DOI: 10.2478/v10324-012-0009-0
VERSITA

Analele Universităţii de Vest, Timişoara
Seria Matematică - Informatică
L, 1, (2012), 103-113

Convergence of Multi-step Iterates with Errors for Uniformly Quasi-Lipschitzian Mappings

Gurucharan Singh Saluja and Hemant Kumar Nashine

Abstract

The aim of this paper is to give some necessary and sufficient conditions for multi-step iterative scheme with errors for a finite family of uniformly quasi-Lipschitzian mappings to converge to common fixed point in a real Banach space. Our results extend and improve the corresponding results of Quan [7], Liu [5,6], Xu and Noor [9] and many others.

AMS Subject Classification (2000). 47H05, 47H09, 49M05.
Keywords. Uniformly quasi-Lipschitzian mapping, multi-step iterative scheme with errors, common fixed point, Banach space, strong convergence.

1 Introduction and Preliminaries

Throughout this paper, we assume that E is a real Banach space and C is a nonempty convex subset of E. Let $F(T)$ and \mathbb{N} denote the set of fixed points and the set of natural numbers, respectively. We recall the following definitions:

Definition 1.1. (see [7]) Let $T: C \rightarrow C$ be a mapping:
(1) T is said to be uniformly quasi-Lipschitzian if there exists $L \in[1,+\infty)$, such that

$$
\begin{equation*}
\left\|T^{n} x-p\right\| \leq L\|x-p\| \tag{1.1}
\end{equation*}
$$

for all $x \in C, p \in F(T)$ and all $n \in \mathbb{N}$.
(2) T is said to be uniformly L-Lipschitzian if there exists $L \in[1,+\infty)$, such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|, \tag{1.2}
\end{equation*}
$$

for all $x, y \in C$, and all $n \in \mathbb{N}$.
(3) T is said to be asymptotically quasi-nonexpansive if there exists $k_{n} \in$ $[1,+\infty)$ with $\lim _{n \rightarrow+\infty} k_{n}=1$, such that

$$
\begin{equation*}
\left\|T^{n} x-p\right\| \leq k_{n}\|x-p\| \tag{1.3}
\end{equation*}
$$

for all $x \in C, p \in F(T)$ and all $n \in \mathbb{N}$.
From the above definitions, it follows that if $F(T)$ is nonempty, a uniformly L Lipschitzian mapping must be uniformly quasi-Lipschitzian, and an asymptotically quasi-nonexpansive mapping must be uniformly quasi-Lipschitzian. But the converse does not hold.

In 1973, Petryshyn and Williamson in [4] proved a sufficient and necessary condition for Picard iterative sequences and Mann [3] iterative sequences to converge to fixed points for quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [1] extended the result of [4] and gave a sufficient and necessary condition for Ishikawa [2] iterative sequences to converge to fixed points for quasi-nonexpansive mappings. In 2001, Liu [5, 6] extended the above results and obtained some sufficient and necessary conditions for Ishikawa iterative sequences with errors members for asymptotically quasi-nonexpansive mappings to converge to fixed points.
Recently, in 2006 Quan in [7] gave the sufficient condition for convergence of three-step iterative sequences with errors (TSISE) to converge to fixed point for uniformly quasi-Lipschitzian mappings, he proved the following:

Theorem Q. Let E be a Banach space and C be a nonempty closed convex subset of E and $T: C \rightarrow C$ be a uniformly quasi-Lipschitzian mapping with the nonempty fixed point set $F(T)$. For arbitrary $x_{1} \in C$, let iterative sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ defined by:

$$
\begin{align*}
z_{n} & =\left(1-\gamma_{n}-\nu_{n}\right) x_{n}+\gamma_{n} T^{n} x_{n}+\nu_{n} u_{n}, \\
y_{n} & =\left(1-\beta_{n}-\mu_{n}\right) x_{n}+\beta_{n} T^{n} z_{n}+\mu_{n} v_{n}, \tag{TSISE}\\
x_{n+1} & =\left(1-\alpha_{n}-\lambda_{n}\right) x_{n}+\alpha_{n} T^{n} x_{n}+\lambda_{n} w_{n}, \quad n \geq 1
\end{align*}
$$

