DOI: 10.2478/v10324-012-0009-0 VERSITΛ Analele Universității de Vest, Timișoara Seria Matematică – Informatică L, 1, (2012), 103–113

Convergence of Multi-step Iterates with Errors for Uniformly Quasi-Lipschitzian Mappings

Gurucharan Singh Saluja and Hemant Kumar Nashine

Abstract. The aim of this paper is to give some necessary and sufficient conditions for multi-step iterative scheme with errors for a finite family of uniformly quasi-Lipschitzian mappings to converge to common fixed point in a real Banach space. Our results extend and improve the corresponding results of Quan [7], Liu [5,6], Xu and Noor [9] and many others.

AMS Subject Classification (2000). 47H05, 47H09, 49M05. Keywords. Uniformly quasi-Lipschitzian mapping, multi-step iterative scheme with errors, common fixed point, Banach space, strong convergence.

1 Introduction and Preliminaries

Throughout this paper, we assume that E is a real Banach space and C is a nonempty convex subset of E. Let F(T) and \mathbb{N} denote the set of fixed points and the set of natural numbers, respectively. We recall the following definitions:

Definition 1.1. (see [7]) Let $T: C \to C$ be a mapping:

(1) T is said to be uniformly quasi-Lipschitzian if there exists $L \in [1, +\infty)$, such that

$$||T^n x - p|| \le L ||x - p||,$$
 (1.1)

for all $x \in C$, $p \in F(T)$ and all $n \in \mathbb{N}$.

(2) T is said to be uniformly L-Lipschitzian if there exists $L \in [1, +\infty)$, such that

$$||T^n x - T^n y|| \le L ||x - y||,$$
 (1.2)

for all $x, y \in C$, and all $n \in \mathbb{N}$.

(3) T is said to be asymptotically quasi-nonexpansive if there exists $k_n \in [1, +\infty)$ with $\lim_{n\to +\infty} k_n = 1$, such that

$$||T^n x - p|| \le k_n ||x - p||,$$
 (1.3)

for all $x \in C$, $p \in F(T)$ and all $n \in \mathbb{N}$.

From the above definitions, it follows that if F(T) is nonempty, a uniformly L-Lipschitzian mapping must be uniformly quasi-Lipschitzian, and an asymptotically quasi-nonexpansive mapping must be uniformly quasi-Lipschitzian. But the converse does not hold.

In 1973, Petryshyn and Williamson in [4] proved a sufficient and necessary condition for Picard iterative sequences and Mann [3] iterative sequences to converge to fixed points for quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [1] extended the result of [4] and gave a sufficient and necessary condition for Ishikawa [2] iterative sequences to converge to fixed points for quasi-nonexpansive mappings. In 2001, Liu [5,6] extended the above results and obtained some sufficient and necessary conditions for Ishikawa iterative sequences with errors members for asymptotically quasi-nonexpansive mappings to converge to fixed points.

Recently, in 2006 Quan in [7] gave the sufficient condition for convergence of three-step iterative sequences with errors (TSISE) to converge to fixed point for uniformly quasi-Lipschitzian mappings, he proved the following:

Theorem Q. Let E be a Banach space and C be a nonempty closed convex subset of E and $T: C \to C$ be a uniformly quasi-Lipschitzian mapping with the nonempty fixed point set F(T). For arbitrary $x_1 \in C$, let iterative sequences $\{x_n\}, \{y_n\}, \{z_n\}$ defined by:

$$z_{n} = (1 - \gamma_{n} - \nu_{n})x_{n} + \gamma_{n}T^{n}x_{n} + \nu_{n}u_{n},$$

$$y_{n} = (1 - \beta_{n} - \mu_{n})x_{n} + \beta_{n}T^{n}z_{n} + \mu_{n}v_{n},$$

$$x_{n+1} = (1 - \alpha_{n} - \lambda_{n})x_{n} + \alpha_{n}T^{n}x_{n} + \lambda_{n}w_{n}, \quad n \ge 1,$$

$$(TSISE)$$

where $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded sequences in C and $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\lambda_n\}$, $\{\mu_n\}$, $\{\nu_n\}$ are appropriate sequences in [0,1] with the restrictions that $\sum_{n=1}^{\infty} \alpha_n < \infty$, $\sum_{n=1}^{\infty} \lambda_n < \infty$. Then $\{x_n\}$ converges to a fixed point if and only if $\lim \inf_{n\to\infty} d(x_n, F(T)) = 0$, where d(y, C) denotes the distance of y to set C, that is, $d(y, C) = \inf d(y, x)$, $\forall x \in C$.

