An explicit formula for derivative polynomials of the tangent function

Open access

Abstract

In the paper, the authors derive an explicit formula for derivative polynomials of the tangent function, deduce an explicit formula for tangent numbers, pose an open problem about obtaining an alternative and explicit formula for derivative polynomials of the tangent function, and recommend some papers closely related to derivative polynomials of other elementary and applicable functions.

[1] L. C. Bouvier, Analise transcendante. Loi du développement de la tangente en fonction de l’arc, Ann. Math. Pures Appl. [Ann. Gergonne], 14 (1823/24), 347–349; Available online at http://www.numdam.org/numdam-bin/fitem?id=AMPA_1823-182414347_1. (French)

[2] K. N. Boyadzhiev, Derivative polynomials for tanh, tan, sech and sec in explicit form, Fibonacci Quart., 45 (2007), no. 4, 291–303 (2008); Available online at https://arxiv.org/abs/0903.0117.

[3] C.-P. Chen, F. Qi, A double inequality for remainder of power series of tangent function, Tamkang J. Math., 34 (2003), no. 4, 351–355; Available online at http://dx.doi.org/10.5556/j.tkjm.34.2003.236.

[4] C.-P. Chen, F. Qi, A double inequality for remainder of power series of tangent function, RGMIA Res. Rep. Coll., 5 (2002), Suppl., Art. 2; Available online at http://rgmia.org/v5(E).php.

[5] B.-N. Guo, Q.-M. Luo, F. Qi, Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function, Filomat, 27 (2013), no. 2, 261–265; Available online at http://dx.doi.org/10.2298/FIL1302261G.

[6] B.-N. Guo, F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272 (2014), 251–257; Available online at http://dx.doi.org/10.1016/j.cam.2014.05.018.

[7] B.-N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math., 255 (2014), 568–579; Available online at http://dx.doi.org/10.1016/j.cam.2013.06.020.

[8] M. E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly, 102 (1995), no. 1, 23–30; Available online at http://dx.doi.org/10.2307/2974853.

[9] M. E. Hoffman, Derivative polynomials, Euler polynomials, and associated integer sequences, Electron. J. Combin, 6 (1999), Research Paper 21, 13 pages; Available online at http://www.combinatorics.org/Volume_6/Abstracts/v6i1r21.html.

[10] R. K. Morley, Brief notes and comments. Successive derivatives of tan x, National Mathematics Magazine, 19 (1945), no. 6, 311–312; Available online at http://www.jstor.org/stable/3030048.

[11] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844–858; Available online at http://dx.doi.org/10.1016/j.amc.2015.06.123.

[12] F. Qi, Explicit formulas for the n-th derivatives of the tangent and cotangent functions, arXiv preprint, (2012), available online at http://arxiv.org/abs/1202.1205.

[13] F. Qi, V. Čerňanová, and Y. S. Semenov, On tridiagonal determinants and the Cauchy product of central Delannoy numbers, ResearchGate Working Paper, (2016), available online at http://dx.doi.org/10.13140/RG.2.1.3772.6967.

[14] F. Qi, J. Gélinas, Revisiting Bouvier’s paper on tangent numbers, Adv. Appl. Math. Sci., 16 (2017), no. 8, 275–281.

[15] F. Qi, Explicit formulas for the convolved Fibonacci numbers, Research-Gate Working Paper, (2016), available online at http://dx.doi.org/10.13140/RG.2.2.36768.17927.

[16] F. Qi, B.-N. Guo, Explicit formulas and recurrence relations for higher order Eulerian polynomials, Indag. Math., 28 (2017), no. 4, 884–891; Available online at https://doi.org/10.1016/j.indag.2017.06.010.

[17] F. Qi and B.-N. Guo, Explicit formulas for derangement numbers and their generating function, J. Nonlinear Funct. Anal., 2016, Article ID 45, 10 pages.

[18] F. Qi, Q. Zou, and B.-N. Guo, Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers, Preprints, 2017, 2017030209, 25 pages; Available online at https://doi.org/10.20944/preprints201703.0209.v2.

[19] F. Qi and B.-N. Guo, Several explicit and recursive formulas for the generalized Motzkin numbers, Preprints, 2017, 2017030200, 11 pages; Available online at http://dx.doi.org/10.20944/preprints201703.0200.v1.