where $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{w_{n}\right\}$ are bounded sequences in C and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\},\left\{\nu_{n}\right\}$ are appropriate sequences in [0,1] with the restrictions that $\sum_{n=1}^{\infty} \alpha_{n}<\infty, \sum_{n=1}^{\infty} \lambda_{n}<\infty$. Then $\left\{x_{n}\right\}$ converges to a fixed point if and only if $\lim \inf _{n \rightarrow \infty} d\left(x_{n}, F(T)\right)=0$, where $d(y, C)$ denotes the distance of y to set C, that is, $d(y, C)=\inf d(y, x), \forall x \in C$.

The aim of this paper is to study convergence of multi-step iterative sequences with error term to converge to common fixed point for uniformly quasi-Lipschitzian mappings and give the sufficient condition for convergence of common fixed point for such maps in Banach spaces. The multi-step iteration scheme with errors defined as follows:

Definition 1.2. Let C be a nonempty convex subset of a normed space E, and let $T_{1}, T_{2} \ldots, T_{N}: C \rightarrow C$ be N uniformly quasi-Lipschitzian mappings. For a given $x_{1} \in C$, and a fixed $N \in \mathbb{N} \mathbb{N}$ denote the set of all positive integers), compute the sequence $\left\{x_{n}\right\}$ by

$$
\begin{align*}
x_{n}^{(1)} & =\alpha_{n}^{(1)} T_{1}^{n} x_{n}+\beta_{n}^{(1)} x_{n}+\gamma_{n}^{(1)} u_{n}^{(1)}, \\
x_{n}^{(2)} & =\alpha_{n}^{(2)} T_{2}^{n} x_{n}^{(1)}+\beta_{n}^{(2)} x_{n}+\gamma_{n}^{(2)} u_{n}^{(2)}, \\
x_{n}^{(3)} & =\alpha_{n}^{(3)} T_{3}^{n} x_{n}^{(2)}+\beta_{n}^{(3)} x_{n}+\gamma_{n}^{(3)} u_{n}^{(3)}, \\
\vdots & \tag{1.4}\\
x_{n+1}=x_{n}^{(N)} & =\alpha_{n}^{(N)} T_{N}^{n} x_{n}^{(N-1)}+\beta_{n}^{(N)} x_{n}+\gamma_{n}^{(N)} u_{n}^{(N)},
\end{align*}
$$

where $\left\{\alpha_{n}^{(i)}\right\},\left\{\beta_{n}^{(i)}\right\},\left\{\gamma_{n}^{(i)}\right\}$ are appropriate sequences in $[0,1]$ with $\alpha_{n}^{(i)}+\beta_{n}^{(i)}+$ $\gamma_{n}^{(i)}=1$ for each $i \in\{1,2, \ldots, N\}$, and $\left\{u_{n}^{(1)}\right\},\left\{u_{n}^{(2)}\right\}, \ldots,\left\{u_{n}^{(N)}\right\}$ are bounded sequences in C.

In the sequel we need the following lemma.
Lemma 1.1.([8]; Lemma 1) Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$ and $\left\{r_{n}\right\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying

$$
a_{n+1} \leq\left(1+r_{n}\right) a_{n}+\beta_{n}, \quad \forall n \in N .
$$

If $\sum_{n=1}^{\infty} r_{n}<\infty, \sum_{n=1}^{\infty} \beta_{n}<\infty$. Then
(i) $\lim _{n \rightarrow \infty} a_{n}$ exists.
(ii) If $\lim \inf _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

2 Main Results

In this section, we prove strong convergence theorems of multi-step iterative sequences with error term to converge to common fixed point for uniformly quasi-Lipschitzian mappings in the framework of Banach spaces.

