
DOI: 10.2478/awutm-2014-0007 Analele Universităţii de Vest,
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1 Introduction and Preliminaries

The existence, uniqueness, and iterative approximations of solutions for sev-
eral classes of functional equations arising in dynamic programming were
studied by a lot of researchers. Bellman [7] first studied the existence of so-
lutions for some classes of functional equations arising in dynamic program-
ming. Bellman and Lee [8] pointed out that the basic form of the functional
equations in dynamic programming is as follows:
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q(x) = sup
y∈D
{G(x, y, q(τ(x, y)))}, x ∈ W, (1.1)

where τ : W ×D → W , g : W ×D → R, G : W ×D×R→ R are mappings
while W ⊆ U is a state space, D ⊆ V is a decision space and U as well as V
are Banach spaces.
In 1984, Bhakta and Mitra [9] obtained some existence theorem for the fol-
lowing functional equation which arises in multistage decision process related
to dynamic programming

q(x) = sup
y∈D
{g(x, y) +G(x, y, q(τ(x, y)))}, x ∈ W, (1.2)

where τ : W ×D → W , g : W ×D → R, G : W ×D×R→ R are mappings
while W ⊆ U is a state space, D ⊆ V is a decision space and U as well as V
are Banach spaces.
Thereafter many work have been in this direction and obtain existence and
uniqueness results of solution and common solution for some functional equa-
tions and systems of functional equations in dynamic programming with the
use of fixed point results. For detail see [33, 34, 38–41] and the references
therein.
The Banach Contraction Principle is a very popular tool which is used to
solve existence problems in many branches of Mathematical Analysis and its
applications. It is no surprise that there is a great number of generalizations
of this fundamental theorem. They go in several directions—modifying the
basic contractive condition or changing the ambiental space. This celebrated
theorem can be stated as follow.

Theorem 1.1. [6]. Let (X, d) be a complete metric space and T be a map-
ping of X into itself satisfying:

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X, (1.3)

where k is a constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X.

Inequality (1.3) implies continuity of T . A natural question is whether we
can find contractive conditions which will imply existence of a fixed point in
a complete metric space but will not imply continuity.
In 1968, Kannan [29] constructed a contractive condition, like that of Ba-
nach, possessed a unique fixed point, which could be obtained by starting at
any point x0 in the space, and using function iteration defined by xn+1 = Txn
(also called Picard iteration). However, unlike the Banach condition, there
exist discontinuous functions satisfying the definition of Kannan, although
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such mappings are continuous at the fixed point. Following the appearance of
[29] many authors created contractive conditions not requiring continuity of
the mapping, see [46]. Today fixed point literature of contractive mappings
contains many such papers. One survey of a number of these conditions ap-
pears in [47]. However, sometimes one may come across situations where the
full force of metric requirements are not used in the proofs of certain metrical
fixed point theorems. Motivated by this fact, several authors obtained fixed
point and common fixed point results in symmetric and semi-metric space.
There is in the literature a great number of generalizations of the Banach
contraction principle (see [36] and references cited therein). In particular,
obtaining the existence and uniqueness of fixed points for self-maps on a
metric space by altering distances between the points with the use of a certain
control function is an interesting aspect. There are control functions which
alter the distance between two points in a metric space. In this direction,
Khan et al. [31] addressed a new category of fixed point problems for
a single self-map with the help of a control function which they called an
altering distance function.

Definition 1.1. (altering distance function [31]). ϕ : [0,+∞)→ [0,+∞) is
called an altering distance function if the following properties are satisfied:

(a) ϕ is continuous and non-decreasing, and

(b) ϕ(t) = 0⇔ t = 0.

Theorem 1.2. [31]. Let (X, d) be a complete metric space, let ϕ be an
altering distance function, and let T : X → X be a self-mapping which
satisfies the following inequality:

ϕ(d(Tx, Ty)) ≤ cϕ(d(x, y)) (1.4)

for all x, y ∈ X and for some 0 < c < 1. Then, T has a unique fixed point.

Putting ϕ(t) = t in the previous theorem, (1.4) reduces to (1.3).
Rhoades [48] extended Theorem 1.1 by introducing weakly contractive map-
ping in complete metric spaces.

Definition 1.2. (weakly contractive mapping [48]). Let X be a metric space.
A mapping T : X → X is called weakly contractive if and only if:

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)), ∀x, y ∈ X, (1.5)

where ϕ is an altering distance function.
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Theorem 1.3. [48, Theorem 2] . Let (X, d) be a complete metric space. If
T : X → X is a weakly contractive mapping, then T has a unique fixed point.

Note that Alber et al. [3] assumed an additional condition on ϕ which is
lim

t→+∞
ϕ(t) = +∞. But Rhoades [48] obtained the result noted in Theorem

1.3 without using this particular assumption. If one takes ϕ(t) = (1 − k)t,
where 0 < k < 1, then (1.5) reduces to (1.2). One of the main generalizations
of the well-known Banach principle is the following theorem established by
Boyd and Wong [10]. In their theorem it is assumed that ψ : [0,∞) →
[0,∞) is upper semi-continuous from the right (that is, rn → r ≥ 0 implies
lim supn→∞ ψ(rn) ≤ ψ(r)).

Theorem 1.4. [10] Let (X, d) be a complete metric space and suppose T :
X → X satisfies

d(Tx, Ty) ≤ ψ(d(x, y)) for each x, y ∈ X, (1.6)

where ψ : [0,∞)→ [0,∞) is upper semi-continuous from the right and satis-
fies 0 ≤ ψ(t) < t for t > 0. Then T has a unique fixed point x∗, and {T n(x)}
converges to x∗ for each x ∈ X.
Similarly, Reich [45] presented the following:

Theorem 1.5. [45] Let (X, d) be a complete metric space and suppose T :
X → X satisfies

d(Tx, Ty) ≤ β(d(x, y))d(x, y) for each x, y ∈ X, x 6= y, (1.7)

where β : [0,∞)→ [0, 1) and limt→r+ sup β(t) < 1 for all 0 < r < +∞. Then
T has a fixed point x∗.

