DOI: 10.1515/ausm-2017-0003

Existence and uniqueness of solution for a class of nonlinear degenerate elliptic equation in weighted Sobolev spaces

Albo Carlos Cavalheiro

Department of Mathematics, State University of Londrina, Brazil email: accava@gmail.com

Abstract. In this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations

$$\begin{split} & \Delta(\nu(x)\left|\Delta u\right|^{r-2}\Delta u) - \sum_{j=1}^{n}D_{j}\big[\omega_{1}(x)\mathcal{A}_{j}(x,u,\nabla u)\big] \\ & + b(x,u,\nabla u)\,\omega_{2}(x) = f_{0}(x) - \sum_{j=1}^{n}D_{j}f_{j}(x), \ \ \mathrm{in} \ \ \Omega \end{split}$$

in the setting of the Weighted Sobolev Spaces.

1 Introduction

In this work we prove the existence and uniqueness of (weak) solutions in the weighted Sobolev space $X = W^{2,r}(\Omega, \nu) \cap W_0^{1,p}(\Omega, \omega_1, \omega_2)$ (see Definition 4 and Definition 5) for the Navier problem

$$(P) \left\{ \begin{array}{ll} & Lu(x) = f_0(x) - \displaystyle \sum_{j=1}^n D_j f_j(x), \ \, \mathrm{in} \ \, \Omega \\ \\ & u(x) = \Delta u(x) = 0, \ \, \mathrm{on} \ \, \partial \Omega \end{array} \right.$$

2010 Mathematics Subject Classification: 35J60, 35J70

Key words and phrases: degenerate nonlinear elliptic equation, weighted Sobolev spaces

where L is the partial differential operator

$$Lu(x) = \Delta(v(x) |\Delta u|^{r-2} \Delta u) - \sum_{j=1}^{n} D_{j} [\omega_{1}(x) \mathcal{A}_{j}(x, u(x), \nabla u(x))]$$
$$+ b(x, u, \nabla u) \omega_{2}(x)$$

where $D_i = \partial/\partial x_i$, Ω is a bounded open set in \mathbb{R}^n , ω_1 , ω_2 and ν are three weight functions, Δ is the Laplacian operator, 1 and the functions $\mathcal{A}_{\mathbf{i}}: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \to \mathbb{R} \ (\mathbf{j} = 1, \dots, n) \text{ and } \mathbf{b}: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \to \mathbb{R} \text{ satisfy the following}$ assumptions:

(H1) The function $x \mapsto \mathcal{A}_j(x, \eta, \xi)$ is measurable on Ω for all $(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^n$. The function $(\eta, \xi) \mapsto \mathcal{A}_i(x, \eta, \xi)$ is continuous on $\mathbb{R} \times \mathbb{R}^n$ for almost all $x \in \Omega$.

(H2) there exists a constant $\theta_1 > 0$ such that

$$[\mathcal{A}(x,\eta,\xi) - \mathcal{A}(x,\tilde{\eta},\tilde{\xi})].(\xi - \tilde{\xi}) \ge \theta_1 \left| \xi - \tilde{\xi} \right|^p,$$

whenever $\xi, \tilde{\xi} \in \mathbb{R}^n$, $\xi \neq \tilde{\xi}$, $A(x, \eta, \xi) = (A_1(x, \eta, \xi), \dots, A_n(x, \eta, \xi))$ (where a dot denote here the Euclidian scalar product in \mathbb{R}^{n}).

(H3) $A(x, \eta, \xi)$. $\xi \ge \lambda_1 |\xi|^p + \Lambda_1 |\eta|^p - g_1(x)|\eta| - g_2(x)|\xi|$, where λ_1 and Λ_1 are nonnegative constants, $g_1/\omega_2 \in L^{p'}(\Omega, \omega_2)$ and $g_2/\omega_1 \in L^{p'}(\Omega, \omega_1)$. **(H4)** $|\mathcal{A}(x, \eta, \xi)| \leq |K_1(x)| + |h_1(x)| \eta|^{p/p'} + |h_2(x)| \xi|^{p/p'}$, where K_1, h_1 and h_2

are nonegative functions, with h_1 and $h_2 \in L^{\infty}(\Omega)$, and $K_1 \in L^{p'}(\Omega, \omega_1)$ (with 1/p + 1/p' = 1).

