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1 Introduction

The importance of control theory in applied mathematics and its occurrence
in several problems such as mechanics, electromagnetic theory, thermody-
namics, artificial satellites etc., are well known. The main aim being to
compel or control a given system to behave in some desired fashion. In the
present day world we require systems being controlled automatically without
direct human intervention.

Matrix Lyapunov type systems arise in a number of areas of applied math-
ematics such as dynamic programming, optimal filters, quantum mechanics,
and systems engineering. Now we focus our attention to the first order fuzzy
matrix Lyapunov system modelled by

X ′(t) = A(t)X(t) +X(t)B(t) + F (t)U(t), X(0) = X0, t > 0, (1.1)
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Y (t) = C(t)X(t) +D(t)U(t), (1.2)

where U(t) is a n × n fuzzy input matrix called fuzzy control and Y (t) is a
n×n fuzzy output matrix. Here A(t), B(t), F (t), C(t), and D(t) are matrices
of order n×n, whose elements are continuous functions of t on J = [0, T ] ⊂ R
(T > 0).

The existence and uniqueness theory for two point boundary value prob-
lems associated with matrix Lyapunov systems was obtained by Murty and
Rao [9]. Further, controllability, observability, and realizability concepts for
matrix Lyapunov systems were studied by Murty, Rao and Suresh Kumar
[10]. Recently, Dubey and Georege [6] obtained sufficient conditions for the
controllability of semi-linear matrix Lyapunov systems. The controllability
criteria for fuzzy dynamical control systems was studied by Ding and Kandel
[5]. Controllability and Observability criteria for Fuzzy dynamical matrix
Lyapunov systems were studied by Murty and Suresh Kumar [11] with the
use of fuzzy rule base. Moreover, Murty and Suresh Kumar [12] also studied
the observability of fuzzy dynamical matrix Lyapunov systems without using
the fuzzy rule base. This paper deals with obtaing sufficient conditions for
the existence of controllability for fuzzy dynamical matrix Lyapunov systems
with fuzzy set as input.

The paper is well organized as follows. In section 2 we present some basic
definitions and results relating to fuzzy sets and Kronecker product of ma-
trices. Further, we obtain general solution of the system (1.1), when U(t) is
a crisp continuous matrix. In section 3 we formulate a new fuzzy system by
combining matrix Lyapunov systems with fuzzy sets called fuzzy dynamical
matrix Lyapunov system, which can be regarded as a new approach to intel-
ligent control, and also find its solution set. In section 4 we obtain a sufficient
condition for the controllability of fuzzy dynamical matrix Lyapunov system
without using fuzzy rule base and highlight the main theorem with a suitable
example.

This paper generalizes some of the results of Ding and Kandel [5] to matrix
Lyapunov systems.

2 Preliminaries

Let Pk(R
n) denotes the family of all nonempty compact convex subsets of

Rn. Define the addition and scalar multiplication in Pk(R
n) as usual.

Radstrom [14] states that Pk(R
n) is a commutative semi-group under ad-

dition, which satisfies the cancellation law. Moreover, if α, β ∈ R and



Vol. LI (2013) Fuzzy Matrix Lyapunov Systems 75

A,B ∈ Pk(Rn), then

α(A+B) = αA+ αB, α(βA) = (αβ)A, 1A = A

and if α, β ≥ 0, then (α + β)A = αA+ βA. The distance between A and B
is defined by the Hausdorff metric

d(A,B) = inf{ε : A ⊂ N(B, ε), B ⊂ N(A, ε)},

where
N(A, ε) = {x ∈ Rn : ||x− y|| < ε, for some y ∈ A}.

Definition 2.1. A set valued function F : J → Pk(R
n) is said to be measur-

able if it satisfies any one of the following equivalent conditions;

1. for all u ∈ Rn, t→ dF (t)(u) = infv∈F (t) ‖u− v‖ is measurable,

2. GrF = {(t, u) ∈ J × Rn : u ∈ F (t)} ∈ Σ× β(Rn), where Σ, β(Rn) are
Borel σ-field of J and Rn respectively (Graph measurability),

3. there exists a sequence {fn(.)}n≥1 of measurable functions such that

F (t) = {fn(.)}n≥1, for all t ∈ J (Castaing’s representation)[13].