Weak contractions are also closely related to maps of Boyd and Wong [10] and
the Reich type ones [45]. Namely, if φ is a lower semi-continuous function
from the right then ψ(t) = t − ϕ(t) is an upper semi-continuous function
from the right, and moreover, (1.5) turns into (1.6). Therefore the weak

contraction is of Boyd and Wong type. And if we define β(t) = 1 − ϕ(t)
t

for t > 0 and β(0) = 0, then (1.5) turns into (1.7). Therefore the weak
contraction becomes a Reich type one.
Dutta and Choudhury in [14] obtained the following generalization of Theo-
rems 1.2 and 1.3.

Theorem 1.6. [14]. Let (X, d) be a complete metric space and T : X → X
satisfying:

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) (1.8)

for all x, y ∈ X, where ψ and ϕ are altering distance functions. Then T has
a unique fixed point.
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Weak inequalities of the above type have been used to establish fixed point
results in a number of subsequent works, some of which are noted in [2, 12,
13, 36, 42, 52]. In [12], Choudhury introduced the concept of a generalized
altering distance function for three variables.

Definition 1.3. [12]. A function ϕ : [0,+∞)×[0,+∞)×[0,+∞)→ [0,+∞)
is said to be a generalized altering distance function if and only if

(i) ϕ is continuous,

(ii) ϕ is non-decreasing in all the three variables,

(iii) ϕ(x, y, z) = 0⇔ x = y = z = 0.

F3 will denote the set of all functions ψ satisfying conditions (i)–(iii).

The following are examples of generalized altering distance functions with
three variables.

Example 1.1. (a) ψ(t1, t2, t3) = kmax{t1, t2, t3}, k > 0;

(b) ψ(t1, t2, t3) = max{t1,t2,t3}
1+max{t1,t2,t3} ;

(c) ψ(t1, t2, t3) = tp1 + tq2 + tr3, p, q, r ≥ 1.

In [12], Choudhury proved the following common fixed point theorem using
altering distances for three variables.

Theorem 1.7. [12]. Let (X, d) be a complete metric space and S, T : X →
X two self mappings such that the following inequality is satisfied:

Φ1(d(Sx, Ty))≤ ψ1(d(x, y), d(x, Sx), d(y, Ty))−ψ2(d(x, y), d(x, Sx),d(y, Ty))
(1.9)

for all x, y ∈ X, where ψ1, ψ2 ∈ F3 and Φ1(x) = ψ1(x, x, x). Then S and T
have a common fixed point.

In particular, Abbas and Ali [2] proved a fixed point theorem for two map-
pings satisfying a generalized (ψ, ϕ)-weak contractive condition in a complete
metric space. Abbas and Ali [2] proved a common fixed point theorem for any
even number of self mappings in a complete metric space and also generalized
the earlier mentioned results.
There exist a lot of generalizations of metric spaces which showed themselves
useful in obtaining more powerful fixed point and common fixed point results.
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Symmetric spaces are among the most important ones, since very often not
the full power of metric requirements are needed in proving these results.
The notion of symmetric space goes back to Wilson [54].

Definition 1.4. A symmetric on a nonempty set X is a function d : X×X →
[0,+∞) satisfying the following conditions:

1. d(x, y) = 0 if and only if x = y for x, y ∈ X;

2. d(x, y) = d(y, x) for all x, y ∈ X.

Example 1.2. The set lp(R) with 0 < p < 1, where lp(R) = { {xn} ⊂ R :∑∞
n=1 |xn|p <∞} together with d : lp(R)× lp(R)→ R,

d(x, y) :=
( ∞∑

n=1

|xn − yn|p
) 1

p
, where x = {xn}, y = {yn} ∈ lp(R)

is a symmetric space.

Let d be a symmetric on X. For x ∈ X and ε > 0, let B(x, ε) = {y ∈ X :
d(x, y) < ε}. A topology τ(d) on X is defined as follows: U ∈ τ(d) if and
only if for each x ∈ U , there exists an ε > 0 such that B(x, ε) ⊂ U . A
subset S of X is a neighbourhood of x ∈ X if there exists U ∈ τ(d) such
that x ∈ U ⊂ S. A symmetric d is a semimetric if for each x ∈ X and each
ε > 0, B(x, ε) is a neighbourhood of x in the topology τ(d). A symmetric
(resp., semimetric) space (X, d) is a topological space whose topology τ(d)
is induced by symmetric (resp., semimetric) d. The difference between a
symmetric and a metric is engineered by the triangle inequality. Since a
symmetric space is not essentially Hausdorff, therefore in order to prove
fixed point theorems some additional axioms are required. The following
axioms, which are available, e.g., in [4, 5, 11, 15, 19, 54] are relevant to this
presentation.
From now on (X, d) stands for a symmetric space, whereas Y denotes an
arbitrary non-empty set. Then

(W3) [54] given {xn}, x and y in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, y) = 0

imply x = y;

(W4) [54] given {xn}, {yn} and x in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, yn) =

0 imply lim
n→∞

d(yn, x) = 0;

(HE) [4] given {xn}, {yn} and x in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0

imply lim
n→∞

d(xn, yn) = 0;
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(1C) [15] a symmetric d is said to be 1-continuous if lim
n→∞

d(xn, x) = 0 implies

lim
n→∞

d(xn, y) = d(x, y) where {xn} is a sequence in X and x, y ∈ X;

(CC) [15] a symmetric d is said to be continuous if lim
n→∞

d(xn, x) = 0 and

lim
n→∞

d(yn, y) = 0 imply lim
n→∞

d(xn, yn) = d(x, y) where {xn}, {yn} are

sequences in X and x, y ∈ X.

