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Abstract. Given an endofunctor F of an arbitrary category, any maxi-
mal element of the lattice of congruence relations on an F-coalgebra (A,a)
is called a coatomic congruence relation on (A,a). Besides, a coatomic
congruence relation K is said to be factor split if the canonical homomor-
phism ν : AK → A∇A

splits, where ∇A is the largest congruence relation
on (A,a). Assuming that F is a covarietor which preserves regular monos,
we prove under suitable assumptions on the underlying category that,
every quotient coalgebra can be made extensional by taking the regular
quotient of an F-coalgebra with respect to a coatomic and not factor split
congruence relation or its largest congruence relation.

1 Introduction

The study of coalgebras developed by J. J. M. M. Rutten [15] concerns the
particular case of Set-endofunctors. The author develops the theory of uni-
versal coalgebras with the assumption that the functors preserve weak pull-
backs. This property can see bisimulation equivalences corresponding notions
as of congruence relations in universal algebras. In the same context, the
largest bisimulation on any coalgebra is again the largest congruence on this
coalgebra.

Many theoretical computer science structures, including automata, transi-
tion systems, object oriented systems and lazy data types can be modeled with
a type functor preserving weak pullbacks. However there are viable examples

2010 Mathematics Subject Classification: 68Q85
Key words and phrases: bisimulation, congruence relation

303



304 J. P. Mavoungou

of coalgebras (topological spaces, for instance) whose type functors do not
obey such a restriction.

Certainly, the major advantage of coalgebras is that the theory can naturally
deal with nondeterminism and undefinedness, concepts which are hard, or even
impossible, to treat algebraically.

A universal algebra is called simple if it does not have any nontrivial con-
gruence relation. The notion of simple coalgebra is obtained by applying the
same definition. In other words, the largest congruence relation on a simple
coalgebra is its diagonal. An extensional coalgebra is a coalgebra on which the
largest bisimulation is its diagonal. Assuming the type functor preserves weak
pullbacks, every extensional coalgebra is simple (see [4]).

A quotient algebra also called a factor algebra, is obtained by partionning
the elements of an algebra into equivalence classes given by a congruence
relation, that is an equivalence relation compatible with all the operators of
the algebra. This is equivalent to consider the quotient of an algebra with
respect to a congruence relation. The quotient algebra A/θ is simple if and
only if θ is a maximal congruence on A or θ is the largest congruence relation
on A (see [3]).

The purpose of this paper is to give a characterization theorem for exten-
sional quotient coalgebras of an endofunctor, given an arbitrary underlying
category. To this end, let F denote an endofunctor of an arbitrary category.
Any maximal element of the lattice of congruence relations on an F-coalgebra
(A,a) is called a coatomic congruence relation on (A,a). Besides, a coatomic
congruence relation K is said to be factor split if the canonical homomorphism
ν : AK → A∇A

splits, where ∇A is the largest congruence relation on (A,a).
Suppose that the underlying category is regularly well powered, cocomplete,
exact and equipped with epi-(regular mono) factorizations. If more, F is a co-
varietor which preserves regular monos then, every quotient coalgebra can be
made extensional by taking the regular quotient of an F-coalgebra with respect
to a coatomic and not factor split congruence relation or its largest congruence
relation.

2 Basic notions

We recall here some definitions and usual properties for the following sections.

2.1 Factorization systems

They will be often used throughout this paper.
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A factorization system (F.S) for a category C consists of a pair (E ,M) of
classes of morphisms in C such that:

FS1. E andM contain all isomorphisms of C and are closed under composition.

FS2. Every morphism f of C can be factored as f = m ◦ e for some morphisms
e ∈ E and m ∈M.

FS3. For all commutative squares

• e //

u
��

•
wxx

v
��

•
m

// •

with e ∈ E and m ∈M, there is a unique arrow w making both triangles
commute.

2.2 Subobjects

Unions of regular subobjects are revisited (for more details, see [2]). Their
existence allows one to construct pullbacks.

Recall that a regular mono is a morphism in some category which occurs as
the equalizer of some parallel pair of morphisms. The dual concept is that of
regular epi.

Let A be an object of a category C. Denote by MA the class of all regular
monos of codomain A. Any member f : B → A of MA is written (B, f). The
relation ≤A defined on MA by (B, f) ≤A (C, g) iff there is h : B → C such
that f = g ◦ h is a preorder. This preorder induces an equivalence relation ∼A
in MA, where (B, f) ∼A (C, g) iff (B, f) ≤A (C, g) and (C, g) ≤A (B, f). Also,
the preorder ≤A in MA induces an order, again denoted ≤A, in the quotient
classMA =MA/ ∼A; more precisely [(B, f)] ≤A [(C, g)] iff (B, f) ≤A (C, g). A
member of an equivalence class is called a regular subobject of A.

Definition 1 A category C is said to be regularly well powered, if for each A
in C, MA is a set.

An equivalence class [(B, f)] will be also denoted by its representative f or
simply by the domain B; and in this case one also says that f or B is a regular
subobject of A.
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Definition 2 A regular image of a morphism f : A → C is a regular mono
m : B � C through which f factors, which is minimal in the sense that, if f
factors through any other regular mono B ′ � C, then B is a regular subobject
of B ′.

Suppose that C is a regularly well powered category admitting coproducts
and epi-(regular mono) factorizations. The regular image of a cospan (fα :
Aα −→ A)α in C is the smallest regular subobject E of A through which each
fα factors; that is, there exists a regular mono m : E → A and an epi sink
(gα : Aα −→ E)α such that (fα) = m ◦ (gα). It is constructed in two steps as
follows:

• By the universal property of coproducts, consider the unique morphism
f :
∐
αAα → A such that (fα) = f ◦ (µα), where (µα)α is the cospan of

structural injections.

