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Abstract. Unsupervised learning is one of the major research
areas in machine learning, while kernel methods provide efficient
solutions for various statistical learning problems. In this paper we
propose a kernel based clustering algorithm that uses the Particle
Swarm Optimization technique and discriminant functions. The
method represents a general framework for solving the clustering
problem: once an appropriate clustering validation index is chosen
for a given class of datasets, the method performs very well in solv-
ing the problem. The method automatically detects the clusters
in a given dataset and also, automatically estimates the number of
clusters. Due to the use of kernel functions, our approach can be
used for both linearly separable and linearly non-separable clus-
ters. Since our algorithm uses the Particle Swarm Optimization
technique, parallel computation may be used, if necessary. We
evaluate our method on various datasets and we discuss its capa-
bilities.
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1 Introduction

Clustering is one of the most important and actual topics in the research
area of unsupervised learning. A clustering algorithm can be defined as
a method of “unsupervised classification” of similar patterns (observations,
data items, or feature vectors) into non-similar groups (clusters) one against
the other, according to [14] and [25]. The main approaches in unsupervised
classification are based on: statistical pattern recognition [14], data mining
[23] and density estimation [22].

On the other hand, kernel functions are very popular, because they offer the
possibility to project the data from the initial space into a space with a higher
complexity in order to improve the analysis of data. Some of the kernels used
in the literature are the Gaussian kernel and the polynomial kernel [1], [5]. In
particular, in clustering, kernel functions are useful for dealing with linearly
non-separable clusters.

In this paper we propose a general kernel based clustering algorithm that
uses an heuristic technique, named Particle Swarm Optimization (PSO) and
discriminant functions. The most important features of our algorithm are: 1)
automatically estimates the number of clusters; 2) can deal with linearly non-
separable clusters; 3) extends the supervised approach related to discriminant
functions to the unsupervised one; 4) allows the possibility to use parallel
computation.

Our approach, based on Particle Swarm Optimization, can be seen in two
ways. First, we can say that we use a distributed approach for solving the
problem, because each particle of the population used by PSO can be con-
sidered a separate entity that computes a potential solution of the problem.
Second, since the particles can be seen as very weak agents, our approach is
a good example of emergence in multi-agent systems.

The paper is organized as follows. Section 2 contains a related work analysis.
In Section 3 we present several preliminary notions, such as kernel functions,
discriminant functions, and the Particle Swarm Optimization technique. Sec-
tion 4 describes our algorithm and discusses some technical issues about the
algorithm. In Section 5, we discuss about two clustering validation indexes
proposed in the literature. In Section 6, we present several experimental
results. Finally, Section 7 contains the conclusions of the paper.
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2 Related Work

In the last years, a new clustering approach – Particle Swarm Optimization
– was proposed and used in several algorithms.

By studying the results from the literature related to PSO based clustering,
one can observe that most of the results use a K-means approach. There are
two main ways of using K-means: explicitly (by calling the K-means method)
[6], [17], [21] or implicitly (by asigning the points to the clusters, as used in
K-means) [2], [4], [5], [12], [24]. All these methods use standard PSO or
improved variants of this algorithm in order to obtain better performances
for clustering problems.

A less studied approach for clustering the data is the use of kernel functions
[5]. An important feature of the kernel based clustering methods is their
ability to classify, with a small computational complexity, the datasets that
contain linearly non-separable clusters. The method that we propose will
illustrate the importance of combining the PSO technique with kernel func-
tions for solving clustering problems. We mention that the method proposed
in [5] represents one of the first attempts of combining the PSO algorithm
with a kernel based approach.

Usually, clustering methods requires the number of classes in the dataset
in order to perform the classification. Thus, they need apriori information
about the dataset (see the methods indicated in this section). On the other
hand, our method and the approach used in [5] automatically estimate the
number of clusters in a dataset.

For all the analyzed methods, the representation of the PSO particles is based
on the centroids of the clusters. Our method propose a new representation of
the PSO particles that use discriminant functions. This new approach allows
the use of discriminant functions - a flexible tool in supervised classification
- for solving unsupervised classification problems.

An advantage of the method we propose with respect to the approach pro-
posed in [5] is that the method can be used for a wide range of various
datasets: it represents a general framework that allows the use of different
fitness functions by considering, for each particular dataset, an appropriate
classification validation index. Furthermore, the method has good classifica-
tion performances for datasets that contain non-sferical clusters, while the
approach used in [5] has not a very good accuracy for this type of datasets,
as the authors mention.



94 B. Mogoş and A. H. Mogoş An. U.V.T.

3 Preliminary Notions

This section presents several preliminary notions necessary for our approach.