Here, it can be observed that (W4) =⇒ (W3) and (1C) =⇒ (W3) but the
converse implications are not true. In general, all other possible implications
amongst (W3), (1C) and (HE) are not true. However, (CC) implies all the
remaining four conditions, namely (W3), (W4), (HE) and (1C). For detailed
description, we refer to an interesting note by Cho et al. [11] which contains
some illustrative examples. Employing these axioms, several authors proved
common fixed point theorems in the framework of symmetric and semi-metric
spaces. For detail see [1, 4, 5, 11, 15–17, 19, 24, 30, 35, 53, 54] and references
therein.
We note that if (X, d) is a cone metric space over a normal cone and D = ‖d‖
then (X,D) is a symmetric space which satisfies axiom (CC) but is not in
general a metric space (see [25]). Fixed point results in cone symmetric
spaces were obtained in [43].
During the late 20th century, metrical common fixed point theory saw a trend
of investigation which moved around commuting nature of two maps. Sev-
eral conditions were introduced, including weak commutativity (Sessa [49]),
compatibility (Jungck [26]), weak compatibility (Jungck and Rhoades [27])
and many others, and a lot of respective common fixed point results were
obtained. A survey of these notions and relationship among them can be
seen in [28].
We recall that two mappings A, S : X → X are called weakly compatible
if they commute at their coincidence points, that is, ASx = SAx whenever
Ax = Sx.
In the study of common fixed points of compatible-type mappings we often
require assumption of completeness of the space or continuity of mappings
involved besides some contractive condition, but the study of fixed points of
non-compatible mappings can be extended to the class of non-expansive or
Lipschitz type mapping pairs even without assuming the continuity of the
mappings involved or completeness of the space. Aamri and El Moutawakil
[1] generalized the concept of non-compatibility by defining the notion of
(E.A) property and proved common fixed point theorems under strict con-
tractive condition. Although (E.A) property is a generalization of the con-
cept of non-compatible maps, yet it requires either completeness of the whole
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space or some of the range spaces or continuity of maps. Most recently, Liu
et al. [32] defined a common (E.A) property for two pairs of mappings.
As a further generalization, new notion of CLRg property, recently given
by Sintunavarat and Kuman [50], does not impose such conditions. The
importance of CLRg property is that it ensures that one does not require the
closedness of range of subspaces. Recently, Imdad et al. [20] extended the
notion of common limit range property to two pairs of self mappings which
further relaxes the requirement on closedness of the subspaces. Since then, a
number of fixed point theorems have been established by several researchers
in different settings under common limit range property. We refer the reader
to [21,23,30] and references therein.
Now we give definitions of the mentioned properties for non-self mappings.

Definition 1.5. Let Y be an arbitrary set, (X, d) be a symmetric space and
let A,B, S, T be mappings from Y into X. Then

1. the pair (A, S) is said to satisfy the property (E.A) [1] if there exists a
sequence {xn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X;

2. the pairs (A, S) and (B, T ) are said to share the common property (E.A)
[32], if there exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

for some z ∈ X;

3. the pair (A, S) is said to have the common limit range property with
respect to the mapping S (denoted by (CLRS)) [50] if there exists a
sequence {xn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

where z ∈ S(Y );

4. the pairs (A, S) and (B, T ) are said to have the common limit range
property (with respect to mappings S and T ) [20], often denoted by
(CLRST ) if there exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S(Y ) ∩ T (Y ).
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Remark 1.1. 1. If we set A = B and S = T , then condition (4) reduces
to condition (3).

2. Evidently, (CLRST ) property implies the common property (E.A) but
not conversely.

In this paper, attempt is made to find existence and uniqueness of solutions
for certain system of functional equations arising in dynamic programming
through the help of a common fixed point theorem satisfying a generalized
altering distance function for two pairs of non-self weakly compatible map-
pings enjoying common limit range property in symmetric spaces. We furnish
examples to demonstrate the validity of the results and to highlight the re-
alized improvements in our results over the corresponding relevant results in
the existing literature. We extend our main result to four finite families of
mappings in symmetric spaces using the notion of pairwise commuting map-
pings. Our results generalizing the results given in the paper [2, 12, 14, 44]
and many others.

2 Common fixed point theorems for two pairs of map-
pings

The attempted improvements in this paper are the following.
(i) The results are proved in symmetric spaces.
(ii) The condition on containment of ranges amongst the involved mappings
is relaxed.
(iii) Continuity requirements of all the involved mappings are completely
relaxed.
(iv) The (E.A) property is replaced by (CLRS,T ) property which is the most
general among all existing weak commutativity concepts.
(v) The condition on completeness of the whole space is relaxed.
Now we state and prove our main result.

Theorem 2.1. Let (X, d) be a symmetric space where d satisfies the condi-
tions (1C) and (HE). Let Y be an arbitrary non-empty set with A,B, S, T :
Y → X. Suppose A,B, S, T satisfy the following condition:

Ψ1(d(Ax,By)) ≤ ψ1(d(Ax, Sx), d(By, Ty), d(Sx, Ty))

− ψ2(d(Ax, Sx), d(By, Ty), d(Sx, Ty)). (2.1)

for some ψ1, ψ2 ∈ F3 and all x, y ∈ Y . If the pairs (A, S) and (B, T ) share
the (CLRST ) property, then (A, S) and (B, T ) have a coincidence point each.
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Moreover, if Y = X, then A,B, S and T have a unique common fixed point
provided both the pairs (A, S) and (B, T ) are weakly compatible.