• Consider the epi-(regular mono) factorization of f:
∐
αAα

e→ E
m
� A.

Hence, the collection of morphisms (e ◦ µα : Aα −→ E)α is an epi sink given
that e is an epimorphism and (µα)α is an epi sink. Particularly, the regular
image or union of a cospan (mα : Sα � A)α of regular subobjects in C is their
supremum in the ordered set (MA,≤A). It will be denoted

⋃
α∈λ Im(mα).

Definition 3 In a category with binary products, a binary relation from A

to B is a regular subobject of A × B. This is represented by a regular mono
m : R� A× B or equivalently, by a pair of arrows

A

R

r1 ;;

r2 ##
B

with the property that the induced arrow 〈r1, r2〉 : R → A × B is a regular
mono. Also, r1 and r2 form a mono source because r1 = p1 ◦ 〈r1, r2〉 and
r2 = p2 ◦ 〈r1, r2〉 with p1 and p2 which form a mono source as structural
morphisms of the product of A and B. A relation from A to A is called a
relation on A.

Binary relations are ordered (as regular subobjects of A × A) and can be
composed. The relational composition is defined by applying the standard
pullback construction as in the category of sets: given a binary relation R
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(represented by r1 : R → A and r2 : R → B) in a finitely complete category
with epi-(regular mono) factorizations, form the pullback of r1 and r2.

R×A R
t1 //

t2 ��

R
r1 //

r2
��

A

R
r1

//

r2 ��

A

A

Factorize 〈r1 ◦ t1, r2 ◦ t2〉 : R×A R→ A×A as an epimorphism followed by a
regular mono, then the latter represents the composite R ◦ R. R is said to be
transitive if R ◦ R is smaller than R. The relation R is called reflexive if the
diagonal map 〈1A, 1A〉 : A→ A×A factors through it and, symmetric if there
is an arrow τ : R → R such that r1 ◦ τ = r2 and r2 ◦ τ = r1. We say that R is
an equivalence relation if it is reflexive, symmetric and transitive.

Pullbacks are constructed in the presence of unions of regular subobjects as
follows.

Proposition 1 Suppose that C is a regularly well powered category with co-
products, finite products and admitting epi-(regular mono) factorizations. Then
it has pullbacks.

Proof. Consider a cospan (A
f1−→ C

f2←− B) in C.

A f1
$$

A f1
$$

C R

r1 ;;

r2 ##

C

B f2

::

B f2

::

Let us denote by Rel(A,B) the class of all binary relations R from A to B such
that f1 ◦ r1 = f2 ◦ r2. This class is nonempty as we are going to show. Let 0
be the initial objest of C (the coproduct in C over the empty index set). The
canonical arrow ! : 0 → A × B factorizes through a regular subobject 0 ′ of
A× B, which is a member of Rel(A,B). Since the category C is regularly well
powered, the class Rel(A,B) is a set. Let R denote again its supremum (the
union); this supremum exists since C has coproducts. Denote by u : R� A×B
the regular mono making R a binary relation.

Consider a span (Q, (gi)i=1,2) such that f1 ◦ g1 = f2 ◦ g2. By the universal
property of products, there is a unique arrow g : Q −→ A × B such that
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p1 ◦ g = g1 and p2 ◦ g = g2; p1 and p2 being the structural morphisms of
the product of A and B. Factorize g as an epimorphism followed by a regular
mono:

Q
g //

eg ��

A× B

W
mg

==

Then (W, (hi)i=1,2), with hi = pi ◦mg, is a binary relation from A to B such
that f1 ◦h1 = f2 ◦h2. Hence, there is an arrow s : W → R such that mg = u◦s.
As a result, gi = pi ◦g = pi ◦mg ◦eg = pi ◦u◦s◦g = ri ◦s◦eg with ri = pi ◦u;
i = 1, 2. This implies that for any arrow j : Q → R such that r1 ◦ j = g1 and
r2 ◦ j = g2, we have r1 ◦ j = r1 ◦ (s ◦ eg) and r2 ◦ j = r2 ◦ (s ◦ eg). Thereafter
s ◦ eg = j since the pair (r1, r2) is a mono source. Consequently, s ◦ eg is the
unique arrow from Q to R such that r1 ◦ (s ◦ eg) = g1 and r2 ◦ (s ◦ eg) = g2.
This proves that R together with arrows r1 = p1 ◦ u and r2 = p2 ◦ u is the

pullback of the cospan (A
f1−→ C

f2←− B). �

Under Proposition 1, the category C is finitely complete; this is because it
has finite products and pullbacks (see [14]).

2.3 Exact sequences

Set, the category of sets and mappings has exact sequences; this means that
every equivalence relation is a kernel pair of its coequalizer. In other words,
there is a ono-to-one correspondence between equivalence relations and regular
quotients.

Replacing Set by a finitely complete category C with coequalizers, an exact
sequence in C is a diagram

R
r1 //
r2
// A

e // B

where R is the kernel pair of e and e is the coequalizer of the parallel pair
(r1, r2). The category C is said to have exact sequences if every equivalence re-
lation in C is the kernel pair of its coequalizer. Every topos has exact sequences
(see [7]).