Lemma 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) with the restrictions $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<$ ∞ and $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$. Then
(i) $\left\|x_{n+1}-x^{*}\right\|=\left\|x_{n}^{(N)}-x^{*}\right\| \leq\left(1+\theta_{n}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{(N-1)}$, for all $n \geq 1$, $x^{*} \in \mathcal{F}$ and nondecreasing sequence $\left\{d_{n}^{(i-1)}\right\}$ for all $i=1,2, \ldots, N$ of numbers such that $\sum_{n=1}^{\infty} d_{n}^{(i-1)}<\infty$.
(ii) There exists a constant $M>0$ such that $\left\|x_{n+m}-x^{*}\right\| \leq M .\left\|x_{n}-x^{*}\right\|+$ M. $\sum_{k=n}^{n+m-1} d_{k}^{(N-1)}$ for all $n, m \geq 1$ and $x^{*} \in \mathcal{F}$.

Proof. (i) Let $x^{*} \in \mathcal{F}$, then from (1.4) we have

$$
\begin{align*}
\left\|x_{n}^{(1)}-x^{*}\right\| & =\left\|\alpha_{n}^{(1)} T_{1}^{n} x_{n}+\beta_{n}^{(1)} x_{n}+\gamma_{n}^{(1)} u_{n}^{(1)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(1)}\left\|T_{1}^{n} x_{n}-x^{*}\right\|+\beta_{n}^{(1)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(1)}\left\|u_{n}^{(1)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(1)} L\left\|x_{n}-x^{*}\right\|+\beta_{n}^{(1)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(1)}\left\|u_{n}^{(1)}-x^{*}\right\| \\
& \leq\left(1-\beta_{n}^{(1)}\right) L\left\|x_{n}-x^{*}\right\|+\beta_{n}^{(1)} L\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(1)}\left\|u_{n}^{(1)}-x^{*}\right\| \\
& \leq L\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(1)}\left\|u_{n}^{(1)}-x^{*}\right\| \\
& \leq L\left\|x_{n}-x^{*}\right\|+d_{n}^{(0)} \tag{2.1}
\end{align*}
$$

where $d_{n}^{(0)}=\gamma_{n}^{(1)}\left\|u_{n}^{(1)}-x^{*}\right\|$. Since $\sum_{n=1}^{\infty} \gamma_{n}^{(1)}<\infty$, then $\sum_{n=1}^{\infty} d_{n}^{(0)}<\infty$. Next, we note that

$$
\begin{align*}
\left\|x_{n}^{(2)}-x^{*}\right\| & =\left\|\alpha_{n}^{(2)} T_{2}^{n} x_{n}^{(1)}+\beta_{n}^{(2)} x_{n}+\gamma_{n}^{(2)} u_{n}^{(2)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(2)}\left\|T_{2}^{n} x_{n}^{(1)}-x^{*}\right\|+\beta_{n}^{(2)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(2)} L\left\|x_{n}^{(1)}-x^{*}\right\|+\beta_{n}^{(2)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(2)} L\left[L\left\|x_{n}-x^{*}\right\|+d_{n}^{(0)}\right]+\beta_{n}^{(2)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq\left[L^{2} \alpha_{n}^{(2)}+\beta_{n}^{(2)}\right]\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(2)} L d_{n}^{(0)}+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq\left(\alpha_{n}^{(2)}+\beta_{n}^{(2)}\right) L^{2}\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(2)} L d_{n}^{(0)}+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& =\left(1-\gamma_{n}^{(2)}\right) L^{2}\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(2)} L d_{n}^{(0)}+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq L^{2}\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(2)} L d_{n}^{(0)}+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\| \\
& \leq L^{2}\left\|x_{n}-x^{*}\right\|+d_{n}^{(1)} \tag{2.2}
\end{align*}
$$

where $d_{n}^{(1)}=\alpha_{n}^{(2)} L d_{n}^{(0)}+\gamma_{n}^{(2)}\left\|u_{n}^{(2)}-x^{*}\right\|$. Since $\sum_{n=1}^{\infty} d_{n}^{(0)}<\infty$ and $\sum_{n=1}^{\infty} \gamma_{n}^{(2)}<$ ∞, and so $\sum_{n=1}^{\infty} d_{n}^{(1)}<\infty$. Similarly, we have