The aim of this paper is to study convergence of multi-step iterative sequences with error term to converge to common fixed point for uniformly quasi-Lipschitzian mappings and give the sufficient condition for convergence of common fixed point for such maps in Banach spaces. The multi-step iteration scheme with errors defined as follows:

Definition 1.2. Let C be a nonempty convex subset of a normed space E, and let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly quasi-Lipschitzian mappings. For a given $x_1 \in C$, and a fixed $N \in \mathbb{N}$ (\mathbb{N} denote the set of all positive integers), compute the sequence $\{x_n\}$ by

$$x_{n}^{(1)} = \alpha_{n}^{(1)} T_{1}^{n} x_{n} + \beta_{n}^{(1)} x_{n} + \gamma_{n}^{(1)} u_{n}^{(1)},$$

$$x_{n}^{(2)} = \alpha_{n}^{(2)} T_{2}^{n} x_{n}^{(1)} + \beta_{n}^{(2)} x_{n} + \gamma_{n}^{(2)} u_{n}^{(2)},$$

$$x_{n}^{(3)} = \alpha_{n}^{(3)} T_{3}^{n} x_{n}^{(2)} + \beta_{n}^{(3)} x_{n} + \gamma_{n}^{(3)} u_{n}^{(3)},$$

$$\vdots$$

$$x_{n+1} = x_{n}^{(N)} = \alpha_{n}^{(N)} T_{N}^{n} x_{n}^{(N-1)} + \beta_{n}^{(N)} x_{n} + \gamma_{n}^{(N)} u_{n}^{(N)},$$

$$(1.4)$$

where $\{\alpha_n^{(i)}\}$, $\{\beta_n^{(i)}\}$, $\{\gamma_n^{(i)}\}$ are appropriate sequences in [0,1] with $\alpha_n^{(i)} + \beta_n^{(i)} + \gamma_n^{(i)} = 1$ for each $i \in \{1, 2, ..., N\}$, and $\{u_n^{(1)}\}, \{u_n^{(2)}\}, ..., \{u_n^{(N)}\}$ are bounded sequences in C.

In the sequel we need the following lemma.

Lemma 1.1.([8]; Lemma 1) Let $\{a_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying

$$a_{n+1} \le (1+r_n)a_n + \beta_n, \ \forall n \in \mathbb{N}.$$

If
$$\sum_{n=1}^{\infty} r_n < \infty$$
, $\sum_{n=1}^{\infty} \beta_n < \infty$. Then

- (i) $\lim_{n \to \infty} a_n$ exists.
- (ii) If $\lim \inf_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} a_n = 0$.

2 Main Results

In this section, we prove strong convergence theorems of multi-step iterative sequences with error term to converge to common fixed point for uniformly quasi-Lipschitzian mappings in the framework of Banach spaces.

Lemma 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) with the restrictions $\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty$ and $\sum_{n=1}^{\infty} \theta_n < \infty$ where $\theta_n = (L^N - 1)$. Then

(i) $||x_{n+1} - x^*|| = ||x_n^{(N)} - x^*|| \le (1 + \theta_n) ||x_n - x^*|| + d_n^{(N-1)}$, for all $n \ge 1$, $x^* \in \mathcal{F}$ and nondecreasing sequence $\{d_n^{(i-1)}\}$ for all i = 1, 2, ..., N of numbers such that $\sum_{n=1}^{\infty} d_n^{(i-1)} < \infty$.

(ii) There exists a constant M > 0 such that $||x_{n+m} - x^*|| \le M$. $||x_n - x^*|| + M$. $\sum_{k=n}^{n+m-1} d_k^{(N-1)}$ for all $n, m \ge 1$ and $x^* \in \mathcal{F}$.