(H5) The function $x \mapsto b(x, \eta, \xi)$ is measurable on Ω for all $(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^n$. The function $(\eta, \xi) \mapsto b(x, \eta, \xi)$ is continuous on $\mathbb{R} \times \mathbb{R}^n$ for almost all $x \in \Omega$.

(H6) there exists a constant $\theta_2 > 0$ such that

$$[b(x, \eta, \xi) - b(x, \tilde{\eta}, \tilde{\xi})](\eta - \tilde{\eta}) \ge \theta_2 |\eta - \tilde{\eta}|^p$$

whenever $\eta, \tilde{\eta} \in \mathbb{R}, \eta \neq \tilde{\eta}$.

 $(\mathbf{H7}) \ b(x,\eta,\xi)\eta \geq \lambda_{2}|\xi|^{p} + \Lambda_{2}|\eta|^{p} - g_{3}(x) \ |\eta| - g_{4}(x)|\xi|, \ \mathrm{where} \ \lambda_{2} \geq 0 \ \mathrm{and} \ \Lambda_{2} > 0$

are constants, $g_3/\omega_2 \in L^{p'}(\Omega, \omega_2)$ and $g_4\omega_2/\omega_1 \in L^{p'}(\Omega, \omega_1)$. **(H8)** $|b(x, \eta, \xi)| \leq K_2(x) + h_3(x)|\eta|^{p/p'} + h_4(x)|\xi|^{\alpha}$, where K_2, h_3 and h_4 are nonnegative functions, with $K_2 \in L^{p'}(\Omega, \omega_2)$, h_3 and $h_4 \in L^{\infty}(\Omega)$, and $\alpha =$ (p-1)/q', where $1 < q < \infty (1/q + 1/q' = 1)$.

(H9) $\lambda_1 + \lambda_2 > 0$.

By a weight, we shall mean a locally integrable function ω on \mathbb{R}^n such that $\omega(x) > 0$ for a.e. $x \in \mathbb{R}^n$. Every weight ω gives rise to a measure on the measurable subsets on \mathbb{R}^n through integration. This measure will be denoted by μ . Thus, $\mu(E) = \int_{E} \omega(x) dx$ for measurable sets $E \subset \mathbb{R}^{n}$.

In general, the Sobolev spaces $W^{k,p}(\Omega)$ without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1, 2, 4, 8, 13]).

A class of weights, which is particularly well understood, is the class of A_p -weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [10]). These classes have found many useful applications in harmonic analysis (see [12]). Another reason for studying A_p -weights is the fact that powers of the distance to submanifolds of \mathbb{R}^n often belong to A_p (see [9]). There are, in fact, many interesting examples of weights (see [8] for p-admissible weights).

In the non-degenerate case (i.e. with $\omega(x) \equiv 1$), for all $f \in L^p(\Omega)$ the Poisson equation associated with the Dirichlet problem

$$\begin{cases} -\Delta u = f(x), & \text{in } \Omega \\ u(x) = 0, & \text{on } \partial \Omega \end{cases}$$

is uniquely solvable in $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ (see [7]), and the nonlinear Dirichlet problem

$$\begin{cases} -\Delta_p u = f(x), & \text{in} \quad \Omega \\ u(x) = 0, & \text{on} \quad \partial \Omega \end{cases}$$

is uniquely solvable in $W_0^{1,p}(\Omega)$ (see [3]), where $\Delta_p \mathfrak{u} = \operatorname{div}(|\nabla \mathfrak{u}|^{p-2}\nabla \mathfrak{u})$ is the p-Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [11] and the references therein), and the degenerated p-Laplacian has been studied in [4]. The problem with degenerated p-Laplacian and p-Biharmonic operators

$$\begin{cases} \Delta(\omega(x)|\Delta u|^{p-2}\Delta u) - \operatorname{div}[\omega(x)|\nabla u|^{p-2}\nabla u] = f(x) - \operatorname{div}(G(x)), & \text{in } \Omega \\ u(x) = \Delta u(x) = 0, & \text{in } \partial\Omega \end{cases}$$

has been studied by the author in [2].

The following theorem will be proved in section 3.