Proof. Since the pairs (A, S) and (B, T ) share the (CLRST ) property, there
exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = z,

where z ∈ S(Y ) ∩ T (Y ). Since z ∈ S(Y ), there exists a point u ∈ Y such
that Su = z. Putting x = u and y = yn in condition (2.1), we get

Ψ1(d(Au,Byn)) ≤ ψ1(d(Au, Su), d(Byn, T yn), d(Su, Tyn))

− ψ2(d(Au, Su), d(Byn, T yn), d(Su, Tyn)). (2.2)

Passing the upper limit as n → ∞ in condition (2.2) and using properties
(1C) and (HE), we have

Ψ1(d(Au, z)) ≤ ψ1(d(Au, z), 0, 0)− ψ2(d(Au, z), 0, 0)

≤ Ψ1(d(Au, z))− ψ2(d(Au, z), 0, 0) (2.3)

and it follows easily that ψ2(d(Au, z), 0, 0) = 0 and thus Au = z. Therefore
Au = Su = z, which shows that u is a coincidence point of the pair (A, S).

As z ∈ T (Y ), there exists a point v ∈ Y such that Tv = z. Putting x = u
and y = v in condition (2.1), we have

Ψ1(d(z,Bv)) = Ψ1(d(Au,Bv))

≤ ψ1(d(Au, Su), d(Bv, Tv), d(Su, Tv))

− ψ1(d(Au, Su), d(Bv, Tv), d(Su, Tv))

= ψ1(d(z, z), d(Bv, z), d(z, z))− ψ2(d(z, z), d(Bv, z), d(z, z))

= ψ1(0, d(Bv, z), 0)− ψ2(0, d(Bv, z), 0)

≤ Ψ1(d(Bv, z))− ψ2(0, d(Bv, z), 0) (2.4)

which holds unless ψ2(0, d(Bv, z), 0) = 0 and so z = Bv. Thus, Bv = Tv = z,
which shows that v is a coincidence point of the pair (B, T ).

Suppose now that Y = X. Since the pairs (A, S) and (B, T ) are weakly
compatible, Au = Su and Bv = Tv, therefore Az = ASu = SAu = Sz and
Bz = BTv = TBv = Tz. Putting x = z and y = v in condition (2.1), we
have
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Ψ1(d(Az, z)) = Ψ1(d(Az,Bv)) (2.5)

≤ ψ1(d(Az, Sz), d(Bv, Tv), d(Sz, Tv))

− ψ2(d(Az, Sz), d(Bv, Tv), d(Sz, Tv))

= ψ1(d(Az,Az), d(z, z), d(Az, z))−
ψ2(d(Az,Az), d(z, z), d(Az, z))

= ψ1(0, 0, d(Az, z))− ψ2(0, 0, d(Az, z))

≤ Ψ1(d(Az, z))− ψ2(0, 0, d(Az, z)).

It follows that ψ2(0, 0, d(Az, z)) = 0 and thus z = Az = Sz. Therefore z is a
common fixed point of the pair (A, S). Putting x = u and y = z in condition
(2.1), we have

Ψ1(d(z, Bz)) = Ψ1(d(Au,Bz)) (2.6)

≤ ψ1(d(Au, Su), d(Bz, Tz), d(Su, Tz))

− ψ2(d(Au, Su), d(Bz, Tz), d(Su, Tz))

= ψ1(d(z, z), d(Bz,Bz), d(z,Bz))−
ψ2(d(z, z), d(Bz,Bz), d(z,Bz))

= ψ1(0, 0, d(z,Bz))− ψ2(0, 0, d(z, Bz))

≤ Ψ1(d(z,Bz))− ψ2(0, 0, d(z, Bz)).

From (2.6), we obtain

Ψ1(d(z, Bz)) ≤ Ψ1(d(z,Bz))− ψ2(0, 0, d(z, Bz)).

and then ψ2(0, 0, d(z,Bz)) = 0, that is, z = Bz. Therefore Bz = Tz = z
and we can conclude that z is a common fixed point of A, B, S and T . The
uniqueness of the common fixed point is an easy consequence of condition
(2.1) and so, to avoid repetition, we omit the details.

Remark 2.1. If we take

ψ1(t1, t2, t3) = max{t1, t2, t3} and ψ2(t1, t2, t3) = (1− k) max{t1, t2, t3},

for k ∈ (0, 1) then Ψ1(t) = t for all t ≥ 0, and the contractive condition 2.1
in Theorem 2.1 becomes

d(Ax,By) ≤ kmax

{
d(Ax, Sy), d(By, Ty), d(Sx, Ty)

}
.
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A number of fixed point results may be obtained by assuming different forms
for the functions ψ1 and ψ2. In particular, fixed point results under various
contractive conditions may be derived from the above theorems. For example,
if we consider

ψ1(x, y, z) = k1x
q + k2y

q + k3z
q,

ψ2(x, y, z) = (1− k)[k1x
q + k2y

q + k3z
q],

where q > 0 and 0 < k = k1 + k2 + k3 < 1, we obtain the following results.

The next result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let (X, d) be a symmetric space, where d satisfies the condi-
tions (1C) and (HE) and let Y be an arbitrary non-empty set with A,B, S, T :
Y → X such that

(d(Ax,By))q ≤ k1(d(Ax, Sy))q + k2(d(By, Ty))q + k3(d(Sx, Ty))q, (2.7)

for all x, y ∈ X where q > 0 and 0 < k1 + k2 + k3 < 1. If the pairs
(A, S) and (B, T ) enjoy the (CLRST ) property, then (A, S) and (B, T ) have
a coincidence point each. Moreover, if Y = X, then A,B, S and T have
a unique common fixed point provided both the pairs (A, S) and (B, T ) are
weakly compatible.

Remark 2.2. Other fixed point results may also be obtained under specific
choices of ψ1 and ψ2.

The following proposition will help us to get further results.