[20] F. Qi, B.-N. Guo, Sharpening and generalizations of Shafer’s inequality for the arc sine function, Integral Transforms Spec. Funct., 23 (2012), no. 2, 129–134; Available online at http://dx.doi.org/10.1080/10652469.2011.564578.

[21] F. Qi, B.-N. Guo, Sharpening and generalizations of Shafer’s inequality for the arc tangent function, arXiv preprint, (2009), available online at http://arxiv.org/abs/0902.3298.

[22] F. Qi, B.-N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math., 12 (2018), no. 1, in press; Available online at https://doi.org/10.2298/AADM170405004Q.

[23] F. Qi, B.-N. Guo, Some properties of the Hermite polynomials and their squares and generating functions, Preprints, 2016, 2016110145, 14 pages; Available online at http://dx.doi.org/10.20944/preprints201611.0145.v1.

[24] F. Qi, B.-N. Guo, Viewing some nonlinear ODEs and their solutions from the angle of derivative polynomials, ResearchGate Working Paper, (2016), available online at http://dx.doi.org/10.13140/RG.2.1.4593.1285.

[25] F. Qi, B.-N. Guo, Viewing some ordinary differential equations from the angle of derivative polynomials, Preprints, 2016, 2016100043, 12 pages; Available online at http://dx.doi.org/10.20944/preprints201610.0043.v1.

[26] F. Qi, D.-W. Niu, B.-N. Guo, Refinements, generalizations, and applications of Jordan’s inequality and related problems, J. Inequal. Appl., 2009 (2009), Article ID 271923, 52 pages; Available online at http://dx.doi.org/10.1155/2009/271923.

[27] F. Qi, X.-T. Shi, F.-F. Liu, D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput., 7 (2017), no. 3, 857–871; Available online at https://doi.org/10.11948/2017054.

[28] F. Qi, J.-L. Wang, B.-N. Guo, Notes on a family of inhomogeneous linear ordinary differential equations, Adv. Appl. Math. Sci., 17 (2018), no. 4, 361–368.

[29] F. Qi, J.-L. Wang, B.-N. Guo, Simplifying and finding nonlinear ordinary differential equations, ResearchGate Working Paper, (2017), available online at https://doi.org/10.13140/RG.2.2.28855.32166.

[30] F. Qi, S.-Q. Zhang, B.-N. Guo, Sharpening and generalizations of Shafer’s inequality for the arc tangent function, J. Inequal. Appl., 2009, Article ID 930294, 9 pages; Available online at http://dx.doi.org/10.1155/2009/930294.

[31] F. Qi, J.-L. Zhao, Some properties of the Bernoulli numbers of the second kind and their generating function, ResearchGate Working Paper (2017), available online at http://dx.doi.org/10.13140/RG.2.2.13058.27848.

[32] F. Qi, M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput., 258 (2015), 597–607; Available online at http://dx.doi.org/10.1016/j.amc.2015.02.027.

[33] J.-L. Zhao, Q.-M. Luo, B.-N. Guo, F. Qi, Remarks on inequalities for the tangent function, Hacettepe J. Math. Statist., 41 (2012), no. 4, 499–506.

[34] J.-L. Zhao, F. Qi, Two explicit formulas for the generalized Motzkin numbers, J. Inequal. Appl., 2017, 2017:44, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-017-1313-3.

[35] J.-L. Zhao, J.-L. Wang, F. Qi, Derivative polynomials of a function related to the Apostol–Euler and Frobenius–Euler numbers, J. Nonlinear Sci. Appl., 10 (2017), no. 4, 1345–1349; Available online at http://dx.doi.org/10.22436/jnsa.010.04.06.

[36] A.-M. Xu, G.-D. Cen, Closed formulas for computing higher-order derivatives of functions involving exponential functions, Appl. Math. Comput., 270 (2015), 136–141; Available online at http://dx.doi.org/10.1016/j.amc.2015.08.051.

[37] A.-M. Xu, Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math., 260 (2014), 201–207; Available online at http://dx.doi.org/10.1016/j.cam.2013.09.077.

Acta Universitatis Sapientiae, Mathematica

The Journal of Sapientia Hungarian University of Transylvania

Journal Information


CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.558

Mathematical Citation Quotient (MCQ) 2017: 0.10

Target Group

researchers in all fields of mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 644 450 30
PDF Downloads 126 86 14