Theorem 1 Assume (H1)-(H9). If

- (i) $v \in A_r$ and $\omega_1, \omega_2 \in A_p$ $(1 < p, r, \infty)$, $\omega_1 \le \omega_2$ a.e., $\omega_2/\omega_1 \in L^q(\Omega, \omega_1)$ $(1 < q < \infty)$,
- (ii) $f_0/\omega_2 \in L^{p'}(\Omega, \omega_2)$ and $f_j/\omega_1 \in L^{p'}(\Omega, \omega_1)$ (j = 1, ..., n). Then the problem (P) has a unique solution

$$u \in X = W^{2,r}(\Omega, v) \cap W_0^{1,p}(\Omega, \omega_1, \omega_2).$$

2 Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^n and assume that $0<\omega(x)<\infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class A_p , $1< p<\infty$, or that ω is an A_p -weight, if there is a constant $C=C_{p,\omega}$ such that

$$\left(\frac{1}{|B|}\int_{B}\omega(x)dx\right)\left(\frac{1}{|B|}\int_{B}\omega^{1/(1-p)}(x)dx\right)^{p-1}\leq C$$

for all balls $B \subset \mathbb{R}^n$, where |.| denotes the n-dimensional Lebesgue measure in \mathbb{R}^n . If $1 < q \leq p$, then $A_q \subset A_p$ (see $[6, \, 8, \, 12]$ for more information about A_p -weights). The weight ω satisfies the doubling condition if there exists a positive constant C such that $\mu(B(x;2\,r)) \leq C\,\mu(B(x;r))$ for every ball $B=B(x;r)\subset \mathbb{R}^n$, where $\mu(B)=\int_B \omega(x)\,dx$. If $\omega\in A_p$, then μ is doubling (see Corollary 15.7 in [8]).

As an example of A_p -weight, the function $\omega(x) = |x|^{\alpha}$, $x \in \mathbb{R}^n$, is in A_p if and only if $-n < \alpha < n(p-1)$ (see Corollary 4.4, Chapter IX in [12]).

If $\omega \in A_p$, then $\left(\frac{|E|}{|B|}\right)^p \leq C\frac{\mu(E)}{\mu(B)}$ whenever B is a ball in \mathbb{R}^n and E is a measurable subset of B (see 15.5 strong doubling property in [8]). Therefore, if $\mu(E) = 0$ then |E| = 0.

Definition 1 Let ω be a weight, and let $\Omega \subset \mathbb{R}^n$ be open. For $0 < \mathfrak{p} < \infty$ we define $L^{\mathfrak{p}}(\Omega, \omega)$ as the set of measurable functions f on Ω such that

$$\|f\|_{L^p(\Omega,\omega)} = \left(\int_{\Omega} |f(x)|^p \omega(x) dx\right)^{1/p} < \infty.$$

If $\omega \in A_p$, $1 , then <math>\omega^{-1/(p-1)}$ is locally integrable and we have $L^p(\Omega, \omega) \subset L^1_{loc}(\Omega)$ for every open set Ω (see Remark 1.2.4 in [13]). It thus makes sense to talk about weak derivatives of functions in $L^p(\Omega, \omega)$.

Definition 2 Let $\Omega \subset \mathbb{R}^n$ be open, k be a nonnegative integer and $\omega \in A_p$ $(1 . We define the weighted Sobolev space <math>W^{k,p}(\Omega,\omega)$ as the set of functions $u \in L^p(\Omega,\omega)$ with weak derivatives $D^\alpha u \in L^p(\Omega,\omega)$ for $1 \le |\alpha| \le k$. The norm of u in $W^{k,p}(\Omega,\omega)$ is defined by

$$\|u\|_{W^{k,p}(\Omega,\omega)} = \left(\int_{\Omega} |u(x)|^p \, \omega(x) \, dx + \sum_{1 < |\alpha| < k} \int_{\Omega} |D^{\alpha}u(x)|^p \, \omega(x) \, dx \right)^{1/p}. \quad (1)$$

We also define $W_0^{k,p}(\Omega,\omega)$ as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm $\|.\|_{W^{k,p}(\Omega,\omega)}$.

If $\omega \in A_p$, then $W^{k,p}(\Omega,\omega)$ is the closure of $C^{\infty}(\Omega)$ with respect to the norm (1) (see Theorem 2.1.4 in [13]). The spaces $W^{k,p}(\Omega,\omega)$ and $W_0^{k,p}(\Omega,\omega)$ are Banach spaces.