Proposition 2.3. Let (X, d) be a symmetric space where d satisfies the con-
dition (CC) while Y be an arbitrary non-empty set with A,B, S, T : Y → X.
Suppose that the following hypotheses hold:

1. the pair (A, S) satisfies the (CLRS) property
[
resp., the pair (B, T )

satisfies the (CLRT ) property
]
;

2. A(Y ) ⊂ T (Y )
[
resp., B(Y ) ⊂ S(Y )

]
;

3. T (Y )
[
resp., S(Y )

]
is a closed subset of X;

4. {Byn} converges for every sequence {yn} in Y such that {Tyn} con-
verges

[
resp., {Axn} converges for every sequence {xn} in Y such that

{Sxn} converges
]
;
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5. for some ψ1, ψ2 ∈ F3 and all x, y ∈ Y

Ψ1(d(Ax,By)) ≤ ψ1(d(Ax, Sx), d(By, Ty), d(Sx, Ty))

− ψ2(d(Ax, Sx), d(By, Ty), d(Sx, Ty)). (2.8)

Then the pairs (A, S) and (B, T ) share the (CLRST ) property.

Proof. If the pair (A, S) satisfy the (CLRS) property, there exists a sequence
{xn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

where z ∈ S(Y ). By (2), A(Y ) ⊂ T (Y ) (where T (Y ) is a closed subset of
X) and for each {xn} ⊂ Y there corresponds a sequence {yn} ⊂ Y such that
Axn = Tyn. Therefore,

lim
n→∞

Tyn = lim
n→∞

Axn = z,

where z ∈ S(Y ) ∩ T (Y ). Thus, we have

lim
n→+∞

d(Axn, z) = lim
n→+∞

d(Sxn, z) = lim
n→+∞

d(Tyn, z) = 0.

Therefore, by (HE) we have

lim
n→∞

d(Axn, Sxn) = 0 and lim
n→∞

d(Sxn, T yn) = 0.

By (4), the sequence {Byn} converges; we need to show that Byn → z as n→
∞. By (CC), we get lim

n→∞
d(Axn, Byn) = d(z, lim

n→∞
Byn), lim

n→∞
d(Sxn, Byn) =

d(z, lim
n→∞

Byn) and lim
n→∞

d(Byn, T yn) = d( lim
n→∞

Byn, z). Putting x = xn and

y = yn in condition (2.8), we get

Ψ1(d(Axn, Byn)) ≤ ψ1(d(Axn, Sxn), d(Byn, T yn), d(Sxn, T yn))

−Ψ2(d(Axn, Sxn), d(Byn, T yn), d(Sxn, T yn)). (2.9)

Passing the upper limit as n→∞ in inequality (2.9), we have

Ψ1(d(z, lim
n→∞

Byn)) ≤ ψ1(0, d( lim
n→∞

Byn, z), 0)− ψ2(0, d( lim
n→∞

Byn, z), 0).

(2.10)
Hence, inequality (2.10) implies

Ψ1(d(z, lim
n→∞

Byn)) ≤ Ψ1(d(z, lim
n→∞

Byn))− ψ2(0, d( lim
n→∞

Byn, z), 0),

that is, ψ2(0, d(limn→∞Byn, z), 0) ≤ 0. Thus, ψ2(0, d(limn→∞Byn, z), 0) = 0
and by the properties of function ψ2 ∈ F3, we have d(z, lim

n→∞
Byn) = 0. Hence

Byn → z as n→∞ which shows that the pairs (A, S) and (B, T ) share the
(CLRST ) property.
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The converse of Proposition 2.3 is not true. For a counterexample, see [20,
Example 3.5].
If we replace (IC) and (HE) property by (CC) property in Theorem 2.1, we
have following result.

Theorem 2.4. Let (X, d) be a symmetric space, where d satisfies the condi-
tion (CC), and let Y be an arbitrary non-empty set with A,B, S, T : Y → X.
Suppose that the conditions (1)–(5) of Proposition 2.3 hold. Then (A, S) and
(B, T ) have a coincidence point each.
Moreover if Y = X, then A,B, S and T have a unique common fixed point
provided both the pairs (A, S) and (B, T ) are weakly compatible.

Proof. Following Proposition 2.3, the pairs (A, S) and (B, T ) share the
(CLRST ) property, therefore there exist two sequences {xn} and {yn} in Y
such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = z,

where z ∈ S(Y ) ∩ T (Y ). The rest of the proof runs on the lines of the proof
of Theorem 2.1, therefore the details are omitted.

Obviously, if the pairs (A, S) and (B, T ) satisfy the common property (E.A),
and, at the same time, S(Y ) and T (Y ) are closed subsets of X, then the
pairs (A, S) and (B, T ) share the (CLRST ) property. Hence, we have the
following variant of Theorem 2.1.

Theorem 2.5. Let (X, d) be a symmetric space, where d satisfies the condi-
tions (1C) and (HE), and let Y be an arbitrary non-empty set with A,B, S,
T : Y → X. Suppose that the inequality (2.8) and the following hypotheses
hold:

1. the pairs (A, S) and (B, T ) satisfy the common property (E.A);

2. S(Y ) and T (Y ) are closed subsets of X.

Then (A, S) and (B, T ) have a coincidence point each. Moreover, if Y = X,
then A,B, S and T have a unique common fixed point provided both the pairs
(A, S) and (B, T ) are weakly compatible.

Proof. If the pairs (A, S) and (B, T ) share the common property (E.A), then
there exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,
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for some z ∈ X. Since S(Y ) is closed, lim
n→∞

Sxn = z = Su for some u ∈ Y .

Also, since T (Y ) is closed, then lim
n→∞

Tyn = z = Tv for some v ∈ Y . The

rest of the proof runs on the lines of the proof of Theorem 2.1, therefore such
details are omitted.

Next, we state two more variants of our results, which can be proved on the
lines of the proofs of Theorems 2.4 and 2.5.

Corollary 2.6. The conclusions of Theorem 2.5 remain true if condition (2)
is replaced by the following:

(2′) A(Y ) ⊂ T (Y ) and B(Y ) ⊂ S(Y ),

where A(Y ) and B(Y ) denote the closure of ranges of the mappings A and
B.