We denote by S1
F the set of all selections of F (.) that belong to the Lebesgue

Bochner space L1
Rn(J). i.e.

S1
F = {f(.) ∈ L1

Rn(J) : f(t) ∈ F (t)a.e.}.

We present the Aumann’s integral as follows;

(A)

∫
J

F (t)dt = {
∫
J

f(t)dt, f(.) ∈ S1
F}.

We say that F : J → Pk(R
n) is integrably bounded if it is measurable and

there exists a function h : J → R, h ∈ L1
Rn(J) such that ‖u‖ ≤ h(t), u ∈ F (t).

From [2], we know that if F is closed valued measurable multifunction, then∫
J
F (t)dt is convex in Rn. Furthermore, if F is bounded integrable then∫

J
F (t)dt is compact in Rn. Let

En = {u : Rn → [0, 1]/u satisfies (i)-(iv) below},

where (i) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1; (ii)
u is fuzzy convex, i.e. for x, y ∈ Rn and 0 ≤ λ ≤ 1,

u(λx+ (1− λ)y) ≥ min[u(x), u(y)];
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(iii) u is upper semi-continuous; (iv) [u]0 = {x ∈ Rn/u(x) > 0} is compact.
For 0 < α ≤ 1, the α-level set is denoted and defined by [u]α = {x ∈
Rn/u(x) ≥ α}. Then from (i)-(iv) it follows that [u]α ∈ Pk(R

n), for all
0 ≤ α ≤ 1.

Define D : En × En → [0,∞) by

D(u, v) = sup{d([u]α, [v]α)/α ∈ [0, 1]},

where d is the Hausdorff metric defined in Pk(R
n). It is easy to show that

D is a metric in En and using results of [[4], [14]], we see that (En, D) is a
complete metric space, but not locally compact. Moreover, the distance D
verifies thatD(u+w, v+w) = D(u, v), u, v, w ∈ En, D(λu, λv) = |λ|D(u, v),
u, v ∈ En, λ ∈ R, D(u+ w, v + z) ≤ D(u, v) +D(w, z), u, v, w, z ∈ En.

We note that (En, D) is not a vector space. But it can be imbedded isomor-
phically as a cone in a Banach space [14].

Regarding fundamentals of differentiability and integrability of fuzzy func-
tions we refer to O.Kaleva [7], Lakshmikantham and Mohapatra [8].

In the sequel we need the following representation theorem.

Theorem 2.1. [13] If u ∈ En, then

1. [u]α ∈ Pk(Rn), for all 0 ≤ α ≤ 1.

2. [u]α2 ⊂ [u]α1, for all 0 ≤ α1 ≤ α2 ≤ 1.

3. If {αk} is a non-decreasing sequence converging to α > 0, then [u]α =⋂
k≥1[u]αk .

Conversely, if {Aα : 0 ≤ α ≤ 1} is a family of subsets of Rn satisfying (1)-
(3), then there exists a u ∈ En such that [u]α = Aα, for 0 < α ≤ 1 and
[u]0 =

⋃
0≤α≤1A

α ⊂ A0.

A fuzzy set valued mapping F : J → En is called fuzzy integrably bounded
if F0(t) is integrably bounded.

Definition 2.2. Let F : J → En be a fuzzy integrably bounded mapping.
The fuzzy integral of F over J denoted by

∫
J
F (t)dt, is defined level-set-wise

by [∫
J

F (t)dt]

]α
= (A)

∫
J

Fα(t)dt, 0 < α ≤ 1.