It is evident that the weight function ω which satisfies $0 < c_1 \le \omega(x) \le c_2$ for $x \in \Omega$ (c_1 and c_2 positive constants), gives nothing new (the space $W_0^{k,p}(\Omega,\omega)$ is then identical with the classical Sobolev space $W_0^{k,p}(\Omega)$). Consequently, we shall be interested above in all such weight functions ω which either vanish in somewhere $\Omega \cup \partial \Omega$ or increase to infinity (or both).

Definition 3 Let $\Omega \subset \mathbb{R}^n$ be open, $1 < \mathfrak{p} < \infty$, and let ω_1 and ω_2 be $A_\mathfrak{p}$ -weights. We define the weighted Sobolev space $W^{1,\mathfrak{p}}(\Omega,\omega_1,\omega_2)$ as the set of functions $\mathfrak{u} \in L^\mathfrak{p}(\Omega,\omega_2)$ with weak derivatives $D_j\mathfrak{u} \in L^\mathfrak{p}(\Omega,\omega_1)$, $\mathfrak{j}=1,\ldots,\mathfrak{n}$. The norm of \mathfrak{u} in $W^{1,\mathfrak{p}}(\Omega,\omega_1,\omega_2)$ is given by

$$\|u\|_{W^{1,p}(\Omega,\omega_1,\omega_2)} = \left(\int_{\Omega} |u(x)|^p \omega_2(x) dx + \sum_{j=1}^n \int_{\Omega} |D_j u(x)|^p \omega_1(x) dx\right)^{1/p}. (2)$$

The space $W_0^{1,p}(\Omega,\omega_1,\omega_2)$ is the closure of $C_0^{\infty}(\Omega)$ with respect to the norm (2). The dual space of $W_0^{1,p}(\Omega,\omega_1,\omega_2)$ is the space

$$\begin{split} &[W_0^{1,p}(\Omega,\omega_1,\omega_2)]^* = W^{-1,p\;'}(\Omega,\omega_1,\omega_2) \\ &= \{T = f_0 - \operatorname{div} F : F = (f_1,\dots,f_n), \, \frac{f_0}{\omega_2} \in L^{p\;'}(\Omega,\omega_2), \, \frac{f_j}{\omega_1} \in L^{p\;'}(\Omega,\omega_1) \}. \end{split}$$

In this article we use the following results.

Theorem 2 Let $\omega \in A_p$, $1 , and let <math>\Omega$ be a bounded open set in \mathbb{R}^n . If $\mathfrak{u}_m \to \mathfrak{u}$ in $L^p(\Omega, \omega)$ then there exist a subsequence $\{\mathfrak{u}_{\mathfrak{m}_k}\}$ and a function $\Phi \in L^p(\Omega, \omega)$ such that

- $(\mathrm{i})\ u_{m_k}(x) {\rightarrow\,} u(x),\ m_k {\rightarrow\,} \infty,\ \mu\text{-}\mathit{a.e.}\ \mathit{on}\ \Omega;$
- (ii) $|u_{m_k}(x)| \leq \Phi(x)$, μ -a.e. on Ω ;

(where $\mu(E) = \int_{E} \omega(x) dx$).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [5]. \square

Lemma 1 Let 1 .

(a) There exists a constant α_p such that

$$\left| |x|^{p-2}x - |y|^{p-2}y \right| \le \alpha_p |x - y|(|x| + |y|)^{p-2}, \ \forall \, x, y \in \mathbb{R}^n;$$

(b) There exist two positive constants $\beta_{\mathfrak{p}},\,\gamma_{\mathfrak{p}}$ such that for every $x,y\in\mathbb{R}^n$

$$\beta_p \left(|x| + |y| \right)^{p-2} |x-y|^2 \le \left(|x|^{p-2} x - |y|^{p-2} y \right) \cdot (x-y) \le \gamma_p \left(|x| + |y| \right)^{p-2} |x-y|^2.$$

Proof. See [3], Proposition 17.2 and Proposition 17.3.

Lemma 2 If $\omega \in A_p$, then $\left(\frac{|E|}{|B|}\right)^p \leq C_{p,\omega} \frac{\mu(E)}{\mu(B)}$, whenever B is a ball in \mathbb{R}^n and E is a measurable subset of B (where $\mu(E) = \int_F \omega(x) \, dx$).