Proof. (i) Let $x^* \in \mathcal{F}$, then from (1.4) we have

$$\begin{aligned} \|x_{n}^{(1)} - x^{*}\| &= \|\alpha_{n}^{(1)} T_{1}^{n} x_{n} + \beta_{n}^{(1)} x_{n} + \gamma_{n}^{(1)} u_{n}^{(1)} - x^{*}\| \\ &\leq \alpha_{n}^{(1)} \|T_{1}^{n} x_{n} - x^{*}\| + \beta_{n}^{(1)} \|x_{n} - x^{*}\| + \gamma_{n}^{(1)} \|u_{n}^{(1)} - x^{*}\| \\ &\leq \alpha_{n}^{(1)} L \|x_{n} - x^{*}\| + \beta_{n}^{(1)} \|x_{n} - x^{*}\| + \gamma_{n}^{(1)} \|u_{n}^{(1)} - x^{*}\| \\ &\leq (1 - \beta_{n}^{(1)}) L \|x_{n} - x^{*}\| + \beta_{n}^{(1)} L \|x_{n} - x^{*}\| + \gamma_{n}^{(1)} \|u_{n}^{(1)} - x^{*}\| \\ &\leq L \|x_{n} - x^{*}\| + \gamma_{n}^{(1)} \|u_{n}^{(1)} - x^{*}\| \\ &\leq L \|x_{n} - x^{*}\| + d_{n}^{(0)} \end{aligned} \tag{2.1}$$

where $d_n^{(0)} = \gamma_n^{(1)} \| u_n^{(1)} - x^* \|$. Since $\sum_{n=1}^{\infty} \gamma_n^{(1)} < \infty$, then $\sum_{n=1}^{\infty} d_n^{(0)} < \infty$. Next, we note that

$$\begin{aligned} \|x_{n}^{(2)} - x^{*}\| &= \|\alpha_{n}^{(2)} T_{2}^{n} x_{n}^{(1)} + \beta_{n}^{(2)} x_{n} + \gamma_{n}^{(2)} u_{n}^{(2)} - x^{*}\| \\ &\leq \alpha_{n}^{(2)} \|T_{2}^{n} x_{n}^{(1)} - x^{*}\| + \beta_{n}^{(2)} \|x_{n} - x^{*}\| + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq \alpha_{n}^{(2)} L \|x_{n}^{(1)} - x^{*}\| + \beta_{n}^{(2)} \|x_{n} - x^{*}\| + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq \alpha_{n}^{(2)} L [L \|x_{n} - x^{*}\| + d_{n}^{(0)}] + \beta_{n}^{(2)} \|x_{n} - x^{*}\| + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq [L^{2} \alpha_{n}^{(2)} + \beta_{n}^{(2)}] \|x_{n} - x^{*}\| + \alpha_{n}^{(2)} L d_{n}^{(0)} + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq (\alpha_{n}^{(2)} + \beta_{n}^{(2)}) L^{2} \|x_{n} - x^{*}\| + \alpha_{n}^{(2)} L d_{n}^{(0)} + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &= (1 - \gamma_{n}^{(2)}) L^{2} \|x_{n} - x^{*}\| + \alpha_{n}^{(2)} L d_{n}^{(0)} + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq L^{2} \|x_{n} - x^{*}\| + \alpha_{n}^{(2)} L d_{n}^{(0)} + \gamma_{n}^{(2)} \|u_{n}^{(2)} - x^{*}\| \\ &\leq L^{2} \|x_{n} - x^{*}\| + d_{n}^{(1)} \end{aligned} \tag{2.2}$$

where $d_n^{(1)} = \alpha_n^{(2)} L d_n^{(0)} + \gamma_n^{(2)} \left\| u_n^{(2)} - x^* \right\|$. Since $\sum_{n=1}^{\infty} d_n^{(0)} < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^{(2)} < \infty$, and so $\sum_{n=1}^{\infty} d_n^{(1)} < \infty$. Similarly, we have