Let F : J × En → En, consider the fuzzy differential equation

u′ = F (t, u), u(0) = u0. (2.1)
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Definition 2.3. A mapping u : J → En is a fuzzy weak solution to (2.1) if
it is continuous and satisfies the integral equation

u(t) = u0 +

∫ t

0

F (s, u(s))ds, ∀t ∈ J.

If F is continuous, then this weak solution also satisfies (2.1) and we call it
fuzzy strong solution to (2.1).

Definition 2.4. [1] Let A ∈ Cm×n and B ∈ Cp×q then the Kronecker product
of A and B written A⊗B is defined to be the partitioned matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB


is an mp× nq matrix and is in Cmp×nq.

Definition 2.5. [1] Let A = [aij] ∈ Cm×n, we denote

Â = Vec A =


A.1
A.2
.
.
A.n

 , where A.j =


a1j
a2j
.
.
amj

 (1 ≤ j ≤ n).

Regarding properties and rules for Kronecker product of matrices we refer to
Murty and Suresh Kumar [1].

Now by applying the Vec operator to the matrix Lyapunov system (1.1)
satisfying (1.2) and using the above properties, we have

X̂ ′(t) = G(t)X̂(t) + (In ⊗ F (t))Û(t), X̂(0) = X̂0, (2.2)

Ŷ (t) = (In ⊗ C(t))X̂(t) + (In ⊗D(t))Û(t), (2.3)

where G(t) = (B∗ ⊗ In) + (In ⊗ A) is a n2 × n2 matrix and X̂= Vec X(t),
Û= Vec U(t) are column matrices of order n2.

The corresponding linear homogeneous system of (2.2) is

X̂ ′(t) = G(t)X̂(t), X̂(0) = X̂0. (2.4)
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Lemma 2.1. Let φ(t) and ψ(t) be the fundamental matrices for the systems

X ′(t) = A(t)X(t), X(0) = In, (2.5)

and
[X∗(t)]′ = B∗(t)X∗(t), X(0) = In (2.6)

respectively. Then the matrix ψ(t) ⊗ φ(t) is a fundamental matrix of (2.4)
and the solution of (2.4) is X̂(t) = (ψ(t)⊗ φ(t))X̂0.

Proof. For proof, we refer to Lemma 1 of [11].

Theorem 2.2. Let φ(t) and ψ(t) be the fundamental matrices for the systems
(2.5) and (2.6), then the unique solution of (2.2) is

X̂(t) = (ψ(t)⊗ φ(t))X̂0 +

t∫
0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F̂ (s))Û(s)ds. (2.7)

Proof. For proof, we refer to Theorem 1 of [11].

3 Formation of fuzzy dynamical Lyapunov systems

In this section we show that the following system

X̂ ′(t) = G(t)X̂(t) + (In ⊗ F (t))Û(t), X̂(0) = X̂0 (3.1)

Ŷ (t) = (In ⊗ C(t))X̂(t) + (In ⊗D(t))Û(t), (3.2)

determines a fuzzy system, when Û(t) is a fuzzy set.

Fix 0 < α ≤ 1, let [Û(t)]α be the α-level set of Û(t). For any positive number
T , Consider differential inclusions

X̂ ′α(t) ∈ G(t)X̂α(t) + (In ⊗ F (t))[Û(t)]α, t ∈ [0, T ] (3.3)

X̂(0) = X̂0. (3.4)

Let X̂α be the solution set of inclusions (3.3) and (3.4).

Claim (i). [X̂(t)]α ∈ Pk(Rn2
), for every t ∈ [0, T ].

First, we prove that X̂α is nonempty, compact and convex in C[[0, T ], Rn2
].

Since [Û(t)]α has measurable selection, we have X̂α is nonempty. Let

K = max
t∈[0,T ]

‖φ(t)‖, L = max
t∈[0,T ]

‖ψ(t)‖
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M = max{‖u(t)‖ : u(t) ∈ [Û(t)]α, t ∈ [0, T ]}
and N = maxt∈[0,T ] ‖F (t)‖. If for any X̂ ∈ X̂α, then there is a selection

u(t) ∈ [Û(t)]α such that

X̂(t) = (ψ(t)⊗ φ(t))X̂0

+

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))u(s)ds.