Proof. See Theorem 15.5 Strong doubling of A_p -weights in [8]. \square By Lemma 2, if $\mu(E) = 0$ then |E| = 0.

Definition 4 We denote by $X = W^{2,r}(\Omega, \nu) \cap W_0^{1,p}(\Omega, \omega_1, \omega_2)$ with the norm $\|u\|_X = \|u\|_{L^p(\Omega, \omega_2)} + \|\nabla u\|_{L^p(\Omega, \omega_1)} + \|\Delta u\|_{L^r(\Omega, \nu)}.$

Definition 5 We say that an element $u \in X$ is a (weak) solution of problem (P) if, for all $\varphi \in X$,

$$\begin{split} &\int_{\Omega} |\Delta u|^{r-2} \, \Delta u \, \Delta \phi \, v \, dx + \sum_{j=1}^n \int_{\Omega} \omega_1 \, \mathcal{A}_j(x, u(x), \nabla u(x)) D_j \phi(x) dx \\ &\quad + \int_{\Omega} b(x, u, \nabla u) \phi \, \omega_2 \, dx \\ &\quad = \int_{\Omega} f_0(x) \phi(x) dx + \sum_{j=1}^n \int_{\Omega} f_j(x) D_j \phi(x) dx. \end{split}$$

3 Proof of Theorem 1

The basic idea is to reduce the problem (P) to an operator equation $A\mathfrak{u}=T$ and apply the theorem below.

Theorem 3 Let $A: X \rightarrow X^*$ be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space X. Then for each $T \in X^*$ the equation Au = T has a solution $u \in X$.

Proof. See Theorem 26.A in [15].

To prove the existence of solutions, we define $B, B_1, B_2, B_3: X \times X \to \mathbb{R}$ and $T: X \to \mathbb{R}$ by

$$\begin{split} B(u,\phi) &= B_1(u,\phi) + B_2(u,\phi) + B_3(u,\phi), \\ B_1(u,\phi) &= \sum_{j=1}^n \int_\Omega \omega_1 \, \mathcal{A}_j(x,u,\nabla u) D_j \phi dx = \int_\Omega \omega_1 \, \mathcal{A}(x,u,\nabla u). \nabla \phi \, dx, \\ B_2(u,\phi) &= \int_\Omega b(x,u,\nabla u) \, \phi \, \omega_2 \, dx, \\ B_3(u,\phi) &= \int_\Omega |\Delta u|^{r-2} \Delta u \, \Delta \phi \, v \, dx, \\ T(\phi) &= \int_\Omega f_0(x) \, \phi(x) \, dx + \sum_{j=1}^n \int_\Omega f_j(x) \, D_j \phi(x) \, dx. \end{split}$$

Then $u \in X$ is a (weak) solution to problem (P) if for all $\varphi \in X$

$$B(u, \varphi) = B_1(u, \varphi) + B_2(u, \varphi) + B_3(u, \varphi) = T(\varphi).$$

Step 1. For $j=1,\dots,n$ we define the operator $F_j:X{\to}L^{p'}(\Omega,\omega_1)$ by

$$(F_i u)(x) = A_i(x, u(x), \nabla u(x)).$$

We now show that operator F_i is bounded and continuous.

(i) Using (H4) and $\omega_1 \leq \omega_2$ we obtain

$$\begin{split} \|F_{j}u\|_{L^{p'}(\Omega,\omega_{1})}^{p'} &= \int_{\Omega} |F_{j}u(x)|^{p'}\omega_{1} \, dx = \int_{\Omega} |\mathcal{A}_{j}(x,u,\nabla u)|^{p'}\omega_{1} \, dx \\ &\leq \int_{\Omega} \left(K_{1} + h_{1}|u|^{p/p'} + h_{2}|\nabla u|^{p/p'} \right)^{p'}\omega_{1} \, dx \\ &\leq C_{p} \int_{\Omega} \left[(K_{1}^{p'} + h_{1}^{p'}|u|^{p} + h_{2}^{p'}|\nabla u|^{p})\omega_{1} \right] dx \\ &\leq C_{p} \left[\int_{\Omega} K_{1}^{p'}\omega_{1} \, dx + \int_{\Omega} h_{1}^{p'}|u|^{p} \, \omega_{2} \, dx \\ &+ \int_{\Omega} h_{2}^{p'}|\nabla u|^{p}\omega_{1} \, dx \right], \end{split}$$
(3)