$$
\begin{align*}
\left\|x_{n}^{(3)}-x^{*}\right\| & =\left\|\alpha_{n}^{(3)} T_{3}^{n} x_{n}^{(2)}+\beta_{n}^{(3)} x_{n}+\gamma_{n}^{(3)} u_{n}^{(3)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(3)}\left\|T_{3}^{n} x_{n}^{(2)}-x^{*}\right\|+\beta_{n}^{(3)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(3)} L\left\|x_{n}^{(2)}-x^{*}\right\|+\beta_{n}^{(3)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\| \\
& \leq \alpha_{n}^{(3)} L\left[L^{2}\left\|x_{n}-x^{*}\right\|+d_{n}^{(1)}\right]+\beta_{n}^{(3)}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\| \\
& \leq\left[\alpha_{n}^{(3)} L^{3}+\beta_{n}^{(3)}\right]\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(3)} L d_{n}^{(1)}+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\| \\
& \leq\left(\alpha_{n}^{(3)}+\beta_{n}^{(3)}\right) L^{3}\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{(3)} L d_{n}^{(1)}+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\| \\
& =\left(1-\gamma_{n}^{(3)}\right) L^{3}\left\|x_{n}-x^{*}\right\|+d_{n}^{(2)} \\
& \leq L^{3}\left\|x_{n}-x^{*}\right\|+d_{n}^{(2)} \tag{2.3}
\end{align*}
$$

where $d_{n}^{(2)}=\alpha_{n}^{(3)} L d_{n}^{(1)}+\gamma_{n}^{(3)}\left\|u_{n}^{(3)}-x^{*}\right\|$. Since $\sum_{n=1}^{\infty} d_{n}^{(1)}<\infty$ and $\sum_{n=1}^{\infty} \gamma_{n}^{(3)}<$ ∞, thus $\sum_{n=1}^{\infty} d_{n}^{(2)}<\infty$.
By continuing the above process, there exists a nonnegative real sequence $\left\{d_{n}^{(l-1)}\right\}$ such that $\sum_{n=1}^{\infty} d_{n}^{(l-1)}<\infty$ and

$$
\begin{equation*}
\left\|x_{n}^{(i)}-x^{*}\right\| \leq L^{i}\left\|x_{n}-x^{*}\right\|+d_{n}^{(i-1)}, \forall n \geq 1, \forall i=1,2, \ldots, N . \tag{2.4}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & =\left\|x_{n}^{(N)}-x^{*}\right\| \\
& \leq L^{N}\left\|x_{n}-x^{*}\right\|+d_{n}^{(N-1)} \\
& =\left(1+L^{N}-1\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{(N-1)} \\
& =\left(1+\theta_{n}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{(N-1)} \tag{2.5}
\end{align*}
$$

for all $n \in N$, where $\theta_{n}=\left(L^{N}-1\right)$ with $\sum_{n=1}^{\infty} \theta_{n}<\infty$. This completes the proof of part (i).
(ii) Since $1+x \leq e^{x}$ for all $x>0$. Then from (i) it can be obtained that

$$
\begin{align*}
\left\|x_{n+m}-x^{*}\right\| & \leq\left(1+\theta_{n+m-1}\right)\left\|x_{n+m-1}-x^{*}\right\|+d_{n+m-1}^{(N-1)} \\
& \leq e^{\theta_{n+m-1}}\left\|x_{n+m-1}-x^{*}\right\|+d_{n+m-1}^{(N-1)} \\
& \leq e^{\theta_{n+m-1}}\left[e^{\theta_{n+m-2}}\left\|x_{n+m-2}-x^{*}\right\|+d_{n+m-2}^{(N-1)}\right]+d_{n+m-1}^{(N-1)} \\
& \leq e^{\left(\theta_{n+m-1}+\theta_{n+m-2}\right)}\left\|x_{n+m-2}-x^{*}\right\|+e^{\theta_{n+m-1}}\left[d_{n+m-1}^{(N-1)}+d_{n+m-2}^{(N-1)}\right] \\
& \leq \cdots \\
& \leq \cdots \\
& \leq\left(e^{\sum_{k=n}^{n+m-1} \theta_{k}}\right)\left\|x_{n}-x^{*}\right\|+\left(e^{\sum_{k=n}^{n+m-1} \theta_{k}}\right) \sum_{k=n}^{n+m-1} d_{k}^{(N-1)} \tag{2.6}
\end{align*}
$$