A category C will be called regular if every finite diagram has a limit, if every
parallel pair of morphisms has a coequalizer and if regular epis are stable under
pullbacks. A regular category with exact sequences is called exact.
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2.4 Kleisli categories

Only monads on Set will be considered.
A monad on Set consists of a Set-endofunctor T together with
• a unit natural transformation η : id ⇒ T ; that is, a function ηX : X → TX

for each set X satisfying a suitable naturality condition; and
• a multiplication natural transformation µ : T 2 ⇒ T , consisting of functions
µX : T 2X→ TX with X ranging over sets.
The unit and multiplication are required to satisfy the following compatibility
conditions.

TX
ηTX//

id ""

T 2X oo
TηX

µX��

TX

id}}

T 3X
TµX //

µTX ��

T 2X

µX��
TX T 2X

µX
// TX

The powerset functor P is a monad with a unit given by singletons and a mul-
tiplication given by unions. Every adjunction gives rise to a monad (see [10]).

Given any monad T , its Kleisli category Kl(T) is defined as follows. Its
objects are the objects of the base category, hence sets in our consideration.
An arrow X → Y in Kl(T) is the same thing as an arrow X → TX. Identities
and composition of arrows are defined using the unit and the multiplication
of T . Moreover, there is a canonical adjunction J a H, where the functor
J : Set → Kl(T) carries a mapping f : X → Y to ηY ◦ f : X → TY in Kl(T) (see
[10]). For instance, the Kleisli category Kl(P) of the powerset monad is up to
isomorphism the category Rel of sets and binary relations (see [5]).

A functor F̄ : Kl(T)→ Kl(T) is said to be a lifting of a Set-endofunctor F if
the following diagram commutes.

Kl(T) F̄ //
OO

J

Kl(T)
OO
J

Set
F

// Set

A lifting F̄ of a Set-endofunctor F is in bijective with a distributive law λ :
FT ⇒ TF (see [12]).

3 Coalgebras of an endofunctor

Let F be an endofunctor of a category C. An F-coalgebra or a coalgebra of type
F is a pair (A,a) consisting of an object A in C together with a C-morphism
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a : A → FA. A is called the carrier or the underlying object and the arrow a

the coalgebra structure of (A,a).
Given F-coalgebras (A,a) and (B, b), the arrow f : A→ B in C is called an

F-morphism, if the following diagram commutes

A
a //

f ��

FA

Ff��
B

b
// FB

It is straightforward to check that the F-morphisms are stable under com-
position. We write CF the category of F-coalgebras and their homomorphisms.

Throughout all that follows, unless otherwise stated,

• C is a regularly well powered category equipped with epi-(regular mono)
factorizations and admitting products;

• F denotes an endofunctor of C.

3.1 Congruences

Definition 4 Let (A,a) and (B, b) be F-coalgebras. A binary relation K from

A to B is a precongruence if for every cospan (A
i→ Z

j← B),

A
i
��

A
a // FA

Fi
""

if K

@@

��
Z commutes then so does K

@@

��
FZ

B j

@@

B
b
// FB Fj

<<

A congruence relation is a precongruence which is an equivalence relation.

Consider a Set-endofunctor F that preserves weak pullbacks. There exists a
distributive law λ : FP ⇒ PF given by

λX(u) = {v ∈ FX : (v, u) ∈ RelF(εX)}

where u ∈ FPX and RelF(εX) ⊆ FX × FPX is the F-relation lifting of the
membership relation εX (see [5]). The functor F̄ : Rel→ Rel induced by this
distributive law carries and arrow R : X→ Y in Kl(P) which is a binary relation
from X to Y to its F-relation lifting RelF(R). That is, F̄R = RelF(R) : FX→ FY

in Kl(P) ∼= Rel.



Extensional quotient coalgebras 311

Given F̄-coalgebras (A,a) and (B, a). Let K : A→ B be an F̄-morphism. The
following diagram commutes as F̄ and F coincide on objects.

A
a //

K ��

FA

F̄K��
B

b
// FB

Also, for every cospan (A
i→ Z

j← B), if j ◦ K = i then F̄(j) ◦ F̄K = F̄(i); hence
F̄(j) ◦ b ◦ K = F̄(j) ◦ F̄K ◦ a = F̄(i) ◦ a. This results the commutative diagram

A
a //

K
��

FA F̄i
##
FZ

B
b
// FB F̄j

;;

Then K is a precongruence. Consequently, any F̄-morphism is a precongruence.

Proposition 2 Assume the category C has colimits. Congruence relations on
an F-coalgebra (A,a) form a sup-complete lattice denoted Con(A,a). The
supremum is given by∨

α∈Λ
Kα = [∪{Im(mα : Kα → A×A);α ∈ Λ}]∗

the smallest congruence relation greater than the union of all mα.

Proof. Let (mα : Kα → A × A)α∈Λ be a nonempty family of congruences
on an F-coalgebra (A,a) with projections kα1 and kα2 given α ∈ Λ. Since the
category C is regularly well powered, this family of regular subobjects of A×A
is a set. Its supremum K exists therefore in C. This is equivalent to consider a
regular mono m : K→ A×A and an epi sink (eα)α such that (mα) = m◦ (eα).
Furthermore, the category C has pullbacks under Proposition 1. Given (A

u→
B

v← A) the pushout of the projections k1 and k2 of K. Denote by Pb(u, v)
the pullback of u and v. There is a unique arrow s : K → Pb(u, v) such that
w1 ◦ s = k1 and w2 ◦ s = k2; w1 and w2 being the structural morphisms of

Pb(u, v). Consider a cospan (A
i→ Z

j← A) such that the following diagram
commutes.

