)x|| = h(t)bh(s)β−b||B−h (t, s)P−1 (s)P+
2 (s)x||

≤ Nh(t)b−dh(s)β−b+dk(s)ε||P3(s)x||
= Nh(t)βk(s)ε||P3(s)x||

for all (t, s, x) ∈ T.
(t4) Similarly, from (ii)+ and (d2)

+ we obtain

h(s)β||P3(s)x|| = h(s)β||P+
2 (s)P−1 (s)x||

≤ Nh(t)−dh(s)d+βk(t)ε||B+
h (t, s)P+

2 (s)P−1 (s)x||
= Nh(t)b−dh(s)d+β−bk(t)ε||U(t, s)P3(s)x||
= Nh(t)βk(t)ε||U(t, s)P3(s)x||

for all (t, s, x) ∈ T.
Finally, it results that the evolution operator U is (h, k)-trichotomic with

respect to P and the trichotomic constants N, α, β, ε.
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The main result of this paper is given by

Theorem 5.3. An evolution operator U : ∆ → B(X) is (h, k)-trichotomic
with respect to the family of projections P = {P1, P2, P3} and the trichotomic
constants N ≥ 1, α > β ≥ 0 and ε ≥ 0 if and only if there are b ∈ (0, α), d ∈
(0, b] and two supplementary families of projections P+ = {P+

1 , P
+
2 } and

P− = {P−1 , P−2 } compatible with U such that the associated evolution opera-
tors B+

h , respectively B
−
h are (h, k)-dichotomic with the dichotomic constants

N, d, ε and the families of projections P+, respectively P−.

Proof. It follows from Theorem 5.1 and Theorem 5.2.

An important particular case, is when the evolution operator U is gener-
ated by a nonautonomous linear differential equation

(A) ẋ(t) = A(t)x(t),

where A : R+ → B(X).
In this case, we say that the equation (A) admits a nonuniform (h, k)-

dichotomy ( respectively (h, k)-trichotomy ) if the associated evolution oper-
ator U is (h, k)-dichotomic ( respectively (h, k)-trichotomic ).

In the particular cases

h(t) = k(t) = et respectively h(t) = k(t) =
1

t+ 1

for all t ≥ 0 we obtain the concepts of nonuniform exponential dichotomy
and nonuniform exponential trichotomy, respectively nonuniform polynomial
dichotomy and nonuniform polynomial trichotomy.

If h(t) = et for all t ≥ 0 and U is generated by (A) then

B+
h (t, s) = eb(t−s)U(t, s)

respectively
B−h (t, s) = e−b(t−s)U(t, s)

are generated by the differential equations

(B+
e ) ẋ(t) = B+

e (t)x(t)

respectively
(B−e ) ẋ(t) = B−e (t)x(t),

where
B+
e (t) = A(t) + bI respectively B−e (t) = A(t)− bI.

As an immediate consequence of Theorem 5.3 we obtain
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Corollary 5.1. The differential equation (A) admits a nonuniform exponen-
tial trichotomy with the trichotomic constants N ≥ 1, α > β ≥ 0 and ε ≥ 0
if and only if there are b ∈ (0, α), d ∈ (0, b] and two supplementary families
of projections P+ = {P+

1 , P
+
2 } and P− = {P−1 , P−2 } such that the equations

(B+
e ), respectively (B−e ) admit a nonuniform exponential dichotomy with the

dichotomic constants N, d, ε and the families of projections P+ respectively
P−.

Proof. It results from Theorem 5.3.

Similarly, if h(t) =
1

t+ 1
for all t ≥ 0 and U is generated by the differential

equation (A) then

B+
h (t, s) =

(
t+ 1

s+ 1

)b

U(t, s)

respectively

B−h (t, s) =

(
t+ 1

s+ 1

)−b
U(t, s)

are generated by the differential equations

(B+
p ) ẋ(t) = B+

p (t)x(t)

respectively

(B−p ) ẋ(t) = B−p (t)x(t),

where

B+
p (t) = A(t) +

bI

t+ 1
respectively B−p (t) = A(t)− bI

t+ 1
.

For this case we obtain

Corollary 5.2. The differential equation (A) admits a nonuniform polyno-
mial trichotomy with the trichotomy constants N ≥ 1, α > β ≥ 0 and ε ≥ 0
if and only if there are b ∈ (0, α), d ∈ (0, b] and two supplementary families
of projections P+ = {P+

1 , P
+
2 } and P− = {P−1 , P−2 } such that the equations

(B+
p ) respectively (B−p ) admit a nonuniform polynomial dichotomy with the

dichotomy constants N, d, ε and the families of projections P+ respectively
P−.

Proof. It follows from Theorem 5.3.
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[10] M. I. Kovacs, M. G. Babuţia, and M. Megan, On (h, k)− dichotomy in Banach
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