for all $x^{*} \in \mathcal{F}$ and $n, m \geq 1$. Setting $M=e^{\sum_{k=n}^{n+m-1} \theta_{k}}$, then $\left\|x_{n+m}-x^{*}\right\| \leq$ $M .\left\|x_{n}-x^{*}\right\|+M . \sum_{k=n}^{n+m-1} d_{k}^{(N-1)}$. This completes the proof of part (ii).
Theorem 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) and some $a, b \in(0,1)$ with the following restrictions:
(i) $0<a \leq \alpha_{n}^{(i)} \leq b<1,1 \leq i \leq N, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$;
(ii) $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<\infty, 1 \leq i \leq N$;
(iii) $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$.

Then the iterative sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point x^{*} of the mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ if and only if

$$
\liminf _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0
$$

where $d(x, \mathcal{F})$ denotes the distance between x and the set \mathcal{F}.
Proof. The necessity is obvious, we only prove the sufficiency. Suppose $\liminf _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$. Then from Lemma 2.1(i), we have $\left\|x_{n+1}-x^{*}\right\| \leq$ $\left(1+\theta_{n}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{(N-1)}$, for all $n \geq 1$. Therefore

$$
\begin{equation*}
d\left(x_{n+1}, \mathcal{F}\right) \leq\left(1+\theta_{n}\right) d\left(x_{n}, \mathcal{F}\right)+d_{n}^{(N-1)} \tag{2.7}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \theta_{n}<\infty$ and $\sum_{n=1}^{\infty} d_{n}^{(N-1)}<\infty$, so by Lemma 1.1 and $\operatorname{lim~inf}_{n \rightarrow \infty}$ $d\left(x_{n}, \mathcal{F}\right)=0$, we get that $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$. Next, we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. From Lemma 2.1(ii), we have

$$
\begin{equation*}
\left\|x_{n+m}-x^{*}\right\| \leq M \cdot\left\|x_{n}-x^{*}\right\|+M \cdot \sum_{k=n}^{n+m-1} d_{k}^{(N-1)} \tag{2.8}
\end{equation*}
$$

for all $x^{*} \in \mathcal{F}$ and $n, m \geq 1$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$, for each $\varepsilon>0$, there exists a natural number n_{1} such that $d\left(x_{n}, \mathcal{F}\right)<\frac{\varepsilon}{6 M}$, for all $n \geq n_{1}$. Hence, there exists $q \in \mathcal{F}$ such that

$$
\begin{equation*}
\left\|x_{n_{1}}-q\right\|<\frac{\varepsilon}{3 M}, \quad \sum_{k=n_{1}}^{n+m-1} d_{k}^{(N-1)}<\frac{\varepsilon}{3 M} \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9), for all $n \geq n_{1}$, we have

$$
\begin{align*}
\left\|x_{n+m}-x_{n}\right\| & \leq\left\|x_{n+m}-q\right\|+\left\|x_{n}-q\right\| \\
& \leq M \cdot\left\|x_{n_{1}}-q\right\|+M \cdot \sum_{k=n_{1}}^{n+m-1} d_{k}^{(N-1)}+M \cdot\left\|x_{n_{1}}-q\right\| \\
& <M \cdot \frac{\varepsilon}{3 M}+M \cdot \frac{\varepsilon}{3 M}+M \cdot \frac{\varepsilon}{3 M} \\
& =\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon . \tag{2.10}
\end{align*}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in E. By the completeness of E, we also have that $\left\{x_{n}\right\}$ is a convergent sequence. Assume that $\left\{x_{n}\right\}$ converges to a point q^{*}, that is, $\lim _{n \rightarrow \infty} x_{n}=q^{*}$. It will be prove that q^{*} is a common fixed point, that is, $q^{*} \in \mathcal{F}$.