where the constant $C_{\mathfrak{p}}$ depends only on $\mathfrak{p}.$ We have,

$$\int_{\Omega} h_1^{p'} |u|^p \, \omega_2 \, dx \leq \|h_1\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |u|^p \, \omega_2 \, dx \leq \|h_1\|_{L^{\infty}(\Omega)}^{p'} \|u\|_X^p,$$

and

$$\int_{\Omega} h_2^{p'} |\nabla u|^p \omega_1 \ dx \leq \|h_2\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |\nabla u|^p \ \omega_1 \ dx \leq \|h_2\|_{L^{\infty}(\Omega)}^{p'} \|u\|_X^p.$$

Therefore, in (3) we obtain

$$\|F_ju\|_{L^{p'}(\Omega,\omega_1)} \ \leq \ C_p \left(\|K_1\|_{L^{p'}(\Omega,\omega_1)} + (\|h_1\|_{L^{\infty}(\Omega)} + \|h_2\|_{L^{\infty}(\Omega)}) \, \|u\|_X^{p/p'} \right),$$

and hence the boundedness.

(ii) Let $u_m \to u$ in X as $m \to \infty$. We need to show that $F_j u_m \to F_j u$ in $L^{p'}(\Omega, \omega_1)$. We will apply the Lebesgue Dominated Theorem. If $u_m \to u$ in X, then $u_m \to u$ in $L^p(\Omega, \omega_2)$ and $|\nabla u_m| \to |\nabla u|$ in $L^p(\Omega, \omega_1)$. Using Theorem 2, there exist a subsequence $\{u_{m_k}\}$ and two functions $\Phi_1 \in L^p(\Omega, \omega_1)$ and $\Phi_2 \in L^p(\Omega, \omega_2)$ such that

$$\begin{split} &u_{\mathfrak{m}_k}(x) {\rightarrow} u(x), \;\; \mu_2 - \mathrm{a.e. \; in} \;\; \Omega, \\ &|u_{\mathfrak{m}_k}(x)| \leq \Phi_2(x), \;\; \mu_2 - \mathrm{a.e. \; in} \;\; \Omega, \\ &|\nabla u_{\mathfrak{m}_k}(x)| {\rightarrow} |\nabla u(x)|, \;\; \mu_1 - \mathrm{a.e. \; in} \;\; \Omega, \\ &|\nabla u_{\mathfrak{m}_k}(x)| \leq \Phi_1(x), \;\; \mu_1 - \mathrm{a.e. \; in} \;\; \Omega. \end{split}$$

where $\mu_i = \int_E \omega_i(x) \, dx$ (i = 1, 2). Hence, using (H4) and $\omega_1 \leq \omega_2$, we obtain

$$\begin{split} &\|F_{j}u_{m_{k}}-F_{j}u\|_{L^{p'}(\Omega,\omega_{1})}^{p'}=\int_{\Omega}|F_{j}u_{m_{k}}(x)-F_{j}u(x)|^{p'}\omega_{1}\,dx\\ &=\int_{\Omega}|\mathcal{A}_{j}(x,u_{m_{k}},\nabla u_{m_{k}})-\mathcal{A}_{j}(x,u,\nabla u)|^{p'}\,\omega_{1}\,dx\\ &\leq C_{p}\int_{\Omega}\left(|\mathcal{A}_{j}(x,u_{m_{k}},\nabla u_{m_{k}})|^{p'}+|\mathcal{A}_{j}(x,u,\nabla u)|^{p'}\right)\omega_{1}\,dx\\ &\leq C_{p}\left[\int_{\Omega}\left(K_{1}+h_{1}|u_{m_{k}}|^{p/p'}+h_{2}|\nabla u_{m_{k}}|^{p/p'}\right)^{p'}\omega_{1}\,dx\\ &+\int_{\Omega}\left(K_{1}+h_{1}|u|^{p/p'}+h_{2}|\nabla u|^{p/p'}\right)^{p'}\omega_{1}\,dx\right]\\ &\leq 2\,C_{p}\int_{\Omega}\left(K_{1}+h_{1}\Phi_{2}^{p/p'}+h_{2}\Phi_{1}^{p/p'}\right)^{p'}\omega_{1}\,dx\\ &\leq 2\,C_{p}\left[\int_{\Omega}K_{1}^{p'}\omega_{1}\,dx+\int_{\Omega}h_{1}^{p'}\Phi_{2}^{p}\,\omega_{1}\,dx+\int_{\Omega}h_{2}^{p'}\Phi_{1}^{p}\,\omega_{1}\,dx\right] \end{split}$$