Corollary 2.7. The conclusions of Theorem 2.5 remain true if the condition
(2) is replaced by the following:

(2′′) A(Y ) and B(Y ) are closed subsets of X, and A(Y ) ⊂ T (Y ), B(Y ) ⊂
S(Y ).

By choosing A,B, S and T suitably in Theorem 2.1, we can deduce some
corollaries for a pair as well as for a triple of self mappings. Here, as a
sample, we give the following natural result for a pair of self mappings.

Corollary 2.8. Let (X, d) be a symmetric space, where d satisfies the con-
ditions (1C) and (HE), and let Y be an arbitrary non-empty set with A, S :
Y → X. Suppose that

1. the pair (A, S) enjoys the (CLRS) property;

2. for some ψ1, ψ2 ∈ F3 and all x, y ∈ Y

Ψ1(d(Ax,Ay)) ≤ ψ1(d(Ax, Sx), d(Ay, Sy), d(Sx, Sy))

− ψ2(d(Ax, Sx), d(Ay, Sy), d(Sx, Sy)).

Then the pair (A, S) has a coincidence point. Moreover, if Y = X, then A
and S have a unique common fixed point provided the pair (A, S) is weakly
compatible.

By choosing A,B, S and T suitably in Theorem 2.1, we can deduce some
corollaries for a pair as well as for a triple of self mappings. Since the for-
mulations of these results are similar to those in [20,23], we omit the details
here. We just state the following result for four families of mappings.
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Corollary 2.9. Let (X, d) be a symmetric space, where d satisfies the condi-
tions (1C) and (HE), and let Y be an arbitrary non-empty set. Let {Ai}mi=1,
{Br}nr=1, {Sk}pk=1 and {Th}qh=1 be four finite families of mappings from Y
to X, where A = A1A2 · · ·Am, B = B1B2 · · ·Bn, S = S1S2 · · ·Sp and
T = T1T2 · · ·Tq satisfy condition (2.8) of Lemma 2.3, and the pairs (A, S) and
(B, T ) satisfy the (CLRST ) property. Then (A, S) and (B, T ) have a point
of coincidence each. Moreover if Y = X, then {Ai}mi=1, {Br}nr=1, {Sk}pk=1

and {Th}qh=1 have a unique common fixed point provided the pairs of families
({Ai}, {Sk}) and ({Br}, {Th}) commute pairwise, where i ∈ {1, 2, . . . ,m},
k ∈ {1, 2, . . . , p}, r ∈ {1, 2, . . . , n} and h ∈ {1, 2, . . . , q}.

Proof. The proof can be completed on the lines of a theorem of Imdad et al.
[20, Theorem 2.2].

Now, we indicate that Corollary 2.9 can be utilized to derive common fixed
point theorems for any finite number of mappings. As a sample, we derive
the following theorem by setting one family to be of two members while the
remaining three of single members.

Corollary 2.10. Let (X, d) be a symmetric space, where d satisfies the
conditions (1C) and (HE), and let Y be an arbitrary non-empty set with
A,B,R, S, T : Y → X. Suppose that the following hypotheses hold:

1. the pairs (A, SR) and (B, T ) share the (CLR(SR)(T )) property;

2. for some ψ1, ψ2 ∈ F3 and all x, y ∈ Y

Ψ1(d(Ax,By)) ≤ ψ1(d(Ax, SRx), d(By, Ty), d(SRx, Ty))

− ψ2(d(Ax, SRx), d(By, Ty), d(SRx, Ty)). (2.11)

Then (A, SR) and (B, T ) have a coincidence point each. Moreover, if Y =
X, then A,B,R, S and T have a unique common fixed point provided both the
pairs (A, SR) and (B, T ) commute pairwise, that is, AS = SA, AR = RA,
SR = RS, BT = TB.

Similarly, one can derive a common fixed point theorem for six mappings by
setting two families of two members while the rest two of single members,
and so on.
By setting A1 = A2 = · · · = Am = A, B1 = B2 = · · · = Bp = B, S1 = S2 =
· · · = Sn = S and T1 = T2 = · · · = Tq = T in Corollary 2.9, one deduces the
following result.

Corollary 2.11. Let A,B, S and T be self mappings of a symmetric space
(X, d) satisfying the conditions (1C) and (HE). Suppose that, for fixed pos-
itive integers m,n, p, q,



Vol. LII (2014) Fixed Point Theorem for Common Limit Range Property 111

1. the pairs (Am, Sp) and (Bn, T q) share the (CLRSpT q) property;

2. for some ψ1, ψ2 ∈ F3 and all x, y ∈ Y

Ψ1(d(Amx,Bny)) ≤ ψ1(d(Amx, Spx), d(Bny, T qy), d(Spx, T qy))

− ψ2(d(Amx, Spx), d(Bny, T qy), d(Spx, T qy)).
(2.12)

Then A,B, S and T have a unique common fixed point provided AS = SA
and BT = TB.

Remark 2.3. Corollary 2.11 is a slight but partial generalization of Theorem
2.1 as the commutativity requirements (that is, AS = SA and BT = TB)
in this corollary are relatively stronger as compared to weak compatibility in
Theorem 2.1.

3 Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses of
Theorem 2.1. This example is inspire due to Imdad et al. [20].

Example 3.1. Let Y = [1, 10) ⊂ [1,+∞) = X be endowed with the sym-
metric d(x, y) = (x− y)2 for all x, y ∈ Y which also satisfies (1C) and (HE).
Consider the mappings A,B, S, T : Y → X given by

Ax =

{
1 if x ∈ {1} ∪ (3, 10),

8 if 1 < x ≤ 3,
Bx =

{
1 if x ∈ {1} ∪ (3, 10),

5 if 1 < x ≤ 3,

Sx =


1 if x = 1,

10 if 1 < x ≤ 3,
4x−5
7
, if 3 < x < 10,

Tx =


1 if x = 1,

10 if 1 < x ≤ 3,
x+4
7

if 3 < x < 10.