Then

‖X̂(t)‖ ≤ ‖(ψ(t)⊗ φ(t))X̂0‖

+

∫ t

0

‖(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))u(s)‖ds

≤ ‖ψ(t)‖‖φ(t)‖‖X̂0‖

+

∫ t

0

‖ψ(t− s)‖‖φ(t− s)‖‖F (s)‖‖u(s)‖ds

≤ KL‖X̂0‖+KLNM.

Thus X̂α is bounded. For any t1, t2 ∈ [0, T ]

X̂(t1)− X̂(t2) = (ψ(t1)⊗ φ(t1))X̂0

+

∫ t1

0

(ψ(t1 − s)⊗ φ(t1 − s))(In ⊗ F (s))u(s)ds

− (ψ(t2)⊗ φ(t2))X̂0

−
∫ t2

0

(ψ(t2 − s)⊗ φ(t2 − s))(In ⊗ F (s))u(s)ds.

Therefore

‖X̂(t1)− X̂(t2)‖ ≤ ‖(ψ(t1)⊗ φ(t1))− (ψ(t2)⊗ φ(t2))‖‖X̂0‖

+

∫ t1

t2

‖(ψ(t1 − s)⊗ φ(t1 − s))(In ⊗ F (s))u(s)‖ds

+

∫ t2

0

‖[(ψ(t1 − s)⊗ φ(t1 − s))− (ψ(t2 − s)⊗ φ(t2 − s))]

(In ⊗ F (s))u(s)‖ds
≤ ‖(ψ(t1)⊗ φ(t1))− (ψ(t2)⊗ φ(t2))‖‖X̂0‖+KLNM |t1 − t2|

+MN

∫ T

0

‖(ψ(t1 − s)⊗ φ(t1 − s))− (ψ(t2 − s)⊗ φ(t2 − s))‖ds.



80 M.Murty and G.Kumar and B.Rao and K.PrasadAn. U.V.T.

Since φ(t) and ψ(t) are uniformly continuous on [0, T ], X̂ is equi-continuous.
Thus X̂α is relatively compact. If X̂α is closed, then it is compact.

Let X̂k ∈ X̂α and X̂k → X̂. For each X̂k, there is a uk ∈ [Û(t)]α such that

X̂k(t) = (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In⊗F (s))uk(s)ds. (3.5)

Since uk ∈ [Û(t)]α, it is closed, then there exists a subsequence {ukj} of {uk}
converging weakly to u ∈ [Û(t)]α. From Mazur’s theorem [3], there exists a
sequence of numbers λj > 0,

∑
λj = 1 such that

∑
λjukj converges strongly

to u. Thus from (3.5), we have∑
λjX̂kj(t) =

∑
λj(ψ(t)⊗ φ(t))X̂0

+

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))
∑

λjukj(s)ds. (3.6)

From Fatou’s lemma, taking the limit as j → ∞ on both sides of (3.6), we
have

X̂(t) = (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))u(s)ds. (3.7)

Thus X̂(t) ∈ X̂α, and hence X̂α is closed.

Let X̂1, X̂2 ∈ X̂α, then there exist u1, u2 ∈ [Û(t)]α such that

X̂ ′1(t) = G(t)X̂1(t) + (In ⊗ F (t))u1(t)

and
X̂ ′2(t) = G(t)X̂2(t) + (In ⊗ F (t))u2(t).

Let X̂ = λX̂1(t) + (1− λ)X̂2(t), 0 ≤ λ ≤ 1, then

X̂ ′ = λX̂ ′1(t) + (1− λ)X̂ ′2(t)

= λ
(
G(t)X̂1(t) + (In ⊗ F (t))u1(t)

)
+ (1− λ)

(
G(t)X̂2(t) + (In ⊗ F (t))u2(t)

)
= G(t)

[
λX̂1(t) + (1− λ)X̂2(t)

]
+ (In ⊗ F (t)) [λu1(t) + (1− λ)u2(t)] .