$$\begin{split} & \leq 2\,C_{\mathfrak{p}} \bigg[\| K_1 \|_{L^{\mathfrak{p}'}(\Omega,\omega_1)}^{\mathfrak{p}'} + \| h_1 \|_{L^{\infty}(\Omega)}^{\mathfrak{p}'} \int_{\Omega} \Phi_2^{\mathfrak{p}} \, \omega_2 \, dx + \| h_2 \|_{L^{\infty}(\Omega)}^{\mathfrak{p}'} \int_{\Omega} \Phi_1^{\mathfrak{p}} \, \omega_1 \, dx \bigg] \\ & \leq 2\,C_{\mathfrak{p}} \, \bigg[\| K_1 \|_{L^{\mathfrak{p}'}(\Omega,\omega_1)}^{\mathfrak{p}'} + \| h_1 \|_{L^{\infty}(\Omega)}^{\mathfrak{p}'} \, \| \Phi_2 \|_{L^{\mathfrak{p}}(\Omega,\omega_2)}^{\mathfrak{p}} + \| h_2 \|_{L^{\infty}(\Omega)}^{\mathfrak{p}'} \| \Phi_1 \|_{L^{\mathfrak{p}}(\Omega,\omega_1)}^{\mathfrak{p}} \bigg]. \end{split}$$

By condition (H1), we have

$$F_ju_{\mathfrak{m}_k}(x) = \mathcal{A}_j(x,u_{\mathfrak{m}_k}(x),\nabla u_{\mathfrak{m}_k}(x)) \rightarrow \mathcal{A}_j(x,u(x),\nabla u(x)) = F_ju(x),$$

as $\mathfrak{m}_k \to +\infty$. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain $\|F_j\mathfrak{u}_{\mathfrak{m}_k} - F_j\mathfrak{u}\|_{L^{p'}(\Omega,\omega_1)} \to 0$, that is, $F_j\mathfrak{u}_{\mathfrak{m}_k} \to F_j\mathfrak{u}$ in $L^{p'}(\Omega,\omega_1)$. By the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]), we have

$$F_i u_m \rightarrow F_i u \text{ in } L^{p'}(\Omega, \omega_1).$$
 (4)

Step 2. Define the operator $G: X \to L^{r'}(\Omega, \nu)$, $(Gu)(x) = |\Delta u(x)|^{r-2} \Delta u(x)$. We also have that the operator G is continuous and bounded. In fact:

(i) We have

$$\begin{split} \|Gu\|_{L^{r'}(\Omega,\nu)}^{r'} &= \int_{\Omega} \left| \left| \Delta u \right|^{r-2} \Delta u \right|^{r'} \nu \, dx \\ &= \int_{\Omega} \left| \Delta u \right|^{(r-2) \, r'} \left| \Delta u \right|^{r'} \nu \, dx = \int_{\Omega} \left| \Delta u \right|^{r} \nu \, dx \\ &\leq \|u\|_{X}^{r}. \end{split}$$

Hence, $\left\|Gu\right\|_{L^{r\,\prime}(\Omega,\nu)}\leq \left\|u\right\|_{X}^{r/r\,\prime}.$

(ii) If $u_m \to u$ in X then $\Delta u_m \to \Delta u$ in $L^r(\Omega, \nu)$. By Theorem 2, there exist a subsequence $\{u_{m_k}\}$ and a function $\Phi_3 \in L^r(\Omega, \nu)$ such that

$$\Delta u_{m_k}(x) \rightarrow \Delta u(x), \ \mu_3 - \text{a.e. in } \Omega$$

 $|\Delta u_{m_k}(x)| \leq \Phi_3(x), \ \mu_3 - \text{a.e. in } \Omega,$

where $\mu_3(E) = \int_E v(x) dx$. Hence, using Lemma 1(a), we obtain, if $r \neq 2$