A
i
��

Pb(u, v)

w1
99

w2 %%

Z

A
j

@@
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Then i ◦ k1 = i ◦ w1 ◦ s = j ◦ w2 ◦ s = j ◦ k2. By the universal property of
pushouts, there is a unique arrow w : B→ Z such that w◦u = i and w◦v = j.
For each α ∈ Λ, i ◦ kα1 = j ◦ kα2 ; this follows from the fact that kα1 = k1 ◦ eα
and kα2 = k2 ◦ eα. Hence F(i) ◦ a ◦ k1 ◦ eα = F(j) ◦ a ◦ k2 ◦ eα, because Kα is a
precongruence. The equality F(i)◦a◦k1 = F(j)◦a◦k2 due to the collection (eα)α
is an epi sink. Particularly, the equality F(u)◦a◦k1 = F(v)◦a◦k2 holds. There
is therefore a unique arrow b : B→ FB turning u and v into F-morphisms. So,
we have F(i)◦a◦w1 = F(w◦u)◦a◦w1 = F(w)◦F(u)◦a◦w1 = F(w)◦b◦u◦w1 =
F(w) ◦b ◦ v ◦w2 = F(w) ◦ F(v) ◦a ◦w2 = F(w ◦ v) ◦a ◦w2 = F(j) ◦a ◦w2. This
proves that the following diagram commutes.

A
a // FA

Fi
""

Pb(u, v)

w1
88

w2 &&

FZ

A
a
// FA Fj

<<

Thus Pb(u, v) is a precongruence. Besides u = v given that K is reflexive.
That is, u is the coequalizer of the two projections k1 and k2. Consequently,
Pb(u, v) is an equivalence relation as the kernel pair of a regular mono. Hence
Pb(u, v) is a congruence relation on (A,a). It is easy to check that this is in
fact the supremum of the family (mα : Kα → A×A)α∈Λ.

The supremum of a family of congruences on an F-coalgebra (A,a) indexed
over the empty set is ∆A = ker(1A). It is the smallest congruence on (A,a). �

Write ∇A to denote the largest congruence relation on (A,a).

Proposition 3 Suppose that the category C is exact with colimits. For every
F-coalgebra (B, b), there is at most one F-morphism ϕ : (B, b)→ A∇A

.

Proof. By Proposition 1, the category C has pullbacks. Let us prove that there
is at most one F-morphism with codomain A∇A

. Assume there are two different
F-morphisms ϕ1, ϕ2 : (B, b) → A∇A

. Let ψ : A∇A
→ C be their coequalizer.

Then ker(ψ ◦ π∇A
) is an equivalence relation on A, where π∇A

: A→ A∇A
is

the coequalizer of ∇A. In addition, ker(ψ ◦ π∇A
) is a precongruence. Indeed,

consider a cospan (A
i→ Z

j← A) such that the following diagram commutes;
t1 and t2 being the projections of ker(ψ ◦ π∇A

).

A
i
��

ker(ψ ◦ π∇A
)

t1
66

t2 ((

Z

A
j

@@
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Then i = j given that ker(ψ◦π∇A
) is a reflexive relation on A. Also, ψ◦π∇A

is
the coequalizer of ker(ψ ◦ π∇A

) as the category C is regular. By the universal
property of coequalizers, there is a unique arrow u : C→ Z such that u ◦ (ψ ◦
π∇A

) = i. Furthermore, π∇A
is an F-morphism; this follows from the fact that

∇A is a congruence relation. Hence ψ ◦ π∇A
is an F-morphism. This implies

that F(i) ◦ a ◦ t1 = F(j) ◦ a ◦ t2; that is, the following diagram commutes.

A
a // FA

Fi
""

ker(ψ ◦ π∇A
)

t1
66

t2 ((

FZ

A
a
// FA Fj

<<

So, ker(ψ ◦ π∇A
) is a congruence relation on (A,a). Under condition that the

category C has exact sequences, ∇A is the kernel pair of π∇A
. Consequently,

∇A is properly smaller than ker(ψ◦π∇A
) because ϕ1 and ϕ2 are different. This

contradicts the fact that ∇A is the largest congruence relation on (A,a). �

Any maximal element of the lattice of congruence relations on (A,a) is
called a coatomic congruence relation on (A,a).

3.2 Bisimulations

In the coalgebraic context, there are four notions of bisimulation that gener-
alize the standard notion of bisimulation for labelled transition systems (i.e.,
coalgebras of the Set-endofunctor P(L × (−))), due to Milner [11] and Park
[13]. Further, the four notions are related under certain conditions (see [16]).
The definition we adopt here is a simplification of the bisimulation of Hermida
and Jacobs [6].

Definition 5 For any relation R from A to B in C, we define the relation
F̄R from FA to FB to be the regular image of the composite morphism FR →
F(A× B)→ FA× FB.

A bisimulation between F-coalgebras (A,a) and (B, b) is a binary relation
R from A to B such that there is a morphism R → F̄R making the following
diagram commute.

A oo

a

��

R //

��

B

b
��

FA oo F̄R // FB
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A bisimulation on (A,a) is a bisimulation between (A,a) and (A,a). Any
bisimulation on (A,a) which is an equivalence relation is called a bisimulation
equivalence.

Proposition 4 Suppose that the category C has coproducts and the endofunc-
tor F preserves regular monos. Then the union of any collection of bisimula-
tions is a bisimulation.