$$\begin{aligned} \|x_{n}^{(3)} - x^{*}\| &= \|\alpha_{n}^{(3)} T_{3}^{n} x_{n}^{(2)} + \beta_{n}^{(3)} x_{n} + \gamma_{n}^{(3)} u_{n}^{(3)} - x^{*}\| \\ &\leq \alpha_{n}^{(3)} \|T_{3}^{n} x_{n}^{(2)} - x^{*}\| + \beta_{n}^{(3)} \|x_{n} - x^{*}\| + \gamma_{n}^{(3)} \|u_{n}^{(3)} - x^{*}\| \\ &\leq \alpha_{n}^{(3)} L \|x_{n}^{(2)} - x^{*}\| + \beta_{n}^{(3)} \|x_{n} - x^{*}\| + \gamma_{n}^{(3)} \|u_{n}^{(3)} - x^{*}\| \\ &\leq \alpha_{n}^{(3)} L [L^{2} \|x_{n} - x^{*}\| + d_{n}^{(1)}] + \beta_{n}^{(3)} \|x_{n} - x^{*}\| + \gamma_{n}^{(3)} \|u_{n}^{(3)} - x^{*}\| \\ &\leq [\alpha_{n}^{(3)} L^{3} + \beta_{n}^{(3)}] \|x_{n} - x^{*}\| + \alpha_{n}^{(3)} L d_{n}^{(1)} + \gamma_{n}^{(3)} \|u_{n}^{(3)} - x^{*}\| \\ &\leq (\alpha_{n}^{(3)} + \beta_{n}^{(3)}) L^{3} \|x_{n} - x^{*}\| + \alpha_{n}^{(3)} L d_{n}^{(1)} + \gamma_{n}^{(3)} \|u_{n}^{(3)} - x^{*}\| \\ &= (1 - \gamma_{n}^{(3)}) L^{3} \|x_{n} - x^{*}\| + d_{n}^{(2)} \\ &\leq L^{3} \|x_{n} - x^{*}\| + d_{n}^{(2)} \end{aligned} \tag{2.3}$$

where $d_n^{(2)} = \alpha_n^{(3)} L d_n^{(1)} + \gamma_n^{(3)} \left\| u_n^{(3)} - x^* \right\|$. Since $\sum_{n=1}^{\infty} d_n^{(1)} < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^{(3)} < \infty$, thus $\sum_{n=1}^{\infty} d_n^{(2)} < \infty$.

By continuing the above process, there exists a nonnegative real sequence $\{d_n^{(l-1)}\}$ such that $\sum_{n=1}^{\infty} d_n^{(l-1)} < \infty$ and

$$||x_n^{(i)} - x^*|| \le L^i ||x_n - x^*|| + d_n^{(i-1)}, \forall n \ge 1, \forall i = 1, 2, \dots, N.$$
 (2.4)

Thus

$$||x_{n+1} - x^*|| = ||x_n^{(N)} - x^*||$$

$$\leq L^N ||x_n - x^*|| + d_n^{(N-1)}$$

$$= (1 + L^N - 1) ||x_n - x^*|| + d_n^{(N-1)}$$

$$= (1 + \theta_n) ||x_n - x^*|| + d_n^{(N-1)}$$
(2.5)

for all $n \in N$, where $\theta_n = (L^N - 1)$ with $\sum_{n=1}^{\infty} \theta_n < \infty$. This completes the proof of part (i).

(ii) Since $1+x \le e^x$ for all x>0. Then from (i) it can be obtained that

$$||x_{n+m} - x^*|| \leq (1 + \theta_{n+m-1}) ||x_{n+m-1} - x^*|| + d_{n+m-1}^{(N-1)}$$

$$\leq e^{\theta_{n+m-1}} ||x_{n+m-1} - x^*|| + d_{n+m-1}^{(N-1)}$$

$$\leq e^{\theta_{n+m-1}} [e^{\theta_{n+m-2}} ||x_{n+m-2} - x^*|| + d_{n+m-2}^{(N-1)}] + d_{n+m-1}^{(N-1)}$$

$$\leq e^{(\theta_{n+m-1} + \theta_{n+m-2})} ||x_{n+m-2} - x^*|| + e^{\theta_{n+m-1}} [d_{n+m-1}^{(N-1)} + d_{n+m-2}^{(N-1)}]$$

$$\leq \dots$$

$$\leq \dots$$

$$\leq (e^{\sum_{k=n}^{n+m-1} \theta_k}) ||x_n - x^*|| + (e^{\sum_{k=n}^{n+m-1} \theta_k}) \sum_{k=n}^{n+m-1} d_k^{(N-1)}$$
 (2.6)

for all $x^* \in \mathcal{F}$ and $n, m \geq 1$. Setting $M = e^{\sum_{k=n}^{n+m-1} \theta_k}$, then $||x_{n+m} - x^*|| \leq M$. $||x_n - x^*|| + M$. $\sum_{k=n}^{n+m-1} d_k^{(N-1)}$. This completes the proof of part (ii).