Since [Û(t)]α is convex, λu1(t) + (1− λ)u2(t) ∈ [Û(t)]α, we have

X̂ ′(t) ∈ G(t)X̂(t) + (In ⊗ F (t))[Û(t)]α.
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i.e X̂ ∈ X̂α. Thus X̂α is convex.

From Arzela-Ascoli theorem, we know that [X̂(t)]α is compact in Rn2
for

every t ∈ [0, T ]. Also it is obvious that [X̂(t)]α is convex in Rn2
. Thus we

have [X̂(t)]α ∈ Pk(Rn2
) for every t ∈ [0, T ]. Hence the claim.

Claim (ii). [X̂(t)]α2 ⊂ [X̂(t)]α1 , for all 0 ≤ α1 ≤ α2 ≤ 1. Let 0 ≤ α1 ≤ α2 ≤
1. Since [Û(t)]α2 ⊂ [Û(t)]α1 , we have S1

[Û(t)]α2
⊂ S1

[Û(t)]α1
and the following

inclusion
X̂ ′α2

(t) ∈ G(t)X̂α2 + (In ⊗ F (t))[Û(t)]α2

⊂ G(t)X̂α1 + (In ⊗ F (t))[Û(t)]α1 .

Therefore

X̂α2(t) ∈ (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))S1
[Û(s)]α2

ds

⊂ (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))S1
[Û(s)]α1

ds.

Thus X̂α2 ⊂ X̂α1 , and hence [X̂(t)]α2 ⊂ [X̂(t)]α1 . Hence the claim.

Claim (iii). If {αk} is a non-decreasing sequence converging to α > 0, then
X̂α(t) =

⋂
k≥1 X̂

αk(t).

Since Û(t) is fuzzy set, we have [Û(t)]α =
⋂
k≥1[Û(t)]αk and then

S1
[Û(t)]α

= S1⋂
k≥1[Û(t)]αk

. Therefore

X̂ ′α(t) ∈ G(t)X̂α + (In ⊗ F (t))[Û(t)]α

= G(t)X̂α + (In ⊗ F (t))[Û(t)]αk

⊂ G(t)X̂α + (In ⊗ F (t))[Û(t)]αk , ∀ k = 1, 2, ...

Thus we have X̂α ⊂ X̂αk , k = 1, 2, ..., which implies that

X̂α ⊂
⋂
k≥1

X̂αk . (3.8)

Let X̂ be the solution to the inclusion

X̂αk(t) ∈ G(t)X̂αk + (In ⊗ F (t))[Û(t)]αk , k ≥ 1.

Then

X̂(t) ∈ (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))S1
[Û(s)]αk

ds
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it follows that

X̂(t) ∈ (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))
⋂
k≥1

S1
[Û(s)]αk

ds

= (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))S1
[Û(s)]α

ds.

This implies that X̂ ∈ X̂α. Therefore⋂
k≥1

X̂αk ⊂ X̂α (3.9)

From (3.8) and (3.9), we have

X̂α =
⋂
k≥1

X̂αk

and hence
X̂α(t) =

⋂
k≥1

X̂αk(t).

From Claims (i)-(iii) and applying Theorem 2.1, there exists X̂(t) ∈ En2

on [0, T ] such that X̂α(t) is a solution to the differential inclusion (3.3) and
(3.4). Hence the system (3.1), (3.2) is a fuzzy dynamical Lyapunov system,
it can be expressed as

X̂ ′(t) = G(t)X̂(t) + (In ⊗ F (t))Û(t), X̂(0) = {X̂0}, (3.10)

Ŷ (t) = (In ⊗ C(t))X̂(t) + (In ⊗D(t))Û(t). (3.11)

The solution of the fuzzy dynamical system (3.10), (3.11) is given by

X̂(t) ∈ (ψ(t)⊗ φ(t))X̂0 +

∫ t

0

(ψ(t− s)⊗ φ(t− s))(In ⊗ F (s))Û(s)ds. (3.12)

4 Controllability of fuzzy dynamical Lyapunov systems

In this section we study the controllability of the fuzzy system (3.10) satis-
fying (3.11).