Proof. Given F-coalgebras (A,a) and (B, b). The class (Rt)t∈T of bisimulations
between (A,a) and (B, b) is nonempty, since the category C has coproducts.
Also, this class is a set because C is regularly well powered. Denote by (

∐
t∈T Rt,

(σt)t∈T ) the coproduct of Rt’s. Each Rt is a regular subobject of A× B repre-
sented by a regular mono mt : Rt → A × B. Let u :

∐
t∈T Rt → A × B be the

unique arrow such that u ◦ σt = mt, for all t ∈ T . Denote by F̄
∐
t∈T Rt the

regular image of the composite morphism F
∐
t∈T Rt → F(A× B)→ FA× FB.

The following diagram commutes.

FRt
ēt //

F(σt) ��

F̄Rt

d

||

m̄t

��

F
∐
t∈T Rt

v̄ ��
F̄
∐
t∈T Rt ū

// FA× FB

Under condition that the category C has epi-(regular mono) factorizations,
there is a unique arrow d : F̄Rt → F̄

∐
t∈T Rt making both triangles commute.

By the universal property of coproducts, there is a unique arrow ρ :
∐
t∈T Rt →

F̄
∐
t∈T Rt such that ρ ◦ σt = d ◦ rt, for all t ∈ T .

Factorize u as an epimorphism e followed by a regular mono m : R� A×B.
Consider m1 : R1 � A and m2 : R2 � B the respective regular images of the
morphisms p1 ◦ u and p2 ◦ u; p1 and p2 being structural morphisms of the
product of A and B. Then (pi ◦m) ◦ e = mi ◦ ei; i = 1, 2. Hence, there is a
unique arrow wi : R → Ri such that mi ◦ wi = pi ◦m and wi ◦ e = ei. The
morphisms w1 and w2 induce a unique arrow 〈w1, w2〉 : R → R1 × R2 such
that v1 ◦ 〈w1, w2〉 = w1 and v2 ◦ 〈w1, w2〉 = w2; v1 and v2 being the structural
morphisms of the product of R1 and R2. Let s : R1 × R2 → FA × FB be the
unique arrow such that h1 ◦ s = a ◦m1 ◦ v1 and h2 ◦ s = b ◦m2 ◦ v2; h1 and
h2 being the structural morphisms of the product of FA and FB. In addition,
consider the unique arrow k : F(A × B) → FA × FB such that h1 ◦ k = Fp1
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and h2 ◦ k = Fp2. So, ū ◦ v̄ = k ◦ F(u) = k ◦ F(m) ◦ F(e) = m̄ ◦ ē ◦ F(e).
Because v̄ is an epimorphism and m̄ is a regular mono, there is a unique
arrow z : F̄

∐
t∈T Rt → F̄R such that m̄ ◦ z = ū and z ◦ v̄ = ē ◦ F(e). Likewise,

F(mi) ◦ F(ei) = F(mi ◦ ei) = F(pi ◦u) = F(pi) ◦ F(u) = hi ◦k ◦ F(u) = hi ◦ ū ◦ v̄;
i = 1, 2. Since the endofunctor F preserves regular monos, there is a unique
arrow ci : F̄

∐
t∈T Rt → FRi such that F(mi) ◦ ci = hi ◦ ū and ci ◦ v̄ = F(ei);

i = 1, 2. It follows that for all t ∈ T , F(m1) ◦ c1 ◦ ρ ◦ σt = h1 ◦ ū ◦ ρ ◦ σt =
h1 ◦ ū◦d◦rt = h1 ◦m̄t ◦rt = a◦p1 ◦mt = a◦p1 ◦u◦σt and F(m2)◦c2 ◦ρ◦σt =
h2 ◦ ū ◦ ρ ◦ σt = h2 ◦ ū ◦ d ◦ rt = h2 ◦ m̄t ◦ rt = b ◦ p2 ◦mt = b ◦ p2 ◦ u ◦ σt.
Whence F(m1) ◦ c1 ◦ ρ = a ◦m1 ◦ e1 and F(m2) ◦ c2 ◦ ρ = b ◦m2 ◦ e2 as the
cospan (σt)t∈T is an epi sink.

These equalities are used to establish the following commutative diagram.∐
t∈T Rt

e //

ρ
��

R

r

||

〈w1,w2〉
��

F̄
∐
t∈T Rt

z ��

R1 × R2
s
��

F̄R
m̄

// FA× FB

Indeed, we have h1 ◦ s ◦ 〈w1, w2〉 ◦ e = a ◦m1 ◦ v1 ◦ 〈w1, w2〉 ◦ e = a ◦m1 ◦
w1 ◦ e = a ◦ m1 ◦ e1 = F(m1) ◦ c1 ◦ ρ = h1 ◦ ū ◦ ρ = h1 ◦ m̄ ◦ z ◦ ρ and
h2 ◦ s ◦ 〈w1, w2〉 ◦ e = b ◦m2 ◦ v2 ◦ 〈w1, w2〉 ◦ e = b ◦m2 ◦w2 ◦ e = b ◦m2 ◦ e2 =
F(m2)◦c2◦ρ = h2◦ū◦ρ = h2◦m̄◦z◦ρ. Since the pair (h1, h2) is a mono source,
the equality s ◦ 〈w1, w2〉 ◦ e = m̄ ◦ z ◦ ρ holds. Consequently, there is a unique
arrow r : R→ F̄R making both triangles commute. Furthermore, we have that
(h1◦m̄)◦r = h1◦s◦〈w1, w2〉 = a◦m1◦v1◦〈w1, w2〉 = a◦m1◦w1 = a◦(p1◦m)
and (h2 ◦ m̄) ◦ r = h2 ◦ s ◦ 〈w1, w2〉 = b ◦m2 ◦ v2 ◦ 〈w1, w2〉 = b ◦m2 ◦w2 =
b ◦ (p2 ◦ m). Subsequently, R is a bisimulation as union of a collection of
bisimulations. �

Any bisimulation equivalence is a congruence relation (see [16]). But the
converse is not true (see [1]). Now, we are going to investigate the relationship
between bisimulations and congruences.