Then we have A(Y ) = {1, 8} * [1, 2) ∪ {10} = T (Y ) and B(Y ) = {1, 5} *
[1, 5) ∪ {10} = S(Y ). Consider two sequences {xn} = {1}, {yn} =

{
3 + 1

n

}
.

Then the pairs (A, S) and (B, T ) satisfy the (CLRST ) property. Indeed we
have

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 1,

where 1 ∈ S(Y ) ∩ T (Y ); however, S(Y ) and T (Y ) are not closed subsets
of X.
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Now, define functions ψ1, ψ2 : [0,+∞)3 → [0,+∞) by

ψ1(t, u, v) = max{t, u, v}, ψ2(t, u, v) =
1

8
max{t, u, v} for all t, u, v ≥ 0.

Clearly ψ1 and ψ2 are generalized altering distance functions and Ψ1(t) = t
for all t ≥ 0.
Now, we will check the inequality (2.7). We distinguish the following possible
cases:
• If x = y = 1, then we get d(Ax,By) = 0 and (2.7) is trivially satisfied;
• if x = 1, y ∈ (1, 3], then we get d(Ax,By) = 16, and (2.7) reduces to
16 ≤ 7

8
· 81 ≈ 70;

• if x = 1, y ∈ (3, 10), then we get d(Ax,By) = 0 and (2.7) is trivially
satisfied;
• if x ∈ (1, 3], y = 1, then we get d(Ax,By) = 49, so (2.7) reduces to
49 ≤ 7

8
· 81 ≈ 70;

• if x, y ∈ (1, 3], then we get d(Ax,By) = 9, so (2.7) reduces to 9 ≤ 7
8
·9 ≈ 22;

• if x ∈ (1, 3], y ∈ (3, 10), then we get d(Ax,By) = 49, so (2.7) reduces to
49 ≤ 7

8
· 64 = 56;

• if x ∈ (3, 10), y = 1, then we get d(Ax,By) = 0 and (2.7) is trivially
satisfied;
• if x ∈ (3, 10), y ∈ (1, 3], then we get d(Ax,By) = 16, so (2.7) reduces to
16 ≤ 7

8
· 81 ≈ 70;

• if x, y ∈ (3, 10), then we get d(Ax,By) = 0 and (2.7) is trivially satisfied.
Thus, all the conditions of Theorem 2.1 (more precisely, Corollary 2.2) are
satisfied (except Y = X), and 1 is a unique common fixed point of the pairs
(A, S) and (B, T ). Also, all the involved mappings are discontinuous at their
unique common fixed point 1.

Next example highlights the non-closeness of ranges of S and T in X in the
Corollary 2.6 and 2.7.

Example 3.2. Let Y = [1, 15) ⊂ [1,+∞) = X be equipped endowed with
the symmetric d(x, y) = (x − y)2 for all x, y ∈ Y which also satisfies (1C)
and (HE). Consider the mappings A,B, S, T : Y → X by

Ax =

{
1 if x ∈ {1} ∪ (3, 15),

10 if 1 < x ≤ 3,
Bx =

{
1 if x ∈ {1} ∪ (3, 15),

4 if 1 < x ≤ 3,

Sx =


1 if x = 1,

4 if 1 < x ≤ 3,
x+1
4
, if 3 < x < 15,

Tx =


1 if x = 1,

10 + x if 1 < x ≤ 3,

x− 2 if 3 < x < 15.
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Then we have A(Y ) = {1, 10} ⊆ [1, 13] = T (Y ) and B(Y ) = {1, 4} ⊆ [1, 4] =
S(Y ). Consider two sequences

(
or {xn} = {1}, {yn} =

{
3 + 1

n

}
n∈N

)
, Then

the pairs (A, S) and (B, T ) satisfy the (CLRST ) property. Indeed we have

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 1,

where 1 ∈ S(Y ) ∩ T (Y ).
Notice that there is no ψ1 and ψ2 altering distance functions which satisfy
the condition (2.8) of Theorem 2.1. For example x ∈ (1, 3], y = 1,

81 � ψ1(36, 0, 9)− ψ2(36, 0, 9).

Thus, all the conditions of Theorem 2.1 (also the Corollary 2.2) are satisfied,
except Y = X, but 1 is a unique common fixed point of the pairs (A, S) and
(B, T ). Here, it is worth noting that Theorem 2.1 can not be used in the
context of this example as S(X) and T (X) are closed subsets of Y . Also, all
the involved mappings are even discontinuous at their unique common fixed
point 1.

Now we furnish examples demonstrating the validity of condition (2.8) of
Theorem 2.1 is only a necessary condition but not sufficient.

Example 3.3. Consider X = [2, 20] equipped with the symmetric d(x, y) =
(x − y)2 for all x, y ∈ Y which also satisfies (1C) and (HE). Consider the
mappings A,B, S, T : Y → X by

Ax = Bx =


2 if x = 2,

7 if 2 < x ≤ 5,

2, if x < 5,

Sx = Tx =


2 if x = 2,

7 if 2 < x ≤ 5,
x+1
3

if x < 5.

Then the pair (A, S) satisfies all the conditions of Theorem 2.1 and has a
coincidence at x = 2 which also remains a common fixed point of the pair. It
is notice that condition (2.8) is not satisfies ( e.g. x ∈ (2, 5] and y = 2 ). This
confirms that condition (2.8) of Theorem 2.1 is only a necessary condition
but not sufficient.