Definition 4.1. The fuzzy system (3.10), (3.11) is said to be completely
controllable if for any t0, any initial state X̂(t0) = X̂0 and any given final
state X̂f there exists a finite time t1 > t0 and a control Û(t), t0 ≤ t ≤ t1,

such that X̂(t1) = X̂f .
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Lemma 4.1. If F is a fuzzy set, then
∫ T
0
Fdt = TF .

Proof. For proof, we refer to Lemma 2 of [11].

Lemma 4.2. Let P,Q be two fuzzy sets and h(t) be a non zero continuous
function on [0, T ], satisfying∫ T

0

h(t)Pdt =

∫ T

0

h(t)Qdt,

then P = Q.

Proof. For proof, we refer to Lemma 3 of [11].

Theorem 4.1. The fuzzy system (3.10), (3.11) is completely controllable if
the n2 × n2 symmetric controllability matrix

W (0, T ) =

∫ T

0

(ψ(T−t)⊗φ(T−t))(In⊗F (t))(In⊗F (t))∗(ψ(T−t)⊗φ(T−t))∗dt.

(4.1)
is nonsingular. Furthermore, the fuzzy control Û(t) transfer the state of the
system from X̂(0) = X̂0 to a fuzzy state X̂(T ) = X̂f , can be chosen as

Û(t) = 1
T

(In ⊗ F (t))−1(ψ(T − t)⊗ φ(T − t))−1X̂f − (In ⊗ F (t))∗(ψ(T − t)⊗
φ(T − t))∗W−1(0, T )(ψ(T )⊗ φ(T ))X̂0.

Proof. Suppose that the symmetric controllability matrix W (0, T ) is nonsin-
gular. Therefore W−1(0, T ) exists. Multiplying W−1(0, T )(ψ(T ) ⊗ φ(T ))X̂0

on both sides of (4.1), we have

(ψ(T )⊗φ(T ))X̂0 =

∫ T

0

(ψ(T−t)⊗φ(T−t))(In⊗F (t))(In⊗F (t))∗

(ψ(T − t)⊗ φ(T − t))∗W−1(0, T )(ψ(T )⊗ φ(T ))X̂0dt. (4.2)

If the fuzzy control Û(t) transfer the state of the system from X̂0 to X̂f over
[0, T ], then from (3.12), we get

X̂(T ) = X̂f = (ψ(T )⊗φ(T ))X̂0 +

∫ T

0

(ψ(T − t)⊗φ(T − t))(In⊗F (t))Û(t)dt.

(4.3)
Using Lemma 4.1, X̂f can be written as

X̂f =
1

T

∫ T

0

X̂fdt =
1

T

∫ T

0

(ψ(T − t)⊗ φ(T − t))(In ⊗ F (t))
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(In ⊗ F (t))−1(ψ(T − t)⊗ φ(T − t))−1X̂fdt. (4.4)

From (4.3) and (4.4), we have

1

T

∫ T

0

(ψ(T−t)⊗φ(T−t))(In⊗F (t))(In⊗F (t))−1(ψ(T−t)⊗φ(T−t))−1X̂fdt

=

∫ T

0

(ψ(T − t)⊗ φ(T − t))(In ⊗ F (t))(In ⊗ F (t))∗(ψ(T − t)⊗ φ(T − t))∗

W−1(0, T )(ψ(T )⊗φ(T ))X̂0dt+

∫ T

0

(ψ(T−t)⊗φ(T−t))(In⊗F (t))Û(t)dt.