3.1 Construction of the Kernel Space

According to the definition, a way of verifying if a function k : X×X → R is
a kernel consists in creating a feature space F (a space with inner product)
and an embedding mapping in this space, φ : x 7−→ φ(x) ∈ F , such that k
is expressed as the inner product between any two projections of the initial
points through function φ, i.e. k(x, z) = 〈φ(x), φ(z)〉 ∀x, z ∈ X.
A general method of creating a kernel space is presented in [25] as follows. Let
k : X×X → R be a continuous function (or having a countable domain) and
finitely positive semi-definite. From the proof of the kernel characterization
theorem results that exists a vector space of functions, with inner product,
F, defined by

F =

{
l∑

i=1

αik(xi, ·)|l ∈ N, xi ∈ X,αi ∈ R, i = 1, . . . , l

}

The space F can be extended to a Hilbert space Fk, by including all the
functions defined as limits of the Cauchy sequences from F. Consequently, the
completeness of the space Fk is satisfied. At the same time, the separabiliy
of Fk is guaranteed by the continouous hypothesis of function k or by the
countability of the domain. Next, it is considered that the Hilbert space Fk
is the feature space and the embedding map φ is defined by

φ : x ∈ X 7−→ φ(x) = k(x, ·) ∈ Fk (3.1)

From the definition of function φ and of the inner product follows that

〈φ(x), φ(z)〉 = 〈k(x, ·), k(z, ·)〉 = k(x, z).

This finishes the construction of the feature space defined by the kernel func-
tion k.

3.2 Supervised learning of data using discriminant functions

So far, the discriminant functions approach is integrated as a part of a
supervised learning algorithm (see, for example, [26]) and it is discussed
in the geometrical methods framework of discriminant analysis [10]. Let
S = {x1, x2, . . . , xl} be a sample data of size l and let q be the number of the
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true classes, denoted by C1, C2, . . . , Cq. From a geometrical point of view, the
classification consists in partitioning the data space into regions associated
to the classes, called discriminant regions.
We define q discriminant functions:

gj(x) : X → R, gj(x) = 〈wj, φ(x)〉 ,∀x ∈ X,
j = 1, . . . q

(3.2)

where φ : x 7−→ φ(x) = k(x, ·) ∈ F represents the function that project the
point x ∈ X to the feature space F, defined in Section 3.1, and the weight

vector wj is an element of the feature space F, of the form wj =
l∑

i=1

αjik(xi, ·).

Thus, the definition of discriminant function, from (3.2), can be rewritten as
follows:

gj(x) = 〈wj, φ(x)〉 =

〈
l∑

i=1

αjik(xi, ·), k(x, ·)

〉
=

=
l∑

i=1

αjik(xi, x),∀x ∈ X, j = 1, . . . , q

(3.3)

We have two ways of describing the discriminant functions. The first way,
defined by equation (3.2), depends on the weight vector wj and it is known
as the primal method. The second way, illustrated by equation (3.3), de-
scribes the discriminant functions through linear combinations of the sample
data. It is called the dual method, and the parameters αi dual variables
[25]. The main advantage of the second variant is that the representation of
the discriminant functions depends only on the information provided by the
kernel matrix K. It is not necessary to compute the inner products in the
projection space defined by the function φ for each new x data.
The membership of a point x to a cluster Ci, i = 1, . . . , q is expressed as
follows [10]:

x ∈ Ci if and only if gi(x) > gj(x),

∀j 6= i, j = 1, . . . , q
(3.4)

3.3 Particle Swarm Optimization Technique

Particle swarm optimization (PSO) represents an optimization technique
based on a population of particles. The approach was proposwd by R. C.
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Eberhart and J. Kennedy for solving optimization problems [8] and [15],
having as inspiration source the social behaviour of birds and fish.
The optimization problem, that PSO technique wants to solve, can be for-
mulate in the following way [20]:
We search for X∗ ⊆ X ⊆ Rn such that

X∗ = {x∗ ∈ X|f(x∗) ≤ f(x), ∀x ∈ X} (3.5)

In this paper, we use the following formulas for updating the velocity and
the position of a PSO particle [20]:

vt+1
i = vti + ϕ1U

t
1(pb

t
i − xti) + ϕ2U

t
2(gb

t
i − xti)

xt+1
i = xti + vt+1

i

(3.6)

where t is the current iteration, xti is the current position of the particle i,
vti is the particle velocity, pbti and gbti are the personal best of the particle
and the global best, respectively; Ut

1 and Ut
2 are two random numbers in the

range (0,1), and ϕ1 and ϕ2 are the learning factors. The algorithm repeats
until a maximum number of iteration has been exceeded or the obtained error
is sufficiently small.