Theorem 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) and some $a, b \in (0, 1)$ with the following restrictions:

(i)
$$0 < a \le \alpha_n^{(i)} \le b < 1$$
, $1 \le i \le N$, $\forall n \ge n_0$ for some $n_0 \in \mathbb{N}$;

(ii)
$$\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty, \ 1 \le i \le N;$$

(iii)
$$\sum_{n=1}^{\infty} \theta_n < \infty$$
 where $\theta_n = (L^N - 1)$.

Then the iterative sequence $\{x_n\}$ converges strongly to a common fixed point x^* of the mappings $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} d(x_n, \mathcal{F}) = 0,$$

where $d(x, \mathcal{F})$ denotes the distance between x and the set \mathcal{F} .

Proof. The necessity is obvious, we only prove the sufficiency. Suppose $\lim \inf_{n\to\infty} d(x_n, \mathcal{F}) = 0$. Then from Lemma 2.1(i), we have $||x_{n+1} - x^*|| \le (1+\theta_n) ||x_n - x^*|| + d_n^{(N-1)}$, for all $n \ge 1$. Therefore

$$d(x_{n+1}, \mathcal{F}) \le (1 + \theta_n)d(x_n, \mathcal{F}) + d_n^{(N-1)}.$$
 (2.7)

Since $\sum_{n=1}^{\infty} \theta_n < \infty$ and $\sum_{n=1}^{\infty} d_n^{(N-1)} < \infty$, so by Lemma 1.1 and $\liminf_{n\to\infty} d(x_n, \mathcal{F}) = 0$, we get that $\lim_{n\to\infty} d(x_n, \mathcal{F}) = 0$. Next, we prove that $\{x_n\}$ is a Cauchy sequence. From Lemma 2.1(ii), we have

$$||x_{n+m} - x^*|| \le M \cdot ||x_n - x^*|| + M \cdot \sum_{k=n}^{n+m-1} d_k^{(N-1)}$$
 (2.8)

for all $x^* \in \mathcal{F}$ and $n, m \geq 1$. Since $\lim_{n \to \infty} d(x_n, \mathcal{F}) = 0$, for each $\varepsilon > 0$, there exists a natural number n_1 such that $d(x_n, \mathcal{F}) < \frac{\varepsilon}{6M}$, for all $n \geq n_1$. Hence, there exists $q \in \mathcal{F}$ such that

$$||x_{n_1} - q|| < \frac{\varepsilon}{3M}, \quad \sum_{k=n_1}^{n+m-1} d_k^{(N-1)} < \frac{\varepsilon}{3M}.$$
 (2.9)

From (2.8) and (2.9), for all $n \ge n_1$, we have

$$||x_{n+m} - x_n|| \leq ||x_{n+m} - q|| + ||x_n - q||$$

$$\leq M \cdot ||x_{n_1} - q|| + M \cdot \sum_{k=n_1}^{n+m-1} d_k^{(N-1)} + M \cdot ||x_{n_1} - q||$$

$$< M \cdot \frac{\varepsilon}{3M} + M \cdot \frac{\varepsilon}{3M} + M \cdot \frac{\varepsilon}{3M}$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$
(2.10)

Thus $\{x_n\}$ is a Cauchy sequence in E. By the completeness of E, we also have that $\{x_n\}$ is a convergent sequence. Assume that $\{x_n\}$ converges to a point q^* , that is, $\lim_{n\to\infty} x_n = q^*$. It will be prove that q^* is a common fixed point, that is, $q^* \in \mathcal{F}$.