The following fact is a generalization of the H. P. Gumm’s result presented
in [4].

Proposition 5 Assume the category C has colimits and exact sequences. For
every bisimulation R on an F-coalgebra (A,a) there is a smallest congruence
relation 〈R〉 greater than R provided that R is reflexive.
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Proof. According to Proposition 1, the category C has pullbacks. Consider
a bisimulation (R, (ri)i=1,2) on an F-coalgebra (A,a). Let (A

u→ B
v← A) be

the pushout of r1 and r2. Denote by Pb(u, v) the pullback of u and v. Then

Pb(u, v) is a precongruence. Indeed, given a cospan (A
i→ Z

j← A) such that
the following diagram commutes; t1 and t2 being the projections of Pb(u, v).

A
i
��

Pb(u, v)

t1
99

t2 %%

Z

A
j

@@

By the universal property of pullbacks, there is a unique arrow s : R→ Pb(u, v)
such that t1 ◦s = r1 and t2 ◦s = r2. This implies that i◦r1 = j◦r2. Hence there
is a unique arrow w : B → Z such that w ◦ u = i and w ◦ v = j. In addition,
F(u) ◦ a ◦ r1 = F(v) ◦ a ◦ r2 due to R is a precongruence as bisimulation (see
[16]). Thus B is equipped with a coalgebra structure turning u and v into
F-morphisms. For this reason, the equality F(i) ◦ a ◦ t1 = F(j) ◦ a ◦ t2 holds;
that is, the following diagram commutes.

A
a // FA

Fi
""

Pb(u, v)

t1 88

t2 &&

FZ

A
a
// FA Fj

<<

Also, Pb(u, v) is an equivalence relation on A because R is a reflexive bisim-
ulation. Finally, Pb(u, v) is a congruence relation on (A,a) which is greater
than R. Since the category C satisfies the exactness property, it is not hard to
see that Pb(u, v) is the smallest congruence relation with this property. �

Denote by R-Bis(A,a) the ordered set of reflexive bisimulations on (A,a).
The Proposition 5 yields a functorial correspondence

♦(A,a) : R-Bis(A,a) −→ Con(A,a)

R 7−→ 〈R〉

Otherwise, every congruence relation K on (A,a) is a reflexive relation on A
as equivalence relation. Then the diagonal map 〈1A, 1A〉 : A → A×A factors
through K. But the diagonal map is a split mono and therefore a regular
mono. Also, A is equipped with a bisimulation structure that comes from
its coalgebra structure by epi-(regular mono) factorization of the composite
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morphism FA → F(A × A) → FA × FA. Hence A is a bisimulation on (A,a)
smaller than K. If more, the endofunctor F preserves regular monos, there
exists under Proposition 4, a largest bisimulation on (A,a) smaller than K,
that we denote �(A,a)K. Since A is a bisimulation on (A,a) smaller than K, the
diagonal map factors through �(A,a)K. So �(A,a)K is a reflexive bisimulation
on (A,a). This defines a correspondence

�(A,a) : Con(A,a) −→ R-Bis(A,a)

K 7−→ �(A,a)K

which extends to a functor.
Given a reflexive bisimulation R and a congruence relation K on (A,a), the
following are equivalent:

(i) 〈R〉 is a regular subobject of K.

(ii) R is a regular subobject of �(A,a)K.

Hence, assuming that F preserves regular monos, the functor ♦(A,a) is the left
adjoint of the functor �(A,a).

Definition 6 An endofunctor F : C → C is called a covarietor, provided that
the forgetful functor UF : CF → C has a right adjoint.

Given a topos E with a natural number object (see [7]). The endofunctor
M : E → E that assigns to each object A in E , the free monoid generated by
A is a covarietor (see [8]).

The largest bisimulation on (A,a) which is denoted ∼A is a reflexive bisim-
ulation.

Proposition 6 Assume the category C has colimits with exact sequences and
the endofunctor F is a covarietor which preserves regular monos. A nontriv-
ial congruence relation K on (A,a) is coatomic or K = ∇A, provided that
�(A,a)K =∼A.

Proof. Let K be a nontrivial congruence relation on (A,a), different from ∇A
and satisfying the condition �(A,a)K =∼A. Suppose that there is a congruence
relation L on (A,a), greater than K and different from ∇A. By the universal
property of coequalizers, there is a unique factorization r : AK → AL such that
πL = r◦πK, where πK and πL are respectively the coequalizers of K and L. Under
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Proposition 1, the category C has pullbacks. Then the category CF has also
pullbacks, since the endofunctor F is a covarietor which preserves regular monos
(see [9]). Since the category C has exact sequences, every equivalence relation
in C is the kernel pair of its coequalizer. Furthermore, the coequalizer of any
congruence relation is an F-morphism. Thereafter, the canonical arrow from
the kernel pair of πK in CF to A×A factored through the largest bisimulation on
(A,a) smaller than K. Likewise, the canonical arrow from the kernel pair of πL
in CF to A×A factored through the largest bisimulation on (A,a) smaller than
L. Besides, �(A,a)L is a regular subobject of �(A,a)K, given that �(A,a)K =∼A.
As a consequence, there is a unique arrow s : AL → AK such that πK = s ◦ πL.
Then we get πK = (s ◦ r) ◦ πK; whence s ◦ r = 1AK

since πK is an epi. Thus r is
an epi from the fact of the equality πL = r ◦ πK, and a section; that is an iso.
Hence K is coatomic.