4 The Kernel Based Clustering Algorithm

In this section we describe the main steps of our algorithm and several im-
portant technical details.

4.1 Particle Representation

At the beginning of our simulation we consider an initial number of clusters,
q0, q0 ≥ 2. Then we define q0 discriminant functions as follows:

gj(x) =
l∑

i=1

αjik(xi, x) (4.1)

Using these functions, each particle p of the population used in PSO, has the
form:

p =
[
α1
1 α

1
2 . . . α1

l . . . α
q0
1 αq02 . . . αq0l

]
(4.2)

The parameters {αji , i = 1, . . . , l} represents the coefficients of the j discrim-
inant function, for each j = 1, . . . , q0. Thus, during the run of the PSO
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algorithm, each particle proposes its own classification of the initial dataset.
In the end, due to the abilities of the PSO technique, the algorithm will
return the best classification, given by one of the particles of the population.

4.2 A Brief Overview of the Algorithm

The algorithm contains several steps that will be discussed in this subsection.

Step 0: Parameters definition: initial number of clusters q0, number of
particles, maximum number of iterations Kmax, learning factors (φ1, φ2),
maximum inertia (vmax)

Repeat for No times, Step 1 - Step 2 and memorize the obtained solution
(the particle global best) for each iteration:

Step 1: Particles initialization: initialize the elements of the particles with
values in the range [lmin, lmax]

Step 2: Applying the Particle Swarm Optimization technique:

2.1: For each particle, initialize personal best value. Initialize global best
value for the entire population.

Repeat for Kmax times, steps 2.2 - 2.3:

2.2: For each particle :

2.2.1: Update, according to equations (3.6) of Section 3.3 the velocity
and the position of the particle.

2.2.2: Update, if necessary, particle personal best value.

2.3: Update global best value.

Step 3: Of the No solutions obtained above, select the best solution, i.e.
the solution that minimizes the value of the fitness function.

Step 4: Find the classification provided by the particle solution returned at
the Step 3.

As we can see, the main step of the algorithm is Step 2 that actually uses
PSO in order to automatically estimate the number of clusters and perform
the classification. The details related to Step 1 are presented in Subsection
4.3. Step 3 is responsible for the quality of the solution: we choose the
best solution from the No solutions proposed by the algorithm. This step is
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necessary, because it’s possible that, on a single run, PSO find only a local
minimum.

Fitness Function Algorithm

Let be p = [α1
1 α

1
2 . . . α1

l . . . α
q0
1 αq02 . . . αq0l ] a particle of the PSO popula-

tion.
For each point xi ∈ X, i = 1, . . . , l the corresponding cluster can be computed
as follows: first, in equation (4.3)

g1(xi)
g2(xi)

...
gq0(xi)

 =


α1
1 α1

2 . . . α1
l

α2
1 α2

2 . . . α2
l

...
...

...
...

αq01 αq02 . . . αq0l

 ·


k(x1, xi)
k(x2, xi)

...
k(xl, xi)

 (4.3)

we show how the discriminant functions will be computed; next, in equation
(4.4)

C(xi) = argmaxj=1,...,q0gj(xi) (4.4)

we compute the cluster C(xi) of the point xi. In the end, for each particle,
a classification of the initial dataset will be obtained.
Based on the classification {C(xi)}i=1,...,l the fitness function is computed
by applying a clustering validation index. We will discuss about two such
indexes, in Section 5.

4.3 Technical Details Related to the Algorithm

4.3.1 PSO Parameter Selection

In ([16], page 314) the authors recommend to use a population dimension
between 10 and 50 particles. As used in an example from ([16], page 318)
and in [5] we use a population of 40 particles. As maximum number of
iterations Kmax we chose 50 iterations. We observed that this value of
Kmax is sufficiently large for the complexity of the clustering problem.
The learning factors have the same value, φ1 = φ2 = 2, as specified in [9] or
we may choose φ1 = φ2 = 0.5 if we want a better exploration. The maximum
inertia was set to 0.5, because we wanted to encourage a medium modification
of the particles positions, and thus to obtain a better exploration.