Since $\lim_{n\to\infty} x_n = q^*$, for each $\hat{\varepsilon} > 0$, there exists a natural number n_2 such that when $n \geq n_2$,

$$||x_n - q^*|| < \frac{\hat{\varepsilon}}{2(1+L)}. \tag{2.11}$$

Moreover, $\lim_{n\to\infty} d(x_n, \mathcal{F}) = 0$ implies that there exists a natural number $n_3 \geq n_2$, such that when $n \geq n_3$,

$$d(x_n, \mathfrak{F}) < \frac{\hat{\varepsilon}}{2(1+L)}, \quad d(x_{n_3}, \mathfrak{F}) < \frac{\hat{\varepsilon}}{2(1+L)}.$$
 (2.12)

Thus there exists a $w^* \in \mathcal{F}$, such that

$$||x_{n_3} - w^*|| = d(x_{n_3}, w^*) < \frac{\hat{\varepsilon}}{2(1+L)}.$$
 (2.13)

From (2.12) and (2.13), for any $i \in I$ and $n \ge n_3$, we have

$$||T_{i}q^{*} - q^{*}|| = ||T_{i}q^{*} - w^{*} + w^{*} - x_{n_{3}} + x_{n_{3}} - q^{*}||$$

$$\leq ||T_{i}q^{*} - w^{*}|| + ||w^{*} - x_{n_{3}}|| + ||x_{n_{3}} - q^{*}||$$

$$\leq L ||q^{*} - w^{*}|| + ||w^{*} - x_{n_{3}}|| + ||x_{n_{3}} - q^{*}||$$

$$\leq L[||q^{*} - x_{n_{3}}|| + ||x_{n_{3}} - w^{*}||] + ||w^{*} - x_{n_{3}}|| + ||x_{n_{3}} - q^{*}||$$

$$\leq (1 + L) ||x_{n_{3}} - q^{*}|| + (1 + L) ||x_{n_{3}} - w^{*}||$$

$$< (1 + L) \cdot \frac{\hat{\varepsilon}}{2(1 + L)} + (1 + L) \cdot \frac{\hat{\varepsilon}}{2(1 + L)}$$

$$< \frac{\hat{\varepsilon}}{2} + \frac{\hat{\varepsilon}}{2} = \hat{\varepsilon}.$$

$$(2.14)$$

This implies that $T_iq^* = q^*$. Hence $q^* \in F(T_i)$ for all $i \in I$ and so $q^* \in \mathcal{F} = \bigcap_{i=1}^N F(T_i)$. This completes the proof.

Corollary 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly L-Lipschitzian mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) and some $a, b \in (0,1)$ with the following restrictions:

(i)
$$0 < a \le \alpha_n^{(i)} \le b < 1, \ 1 \le i \le N, \ \forall n \ge n_0 \ for \ some \ n_0 \in \mathbb{N};$$

(ii)
$$\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty$$
, $1 \le i \le N$;

(iii)
$$\sum_{n=1}^{\infty} \theta_n < \infty$$
 where $\theta_n = (L^N - 1)$.

Then the iterative sequence $\{x_n\}$ converges strongly to a common fixed point x^* of the mappings $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} d(x_n, \mathcal{F}) = 0,$$

where $d(x, \mathcal{F})$ denotes the distance between x and the set \mathcal{F} .

Proof. Since $F(T_i)$ for all i = 1, 2, ..., N is nonempty, a uniformly L-Lipschitzian mapping must be uniformly quasi-Lipschitzian. Thus, Corollary 2.1 can be proved by using Theorem 2.1.

Corollary 2.2. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N asymptotically quasinonexpansive mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) and some $a, b \in (0, 1)$ with the following restrictions:

(i)
$$0 < a \le \alpha_n^{(i)} \le b < 1$$
, $1 \le i \le N$, $\forall n \ge n_0$ for some $n_0 \in \mathbb{N}$;

(ii)
$$\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty$$
, $1 \le i \le N$;

(iii)
$$\sum_{n=1}^{\infty} \theta_n < \infty$$
 where $\theta_n = (L^N - 1)$.

Then the iterative sequence $\{x_n\}$ converges strongly to a common fixed point x^* of the mappings $\{T_1, T_2, \ldots, T_N\}$ if and only if

$$\liminf_{n \to \infty} d(x_n, \mathcal{F}) = 0,$$

where $d(x, \mathfrak{F})$ denotes the distance between x and the set \mathfrak{F} .

Proof. Since $F(T_i)$ for all i = 1, 2, ..., N is nonempty, an asymptotically quasi-nonexpansive mapping must be uniformly quasi-Lipschitzian. Thus, Corollary 2.2 can be proved by using Theorem 2.1.