On the other hand, ∼A is the largest bisimulation on (A,a) smaller than
∇A. �

In general though 〈∼A〉 does not need to be the largest congruence on (A,a).
For illustration, denote by ()32 : Set → Set the functor defined on objects as
follows: for a set,

A32 = {(a1, a2, a3) ∈ A3/ | {a1, a2, a3} |≤ 2}

and for each mapping f : A −→ B,

f32(a1, a2, a3) = (f(a1), f(a2), f(a3))

Consider the ()32-coalgebra (A,a) with A = {0, 1, 2}, a(0) = (0, 0, 2), a(1) =
(1, 1, 2) and a(2) = (1, 2, 2). Since the singleton {0} can be provided with a
()32-coalgebra structure, the unique mapping !A : A → {0} is a ()32-morphism.
Its kernel pair is A×A and it is not a bisimulation on (A,a). This implies that
A × A is the largest congruence on (A,a). However the largest bisimulation
on (A,a) is the diagonal ∆A. It is easy to check that 〈∼A〉 = ∆A. Remark
that K = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)} is a coatomic congruence relation on
(A,a).

4 Simple and extensional coalgebras

The largest bisimulation on a final coalgebra is its diagonal. Coalgebras which
are not final but satisfy this condition are called extensional. They are said to
satisfy the weaker condition of simplicity.
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Definition 7 An F-coalgebra (S, s) is extensional, if ∆S is the largest bisimu-
lation on (S, s).

The definition of extensionality reformulates the coinduction proof principle:

x ∼ x ′

x = x ′

This means, in order to prove that two elements x and y are equal it is enough
to prove that there exists a bisimulation R under which x is related to y; i.e.,
(x, y) ∈ R.

A coalgebra is called simple if it does not have any nontrivial congruence
relation. Obviously every simple coalgebra is extensional, but the converse
holds whenever the endofunctor preserves weak pullbacks.

Proposition 7 For any F-coalgebra (S, s) the following are equivalent:

(i) (S, s) is extensional.

(ii) For every F-coalgebra (A,a), there is at most one F-morphism ψ : (A,a)→
(S, s).

Proof. (i) =⇒ (ii). Suppose that there are two different F-morphisms ϕ1, ϕ2 :
(A,a)→ (S, s). There is a unique arrow ϕ : A→ S× S such that p1 ◦ϕ = ϕ1
and p2 ◦ ϕ = ϕ2, with p1 and p2 the structural morphisms of the product of
S with itself. The arrow ϕ factorizes through a regular subobject R of S × S
which is a nontrivial bisimulation on (S, s).
(ii) =⇒ (i). Suppose that ∆S is not the largest bisimulation on (S, s). There

is a bisimulation (R, (ri)i=1,2) on (S, s) with r1 6= r2. �

Recall the set A = {0, 1, 2} together with the coalgebra structure a : A→ A32
such that a(0) = (0, 0, 2), a(1) = (1, 1, 2) and a(2) = (1, 2, 2), where K =
{(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)} is a coatomic congruence relation on (A,a).
In particular, K 6= ∇A = A × A, but the ()32-coalgebra on the quotient set
AK = {0̄, 2̄} is extensional; this is because the largest bisimulation on AK is the
diagonal ∆AK

(see [4]).

Definition 8 A coatomic congruence relation K on (S, s) is called factor split
if the canonical homomorphism ν : SK → S∇S

splits.

H = {(0, 0), (1, 1), (2, 2), (1, 2), (2, 1)} is an equivalence relation on the set
A = {0, 1, 2}. Let πH denote the canonical projection of A onto AH = {0̄, 1̄}, the
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quotient set with respect to H. Provide A with the ()32-coalgebra structure a
such that a(0) = (0, 0, 2), a(1) = (1, 1, 2) and a(2) = (1, 2, 2). Then πH is a ()32-
morphism given that AH is equipped with the coalgebra structure aH : AH →
(AH)

3
2 defined as aH(0̄) = (0̄, 0̄, 1̄) and aH(1̄) = (1̄, 1̄, 1̄). Consequently, H is a

congruence relation on (A,a). Also, H is coatomic as a maximal element of the
lattice of congruence relations on (A,a). Since aH(1̄) = (1̄, 1̄, 1̄), the canonical
homomorphism ν : AH → A∇A

= {0} has a right-sided inverse. Hence, H is
factor split.

For any coatomic and factor split congruence relation K on (S, s), denote by
τ : S∇S

→ SK the right-sided inverse of the canonical homomorphism ν : SK →
S∇S

. Then τ ◦ ν : SK → SK and 1SK : SK → SK are two different F-morphisms
with codomain SK. As a result, SK is not extensional due to Proposition 7.

Lemma 1 Suppose that the category C is exact with colimits. For any coatomic
congruence relation K on an F-coalgebra (S, s), the quotient coalgebra SK is ex-
tensional provided that K is not factor split.