Since $\lim _{n \rightarrow \infty} x_{n}=q^{*}$, for each $\hat{\varepsilon}>0$, there exists a natural number n_{2} such that when $n \geq n_{2}$,

$$
\begin{equation*}
\left\|x_{n}-q^{*}\right\|<\frac{\hat{\varepsilon}}{2(1+L)} \tag{2.11}
\end{equation*}
$$

Moreover, $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$ implies that there exists a natural number $n_{3} \geq n_{2}$, such that when $n \geq n_{3}$,

$$
\begin{equation*}
d\left(x_{n}, \mathcal{F}\right)<\frac{\hat{\varepsilon}}{2(1+L)}, \quad d\left(x_{n_{3}}, \mathcal{F}\right)<\frac{\hat{\varepsilon}}{2(1+L)} . \tag{2.12}
\end{equation*}
$$

Thus there exists a $w^{*} \in \mathcal{F}$, such that

$$
\begin{equation*}
\left\|x_{n_{3}}-w^{*}\right\|=d\left(x_{n_{3}}, w^{*}\right)<\frac{\hat{\varepsilon}}{2(1+L)} \tag{2.13}
\end{equation*}
$$

From (2.12) and (2.13), for any $i \in I$ and $n \geq n_{3}$, we have

$$
\begin{align*}
\left\|T_{i} q^{*}-q^{*}\right\| & =\left\|T_{i} q^{*}-w^{*}+w^{*}-x_{n_{3}}+x_{n_{3}}-q^{*}\right\| \\
& \leq\left\|T_{i} q^{*}-w^{*}\right\|+\left\|w^{*}-x_{n_{3}}\right\|+\left\|x_{n_{3}}-q^{*}\right\| \\
& \leq L\left\|q^{*}-w^{*}\right\|+\left\|w^{*}-x_{n_{3}}\right\|+\left\|x_{n_{3}}-q^{*}\right\| \\
& \left.\leq L\left\|q^{*}-x_{n_{3}}\right\|+\left\|x_{n_{3}}-w^{*}\right\|\right]+\left\|w^{*}-x_{n_{3}}\right\|+\left\|x_{n_{3}}-q^{*}\right\| \\
& \leq(1+L)\left\|x_{n_{3}}-q^{*}\right\|+(1+L)\left\|x_{n_{3}}-w^{*}\right\| \\
& <(1+L) \cdot \frac{\hat{\varepsilon}}{2(1+L)}+(1+L) \cdot \frac{\hat{\varepsilon}}{2(1+L)} \\
& <\frac{\hat{\varepsilon}}{2}+\frac{\hat{\varepsilon}}{2}=\hat{\varepsilon} . \tag{2.14}
\end{align*}
$$

This implies that $T_{i} q^{*}=q^{*}$. Hence $q^{*} \in F\left(T_{i}\right)$ for all $i \in I$ and so $q^{*} \in \mathcal{F}=$ $\cap_{i=1}^{N} F\left(T_{i}\right)$. This completes the proof.

Corollary 2.1. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N uniformly L-Lipschitzian mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) and some $a, b \in(0,1)$ with the following restrictions:
(i) $0<a \leq \alpha_{n}^{(i)} \leq b<1,1 \leq i \leq N, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$;
(ii) $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<\infty, 1 \leq i \leq N$;
(iii) $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$.

Then the iterative sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point x^{*} of the mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ if and only if

$$
\liminf _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0
$$

where $d(x, \mathcal{F})$ denotes the distance between x and the set \mathcal{F}.
Proof. Since $F\left(T_{i}\right)$ for all $i=1,2, \ldots, N$ is nonempty, a uniformly L Lipschitzian mapping must be uniformly quasi-Lipschitzian. Thus, Corollary 2.1 can be proved by using Theorem 2.1.

Corollary 2.2. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N asymptotically quasinonexpansive mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) and some $a, b \in(0,1)$ with the following restrictions:
(i) $0<a \leq \alpha_{n}^{(i)} \leq b<1,1 \leq i \leq N, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$;
(ii) $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<\infty, 1 \leq i \leq N$;
(iii) $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$.