Theorem 2.2. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) and some $a, b \in (0,1)$ with the following restrictions:

(i)
$$0 < a \le \alpha_n^{(i)} \le b < 1, \ 1 \le i \le N, \ \forall n \ge n_0 \ for \ some \ n_0 \in \mathbb{N};$$

(ii)
$$\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty, \ 1 \le i \le N;$$

(iii)
$$\sum_{n=1}^{\infty} \theta_n < \infty$$
 where $\theta_n = (L^N - 1)$.

Then the iterative sequence $\{x_n\}$ converges strongly to a common fixed point p of the family of mappings $\{T_1, T_2, \ldots, T_N\}$ if and only if there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges to p.

Proof. The proof of Theorem 2.2 follows from Lemma 1.1 and Theorem 2.1.

Theorem 2.3. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_1, T_2, \ldots, T_N \colon C \to C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathfrak{F} = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From an arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ iteratively by (1.4) and some $a, b \in (0, 1)$ with the following restrictions:

- (i) $0 < a \le \alpha_n^{(i)} \le b < 1$, $1 \le i \le N$, $\forall n \ge n_0 \text{ for some } n_0 \in \mathbb{N}$;
- (ii) $\sum_{n=1}^{\infty} \gamma_n^{(i)} < \infty$, $1 \le i \le N$;
- (iii) $\sum_{n=1}^{\infty} \theta_n < \infty$ where $\theta_n = (L^N 1)$.

Suppose that there exists a map T_j which satisfies the following conditions:

- (a) $\lim_{n\to\infty} ||x_n T_i x_n|| = 0;$
- (b) there exists a constant M > 0 such that $||x_n T_j x_n|| \ge Md(x_n, \mathfrak{F}), \forall n \ge 1.$

Then the iterative sequence $\{x_n\}$ converges strongly to a common fixed point of the family of mappings $\{T_1, T_2, \ldots, T_N\}$.

Proof. From (a) and (b), it follows that $\lim_{n\to\infty} d(x_n, \mathcal{F}) = 0$. By Theorem 2.1, $\{x_n\}$ converges strongly to a common fixed point of the family of mappings $\{T_1, T_2, \ldots, T_N\}$.

Remark 2.1. Our results extend and improve the corresponding results of Petryshyn and Williamson [4], Ghosh and Debnath [1] and Xu and Noor [9] to the case of quasi-nonexpansive and asymptotically nonexpansive mappings to more general class of mappings, multi-step iteration with errors and finite family of mappings.

Remark 2.2. Our results extend and generalize the corresponding results of Liu [5,6] to the case of multi-step iteration with errors and finite family of mappings.

Remark 2.3. Our results also extend and generalize the corresponding results of Quan [7] to the case of multi-step iteration with errors and finite family of mappings.

Acknowledgement. The authors thank the referee for his careful reading and suggestions on the manuscript.

References

- [1] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207, (1997), 96-103.
- [2] S. Ishikawa, Fixed points by a new iteration method, *Proc. Amer. Math. Soc.*, 44, (1974), 147-150.

- [3] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4, (1953), 506-510.
- [4] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, *J. Math. Anal. Appl.*, 43, (1973), 459-497.
- [5] **L. Qihou**, Iterative sequences for asymptotically quasi-nonexpansive mappings, *J. Math. Anal. Appl.*, **259**, (2001), 1-7.
- [6] **L. Qihou**, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, *J. Math. Anal. Appl.*, **259**, (2001), 18-24.
- [7] J. Quan, Three-step iterative sequences with errors for uniformly quasi-Lipschitzian mappings, Numer. Math. J. Chinese Univ. (English Ser.), 15, No.4, (November 2006), 306-311.
- [8] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, (1993), 301-308.
- [9] B. L. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267, No.2, (2002), 444-453.

Gurucharan Singh Saluja

Department of Mathematics and Information Technology

Govt. Nagarjuna P.G. College of Science,

Raipur (C.G.), India.

E-mail: saluja_1963@rediffmail.com

Hemant Kumar Nashine

Department of Mathematics,

Disha Institute of Management and Technology

Satya Vihar, Vidhansabha - Chandrakhuri Marg (Baloda Bazar Road),

Mandir, Hasaud, Raipur - 492101(Chhattisgarh), India

E-mail: hemantnashine@gmail.com, hnashine@rediffmail.com

Received: 27.19.2010 Accepted: 28.12.2011 Revised: 15.12.2011