4.3.2 Automated Estimation of the Number of Clusters

In our simulations we start with a sufficiently large initial number of clusters
q0 = 10. During a simulation, in each iteration, each particle is updated and
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consequently, some of the discriminant functions (associated to this particle)
lower their influence in the clusters discrimination. Thus, the number of
clusters is decreased using the following mechanism: when a dicriminant
function gj associated to the global best value has the property that

∀x ∈ S ∃i ∈ 1, . . . , q0, i 6= j such that gj(x) < gi(x) (4.5)

then we can consider, that, for the current moment, the cluster coreponding
to that function is empty. After the end of the simulation, using the same
reasoning, for all discriminant functions with the property (4.5), associated
to the final global best, the corresponding clusters will be empty.
The number of clusters is changed during the execution of the PSO algorithm
in the sense that, at any step, the number of active classes, denoted by
qa ≤ q0, is equal to the number of discriminant functions {gi}i=1,...,qa

that
satisfy the condition: for any gi, i = 1, . . . , qa exists x ∈ S such that gi(x) >
gj(x),∀j = 1, . . . , q0, j 6= i. We mention that the size of the particle remains
unchanged, namely q0, during the iterations. Our method estimates as the
righ number of clusters the result obtained after a sufficiently high number of
iterations. We validate the precision of our method using the experimental
data introduced in Section 6.

4.3.3 Kernel Function - Rational Kernel

During our simulation experiments we have tested several kernel functions:
Gaussian kernel, polynomial kernel, all subsets kernel, and rational kernel.
We concluded that the most appropriate kernel function for our classification
problem is the rational kernel.
One important decision that must be taken when using the rational kernel
is how to choose the value of the θ parameter. We searched for a simi-
larity function kθ(·, ·) with a medium degree of smoothness with respect to
the parameter θ. Consequently, for our specific problem, we studied several
graphical representations of the rational kernel function for θ = 1, 4, 7, and
10, as seen in Figure 1, and we chose θ = 7.

5 Two Clustering Validation Indexes

Due to the accurate way of measuring the quality of the clusterization and
to the high flexibility, we chose two clustering validation indexes, for showing
how our algorithm actually works.
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Figure 1: Several graphical representation of the rational kernel for different
values of the parameter θ

5.1 Dunn Index

Dunn index represents a well known validity measure for clusterization. Stud-
ies related to this index can be found in [13], [18] and [19]. According to [18],
this index was first introduced in [7].
Dunn index is defined as follows:

D(q) =
max
k=1,...,q

(diam(Ck))

min
i=1,...,q

{
min

j=i+1,...,q
(d(Ci, Cj))

} (5.1)

where

diam(Ck) = max
x,y∈Ck

d(x, y) and

d(Ci, Cj) = min
x∈Ci y∈Cj

d(x, y).
(5.2)

It is considered that the partition C(q) of the data is optimal with respect to
the index defined by equation (5.1) if it minimizes the clustering validation
index D(q).
Dunn index is an appropriate validation measure for the classification of
datasets well separated where the distances between clusters are, usually,
large, and the clusters diameters are small. As specified in [18], the main
disadvantage of the Dunn index is the fact that it isn’t robust to datasets
affected by noise, because this type of datasets may contain clusters with
large diameters.
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5.2 Clustering Validation Index Based on the Symmetry of the
Data

A second index used in this paper was proposed in [3] and is based on a
symmetry measure. We will call this index, the Symmetry index.
The center of the cluster Ci, denoted by vi, is defined by the equation

vi =
1

ni

∑
x∈Ci

x (5.3)

where ni is the number of elements of the cluster Ci.
The Symmetry index is defined as follows [3]:

PS(q) =
1

q

q∑
i=1

 1

ni

∑
xj∈Ci

ds(xj, vi)de(xj, vi)

dmin

 (5.4)

where de(·, ·) represents the euclidian distance between two points, dmin is
computed using the formula

dmin = min
m,n=1,...q,m 6=n

{de(vm, vn)}

and the symmetry distance ds(xj, vi) is defined by

ds(xj, vi) = min
k=1,...,ni,k 6=j

{E(xj, vi, xk)} (5.5)

where

E(xj, vi, xk) =
|| (xj − vi) + (xk − vi) ||
|| (xj − vi) ||+ || (xk − vi) ||

. (5.6)

It is considered that the partition C(q) of the data is optimal with respect to
the index defined in equation (5.4) if it minimizes the clustering validation
index PS(q).
Limitations of the Symmetry index appear in the following situations:

• when the clusters don’t have symmetric structures

• if the dataset contains symmetric clusters with respect to a surface.

6 Experimental Results

For testing our method we use four experimental datasets1. Experimental
dataset 1 is inspired from [5], 2 and 3 from [3], while experimental datasets

1For a detailed description of the four datasets used in this paper consult
http://aimas.cs.pub.ro/∼andrei.mogos/datasets/datasets2012.pdf
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4 are proposed by us in this paper. In Table 1, we present a brief description
of the four datasets. We use UD for uniform distribution and ND for normal
distribution.