Then the iterative sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point x^{*} of the mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ if and only if

$$
\liminf _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0,
$$

where $d(x, \mathcal{F})$ denotes the distance between x and the set \mathcal{F}.
Proof. Since $F\left(T_{i}\right)$ for all $i=1,2, \ldots, N$ is nonempty, an asymptotically quasi-nonexpansive mapping must be uniformly quasi-Lipschitzian. Thus, Corollary 2.2 can be proved by using Theorem 2.1.

Theorem 2.2. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) and some $a, b \in(0,1)$ with the following restrictions:
(i) $0<a \leq \alpha_{n}^{(i)} \leq b<1,1 \leq i \leq N, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$;
(ii) $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<\infty, 1 \leq i \leq N$;
(iii) $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$.

Then the iterative sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point p of the family of mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ if and only if there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ which converges to p.

Proof. The proof of Theorem 2.2 follows from Lemma 1.1 and Theorem 2.1.
Theorem 2.3. Let E be a Banach space and C be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be N uniformly quasi-Lipschitzian mappings. Assume that $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. From an arbitrary $x_{1} \in C$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1.4) and some $a, b \in(0,1)$ with the following restrictions:
(i) $0<a \leq \alpha_{n}^{(i)} \leq b<1,1 \leq i \leq N, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$;
(ii) $\sum_{n=1}^{\infty} \gamma_{n}^{(i)}<\infty, 1 \leq i \leq N$;
(iii) $\sum_{n=1}^{\infty} \theta_{n}<\infty$ where $\theta_{n}=\left(L^{N}-1\right)$.

Suppose that there exists a map T_{j} which satisfies the following conditions:
(a) $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j} x_{n}\right\|=0$;
(b) there exists a constant $M>0$ such that $\left\|x_{n}-T_{j} x_{n}\right\| \geq M d\left(x_{n}, \mathcal{F}\right)$, $\forall n \geq 1$.

Then the iterative sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the family of mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$.

Proof. From (a) and (b), it follows that $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$. By Theorem 2.1, $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the family of mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$.

Remark 2.1. Our results extend and improve the corresponding results of Petryshyn and Williamson [4], Ghosh and Debnath [1] and Xu and Noor [9] to the case of quasi-nonexpansive and asymptotically nonexpansive mappings to more general class of mappings, multi-step iteration with errors and finite family of mappings.

Remark 2.2. Our results extend and generalize the corresponding results of Liu $[5,6]$ to the case of multi-step iteration with errors and finite family of mappings.

Remark 2.3. Our results also extend and generalize the corresponding results of Quan [7] to the case of multi-step iteration with errors and finite family of mappings.

Acknowledgement. The authors thank the referee for his careful reading and suggestions on the manuscript.

References

[1] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl., 207, (1997), 96-103.
[2] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, (1974), 147-150.
[3] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4, (1953), 506-510.
[4] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., 43, (1973), 459-497.
[5] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 259, (2001), 1-7.
[6] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl., 259, (2001), 18-24.
[7] J. Quan, Three-step iterative sequences with errors for uniformly quasi-Lipschitzian mappings, Numer. Math. J. Chinese Univ. (English Ser.), 15, No.4, (November 2006), 306-311.
[8] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, (1993), 301-308.
[9] B. L. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267, No.2, (2002), 444-453.

Gurucharan Singh Saluja

Department of Mathematics and Information Technology
Govt. Nagarjuna P.G. College of Science,
Raipur (C.G.), India.
E-mail: saluja_1963@rediffmail.com
Hemant Kumar Nashine
Department of Mathematics,
Disha Institute of Management and Technology
Satya Vihar, Vidhansabha - Chandrakhuri Marg (Baloda Bazar Road), Mandir, Hasaud, Raipur - 492101(Chhattisgarh), India
E-mail: hemantnashine@gmail.com, hnashine@rediffmail.com
Received: 27.19.2010
Accepted: 28.12.2011
Revised: 15.12.2011