Proof. Given K a coatomic and not factor split congruence relation on (S, s).
Suppose that the quotient coalgebra SK is not extensional. Then the largest
bisimulation on SK is nontrivial. By Proposition 3, the canonical homomor-
phism ν from SK to S∇S

coequalizes its projections. Let ϕ : SK → C denote
the coequalizer of the projections of ∼SK , the largest bisimulation on (S, s).
There is a unique arrow t : C → S∇S

such that t ◦ ϕ = ν. Hence, ker(ϕ) is
properly smaller than ker(ν). Also, K is properly smaller than ker(ϕ◦πK) and
ker(π∇SK

◦πK); πK and π∇SK
being respectively the coequalizer of the projec-

tions of K and the coequalizer of the projections of ∇SK , the largest congruence
relation on SK. But, ker(ϕ ◦ πK) and ker(π∇SK

◦ πK) are congruence relations
on (S, s). Consequently, ker(ϕ ◦πK) = ∇A = ker(π∇SK

◦πK) as K is coatomic.
Besides, ϕ ◦ πK and π∇SK

◦ πK are regular epis given that the category C is
regular. This implies that ϕ ◦ πK = π∇SK

◦ πK; that is, ϕ = π∇SK
due to πK

is an epi. Then ker(ϕ) = ∇SK because the category C has exact sequences. It
follows that ∇SK is properly smaller than ker(ν) which is a congruence relation
on SK. This is a contradiction. So, SK is extensional. �

A quotient coalgebra can be made extensional by taking a regular quotient
with respect to a coatomic and not factor split congruence relation or its
largest congruence relation as the following states.

Proposition 8 Assume the category C is exact with colimits and the endo-
functor F is a covarietor which preserves regular monos. For every F-coalgebra
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(S, s) and a congruence relation K on (S, s), the quotient coalgebra SK is ex-
tensional if and only if K is coatomic and not factor split or K = ∇S.

Proof. Suppose that SK is extensional. Let (Q, (qi)i=1,2) be a bisimulation on
(S, s). There is a unique arrow m : Q → S × S such that p1 ◦ m = q1 and
p2◦m = q2; p1 and p2 being the structural morphisms of the product of S with
itself. Let πK denote the coequalizer of K. The universal property of products
yields a unique arrow mK : Q→ SK × SK such that p1 ◦mK = πK ◦ p1 ◦m and
p2 ◦mK = πK ◦p2 ◦m, with p1 and p2 the structural morphisms of the product
of SK with itself. The arrow mK admits the epi-(regular mono) factorization

Q
mK //

u ��

SK × SK

R
vK

::

Let rK : S× S→ SK × SK be the unique arrow such that p1 ◦ rK = πK ◦ p1 and
p2 ◦ rK = πK ◦ p2. Then F(vK) ◦ F(u) = F(rK) ◦ F(m) due to vK ◦ u = rK ◦m.
Hence h ◦ F(vK) ◦ F(u) = h ◦ F(rK) ◦ F(m), where h : F(SK× SK)→ FSK× FSK is
the unique arrow such that t1 ◦ h = F(p1) and t2 ◦ h = F(p2); t1 and t2 being
the structural morphisms of the product of FSK with itself. Furthermore, there
is a unique arrow π : FS × FS → FSK × FSK such that t1 ◦ π = F(πK) ◦ t1 and
t2 ◦ π = F(πK) ◦ t2, with t1 and t2 the structural morphisms of the product
of FS with itself. Given k : F(S × S) → FS × FS the unique arrow such that
t1 ◦ k = F(p1) and t2 ◦ k = F(p2), we have that ti ◦ π ◦ k = F(πK) ◦ ti ◦ k =
F(πK)◦F(pi) = F(pi)◦F(rK) = ti◦h◦F(rK); i = 1, 2. The equality π◦k = h◦F(rK)
arises from the fact that the pair (t1, t2) is a mono source. One deduces the
following commutative diagram.

FQ
ē //

F(u)
��

F̄Q

w

}}

m̄��
FR

ū ��

FS× FS
π
��

F̄R
v̄K
// FSK × FSK

By the axiom FS3, there is a unique arrow w : F̄Q→ F̄R making both triangles
commute. In addition, there is a unique arrow z : SK × SK → FSK × FSK such
that t1 ◦ z = sK ◦ p1 and t2 ◦ z = sK ◦ p2, where sK : SK → FSK is the unique
arrow turning πK into an F-morphism. Denote by q : Q→ F̄Q the arrow such
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that s◦p1 ◦m = t1 ◦m̄◦q and s◦p2 ◦m = t2 ◦m̄◦q. For i = 1, 2; the following
holds:
t̄i ◦ z ◦ vK ◦ u = sK ◦ pi ◦ vK ◦ u

= sK ◦ pi ◦ rK ◦m
= sK ◦ πK ◦ pi ◦m
= F(πK) ◦ s ◦ pi ◦m
= F(πK) ◦ ti ◦ m̄ ◦ q
= ti ◦ π ◦ m̄ ◦ q
= ti ◦ v̄K ◦w ◦ q

Hence, z◦vK ◦u = v̄K ◦w◦q because the pair (t1, t2) is a mono source. Since u
is an epimorphism and v̄K a regular mono, there is a unique arrow r : R→ F̄R

such that v̄K ◦ r = z ◦ vK and r ◦ u = w ◦ q. In fact, R is a bisimulation on
SK. Thus R is a regular subobject of ∆SK which is the largest bisimulation on
SK. This implies that πK ◦ p1 ◦m = πK ◦ p2 ◦m. Consequently Q is a regular
subobject of K. Since Q is a bisimulation on (S, s), it is smaller than �(S,s)K.
Whence �(S,s)K is the largest bisimulation on (S, s). The Proposition 6 allows
to conclude.

Conversely SK is extensional arising from Propositions 3, 7 and Lemma 1.
�
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