4 Applications to existence theorems for functional
equations arising in dynamic programming

Consider a multistage process is reduced to the system of functional equations

qi(x) = sup
y∈D
{g(x, y) +Gi(x, y, qi(τ(x, y)))}, x ∈ W, (4.1)
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where τ : W ×D → W , g : W ×D → R, Gi : W ×D×R→ R are mappings
while W ⊆ U is a state space, D ⊆ V is a decision space and U as well as V
are Banach spaces, i ∈ {1, 2, 3}.
The purpose of this section is to give an existence and uniqueness of solu-
tions for a certain system of functional equations (4.1) arising in dynamic
programming using Corollary 2.2.
Let B(W ) be the set of all bounded real-valued functions on W and, for
an arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Clearly, (B(W ), ‖·‖)
endowed with the metric d defined by

d(h, k) = sup
x∈W
|h(x)− k(x)|

for all h, k ∈ B(W ), is a Banach space. Now, the convergence in the space
B(W ) with respect to ‖·‖ is uniform. Therefore, if we consider a Cauchy
sequence {hn} in B(W ), then the sequence {hn} converges uniformly to a
function, say h∗, that is bounded. Therefore h∗ ∈ B(W ).
We consider the operators Ti : B(W )→ B(W ) given by

Ti(h)(x) = sup
y∈D
{g(x, y) +Gi(x, y, hi(τ(x, y)))}, (4.2)

for h ∈ B(W ), x ∈ W , where i ∈ {1, 2, 3}; these mappings are well-defined
if the functions g and Gi are bounded. Also, define

M(h, k) = k1[d(T1(h), T3(h))]2 + k2[d(T2(k), T3(k))]2 + k3[d(T3(h), T3(k))]2,

for all h, k ∈ B(W ).
Now, we are equipped to state and prove the following result.

Theorem 4.1. Let Ti : B(W )→ B(W ) be given by (4.2), where i ∈ {1, 2, 3}.
Suppose that the following hypotheses hold:

(1) there exist k1, k2, k3 ≥ 0 such that

|G1(x, y, h(x))−G2(x, y, k(x))|
≤ [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2 + k3|T3(h)− T3(k)|2]

1
2

and k1 + k2 + k3 < 1, for all x ∈ W , y ∈ D;

(2) g : W ×D → R and Gi : W ×D×R→ R are bounded functions, where
i ∈ {1, 2, 3};

(3) there exist sequences {hn} in B(W ) and h∗ ∈ B(W ) such that

lim
n→∞

T1(hn) = lim
n→∞

T2(hn) = lim
n→∞

T3(hn) = h∗;



Vol. LII (2014) Fixed Point Theorem for Common Limit Range Property 115

(4) T1T3(h) = T3T1(h), whenever T1(h) = T3(h), for some h ∈ B(W );

(5) T2T3(k) = T3T2(k), whenever T2(k) = T3(k), for some k ∈ B(W ).

Then the system of functional equations (4.1) has a unique bounded solution.

Proof. Consider the symmetric ds : B(W ) × B(W ) → [0,+∞) given by
ds(h, k) = |h − k|2, for all h, k ∈ B(W ). Notice that the conditions (1C)
and (HE) hold trivially. By hypothesis (3) the pairs (T1, T3) and (T2, T3)
share the common limit range property with respect to T3. Now, let λ be
an arbitrary positive number, x ∈ W and h1, h2 ∈ B(W ). Then there exist
y1, y2 ∈ D such that

T1(h1)(x) < g(x, y1) +G1(x, y1, h1(τ(x, y1))) + λ, (4.3)

T2(h2)(x) < g(x, y2) +G2(x, y2, h2(τ(x, y2))) + λ, (4.4)

T1(h1)(x) ≥ g(x, y2) +G1(x, y2, h1(τ(x, y2))), (4.5)

T2(h2)(x) ≥ g(x, y1) +G2(x, y1, h2(τ(x, y1))). (4.6)

Next, by using (4.3) and (4.6), we obtain

T1(h1)(x)− T2(h2)(x) < G1(x, y1, h1(τ(x, y1)))−G2(x, y1, h2(τ(x, y1))) + λ

≤ |G1(x, y1, h1(τ(x, y1)))−G2(x, y1, h2(τ(x, y1)))|+ λ

≤ [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+
k3|T3(h)− T3(k)|2]

1
2 + λ

and so we have

T1(h1)(x)− T2(h2)(x) < [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+ (4.7)

k3|T3(h)− T3(k)|2]
1
2 + λ.

Analogously, by using (4.4) and (4.5), we get

T2(h2)(x)− T1(h1)(x) < [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+ (4.8)

k3|T3(h)− T3(k)|2]
1
2 + λ.

Finally, from (4.8) and (4.9), we deduce

|T1(h1)(x)− T2(h2)(x)| < [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+ (4.9)

k3|T3(h)− T3(k)|2]
1
2 + λ,
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or, equivalently,

d(T1(h1), T2(h2)) ≤ [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+
k3|T3(h)− T3(k)|2]

1
2 + λ.

Notice that the last inequality does not depend on x ∈ W and λ > 0 is taken
arbitrarily, therefore we obtain immediately that

d(T1(h1), T2(h2)) ≤ [k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+
k3|T3(h)− T3(k)|2]

1
2 ,

or, equivalently,

ds(T1(h1), T2(h2)) ≤ k1|T1(h)− T3(h)|2 + k2|T2(k)− T3(k)|2+
k3|T3(h)− T3(k)|2 = k1ds(T1(h), T3(h))+

k2ds(T2(k), T3(k)) + k3ds(T3(h), T3(k))

where k1 + k2 + k3 < 1. Then, putting A = T1, B = T2 and S = T = T3,
Corollary 2.2 is satisfied with q = 1 and Y = X = B(W ). Moreover, in
view of the hypotheses (4) and (5), the pairs (T1, T3) and (T2, T3) are weakly
compatible, and so T1, T2 and T3 have a unique common fixed point, that is,
the system of functional equations (4.1) has a unique bounded solution.
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