It follows that∫ T

0

(ψ(T − t)⊗ φ(T − t))(In ⊗ F (t))Û(t)dt

=

∫ T

0

(ψ(T − t)⊗φ(T − t))(In⊗F (t)){ 1

T
(In⊗F (t))−1(ψ(T − t)⊗φ(T − t))−1

X̂f − (In ⊗ F (t))∗(ψ(T − t)⊗ φ(T − t))∗W−1(0, T )(ψ(T )⊗ φ(T ))X̂0}dt

By using Lemma 4.2, we get

Û(t) =
1

T
(In ⊗ F (t))−1(ψ(T − t)⊗ φ(T − t))−1X̂f

−(In ⊗ F (t))∗(ψ(T − t)⊗ φ(T − t))∗W−1(0, T )(ψ(T )⊗ φ(T ))X̂0.

Remark 4.1. The nonsingularity of the symmetric controllability matrix
W (0, T ) in Theorem 4.1 is only a sufficient condition but not necessary.

Example 4.1. Consider the fuzzy dynamical matrix Lyapunov system (1.1)
satisfying (1.2) with

A(t) =

[
0 1
0 0

]
, B(t) =

[
1 0
0 1

]
, F (t) =

[
et 0
0 et

]
,

C(t) =

[
0 1
1 0

]
, D(t) =

[
0 0
0 0

]
, T = 1, and X0 =

[
1
2

1
3
2

1

]
.

Also assume that α-level sets of the final state

Xα
f =

[
[α + 1, 2] [α− 1, 1− α]
[2α + 1, 3] [0,−1.5(α− 1)]

]
.



Vol. LI (2013) Fuzzy Matrix Lyapunov Systems 85

Then the fundamental matrices of (2.5) and (2.6) are

φ(t) =

[
1 t
0 1

]
, ψ(t) =

[
et 0
0 et

]
.

Now the fundamental matrix of (2.4) is

ψ(t)⊗ φ(t) =


et tet 0 0
0 et 0 0
0 0 et tet

0 0 0 et

 = et


1 t 0 0
0 1 0 0
0 0 1 t
0 0 0 1

 .
Consider

(ψ(1−t)⊗φ(1−t))(In⊗F (t))(In⊗F (t))∗(ψ(1−t)⊗φ(1−t))∗

= e1−t


1 1− t 0 0
0 1 0 0
0 0 1 1− t
0 0 0 1

 et


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 et


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



e1−t


1 0 0 0

1− t 1 0 0
0 0 1 0
0 0 1− t 1

 = e2


t2 − 2t+ 2 1− t 0 0

1− t 1 0 0
0 0 t2 − 2t+ 2 1− t
0 0 1− t 1

 .
Therefore

W (0, 1) =

1∫
0

e2


t2 − 2t+ 2 1− t 0 0

1− t 1 0 0
0 0 t2 − 2t+ 2 1− t
0 0 1− t 1

 dt

= e2


4
3

1
2

0 0
1
2

1 0 0
0 0 4

3
1
2

0 0 1
2

1

 .
Clearly, it is nonsingular.

Thus from Theorem 4.1,the input Û(t) can be chosen by the following α-level
sets.

Ûα(t) = e−t


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 et−1


1 t− 1 0 0
0 1 0 0
0 0 1 t− 1
0 0 0 1




[α + 1, 2]
[2α + 1, 3]

[α− 1, 1− α]
[0,−1.5(α− 1)]
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−et


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 e1−t


1 0 0 0
1− t 1 0 0

0 0 1 0
0 0 1− t 1

 12

13
e−2


1 −1

2
0 0

−1
2

4
3

0 0
0 0 1 −1

2

0 0 −1
2

4
3

 e


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1




1
2
3
2

1
1



= e−1


[(3t− 2) + α, 2(t− 1)α + (t+ 1)]

[2α + 1, 3]
[(α− 1)(2.5− 1.5t), 1− α]

[0,−1.5(α− 1)]

−12

13


5
4

−1
4
(5t− 9)

3
2

11−9t
6

 .
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