Table 1: Description of the experimental datasets

Dataset Type Dataset Dataset
Dimension Structure

Dataset 1 linearly 400 100 data, UD
separable 100 data, UD

100 data, UD
100 data, UD

Dataset 2 linearly 400 100 data, ND
separable 100 data, ND

200 data, ND
Dataset 3 linearly 540 100 data, ND

separable 100 data, ND
200 data, ND
70 data, UD
70 data, UD

Dataset 4 linearly 250 50 data, UD
non-separable 200 data, UD

Table 2 contains the confusion matrices related to the classification obtained
using Dunn and Symmetry validation indexes. The element of the confusion
matrix from line i and column j indicates the number of data belonging to
the class Ci that were predicted in the class Cj. Also, when a validation
index produces a correct classification of the dataset, we pointed out that
the corresponding confusion matrix is a diagonal matrix.
Several simulation results obtained using the two validation indexes on Datasets
1 – 4 are presented in Figures 2 – 5.
The fourth simulation is made on Dataset 4, that contains linearly non-
separable clusters. For this dataset, only Dunn index may be used by our
method. Due to the fact that it uses kernel functions, our method can per-
form the classification of datasets that contain linearly non-separable clusters.

6.1 An Analysis of the Behaviour of our Approach

We present a brief analysis of how our method works on two of the simulations
presented above: the third and the fourth simulations. For each of the two
simulations we describe how the value of the fitness function applied in gbest
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Table 2: The confusion matrices related to the classification obtained using
Dunn and Symmetry validation indexes

Dataset\Index Dunn Index Symmetry Index

Dataset 1
Diagonal
matrix


100 0 0 0
100 0 0 0
100 0 0 0
100 0 0 0



Dataset 2

 100 0 0
100 0 0
0 0 200

  98 0 2 0 0
0 99 0 1 0
0 0 199 0 1



Dataset 3


100 0 0 0 0
100 0 0 0 0
0 0 200 0 0
70 0 0 0 0
0 0 0 0 70

 Diagonal
matrix

Dataset 4
Diagonal
matrix

(
196 0 2 2
0 50 0 0

)

decreases and how gbest is modified during the simulation. The analysis of
the third simulation can be observed in Figure 6, while the analysis of the
fourth simulation can be seen in Figure 7.

7 Conclusions

The techniques used by the approach proposed in this paper, namely: ratio-
nal kernel functions, Particle Swarm Optimization, discriminant functions,
and cluster validation indexes provide an elegant and flexible general method
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Figure 2: Dataset 1 Classification using Dunn Index
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Figure 3: Dataset 2 Classification using Symmetry Index

for the detection of both linearly separable and linearly non-separable clus-
ters.

The method provides a general framework for solving the clustering problem.
Once an appropriate fitness function is chosen, in fact the appropriate clus-
tering validation index, the method works well on any dataset that matches
with this validation index.

On the other hand, the proposed method automatically estimates the number
of clusters. Unlike most of the classification methods, our approach does not
require, at the beginning, the actual number of clusters. The algorithm com-
putes, gradually, the number of clusters, starting with an initial number, and
then, due to the qualities of the kernel function combined to Particle Swarm
Optimization and discriminant functions, it decreases this number, until it
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Figure 4: Dataset 3 Classification using Symmetry Index
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Figure 5: Dataset 4 Classification using Dunn Index

reaches the actual number of clusters. During this process, the approach,
also finds the clusters of the dataset.

Furthermore, the developed method performs well on linearly non-separable
clusters. Due to the use of a kernel function – we use the rational kernel
function – the algorithm can also be used for linearly non-separable clusters.

An interesting feature of the method is that it extends discriminant functions
based supervised learning to the case of unsupervised learning. By combining
the discriminant functions – a powerful tool in supervised learning – with
the Particle Swarm Optimization technique, we can use these functions for
clustering, thus for an unsupervised learning problem.

From a computational point of view, the use of parallel computation repre-
sents another advantage of the proposed method. As specified in ([16], page
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Figure 6: An analysis of the behaviour of the proposed approach for Sym-
metry index and Dataset 3

314), usually it’s sufficient to choose the population dimension, used in Par-
ticle Swarm Optimization, in the range 10 to 50. Thus, the required number
of processors is at most 50, an accessible number of processors.

As future work, we aim to analyze other clustering validation indexes. The
final objective would be to create a library of such indexes that will cover all
the possible structures of the initial datasets.
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