$$\begin{split} \|Gu_{m_k} - Gu\|_{L^{r'}(\Omega, \nu)}^{r'} &= \int_{\Omega} |Gu_{m_k} - Gu|^{r'} \nu \, dx \\ &= \int_{\Omega} \left| |\Delta u_{m_k}|^{r-2} \, \Delta u_{m_k} - |\Delta u|^{r-2} \, \Delta u \right|^{r'} \nu \, dx \\ &\leq \int_{\Omega} \left[\alpha_r \left| \Delta u_{m_k} - \Delta u \right| \left(\left| \Delta u_{m_k} \right| + \left| \Delta u \right| \right)^{(r-2)} \right]^{r'} \nu \, dx \end{split}$$

$$\begin{split} & \leq \, \alpha_r^{r \, \prime} \int_{\Omega} |\Delta u_{m_k} - \Delta u|^{r \, \prime} \, (2 \, \Phi_3)^{(r-2) \, r \, \prime} \, \nu \, dx \\ & \leq \, \alpha_r^{r \, \prime} \, 2^{(r-2)r \, \prime} \bigg(\int_{\Omega} |\Delta u_{m_k} - \Delta u|^r \, \nu \, dx \bigg)^{r \, \prime/r} \\ & \leq \, \alpha_r^{r \, \prime} \, 2^{(r-2) \, r \, \prime} \, \bigg\| u_{m_k} - u \bigg\|_X^{r \, \prime} \, \|\Phi \bigg\|_{L^r(\Omega, \nu)}^{r-r \, \prime}, \end{split}$$

since (r-2) r r'/(r-r') = r if $r \neq 2$. If r = 2, we have

$$\left\|Gu_{\mathfrak{m}_k}-Gu\right\|_{L^2(\Omega,\nu)}^2=\int_{\Omega}\left|\Delta u_{\mathfrak{m}_k}-\Delta u\right|^2\nu\,dx\leq \left\|u_{\mathfrak{m}_k}-u\right\|_X^2.$$

Therefore (for $1 < r < \infty$), by the Lebesgue Dominated Convergence Theorem, we obtain $\|Gu_{\mathfrak{m}_k} - Gu\|_{L^r(\Omega,\nu)} \to 0$, that is, $Gu_{\mathfrak{m}_k} \to Gu$ in $L^{r'}(\Omega,\nu)$. By the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]), we have

$$Gu_m \to Gu \text{ in } L^{r'}(\Omega, \nu).$$
 (5)

Step 3. We define $H: X \to L^{p'}(\Omega, \omega_2)$ by $(H\mathfrak{u})(x) = b(x, \mathfrak{u}(x), \nabla \mathfrak{u}(x))$. We also have that the operator H is continuous and bounded. In fact,

(i) Using (H8) and
$$a = (p-1)/q'$$
, we obtain

$$\begin{split} \|Hu\|_{L^{p\,'}(\Omega,\omega_{2})}^{p\,'} &= \int_{\Omega} |Hu|^{p\,'}\,\omega_{2}\,dx = \int_{\Omega} |b(x,u,\nabla u)|^{p\,'}\,\omega_{2}\,dx \\ &\leq \int_{\Omega} \left(K_{2} + h_{3}|u|^{p/p\,'} + h_{4}|\nabla u|^{\alpha} \right)^{p\,'}\omega_{2}\,dx \\ &\leq C_{p} \int_{\Omega} \left[(K_{2}^{p\,'} + h_{3}^{p\,'}|u|^{p} + h_{4}^{p\,'}|\nabla u|^{\alpha\,p'})\omega_{2} \right] dx \\ &= C_{p} \left[\int_{\Omega} K_{2}^{p\,'}\,\omega_{2}\,dx + \int_{\Omega} h_{3}^{p\,'}|u|^{p}\,\omega_{2}\,dx + \int_{\Omega} h_{4}^{p\,'}|\nabla u|^{\alpha\,p'}\omega_{2}\,dx. \end{split}$$

We have

$$\int_{\Omega} h_3^{p'} |u|^p \omega_2 \le \|h_3\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |u|^p \, \omega_2 \, dx \le \|h_3\|_{L^{\infty}(\Omega)}^{p'} \|u\|_X^p,$$

and

$$\begin{split} &\int_{\Omega} h_{4}^{p'} |\nabla u|^{\alpha \, p'} \, \omega_{2} \, dx \leq \|h_{4}\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |\nabla u|^{p/q'} \, \omega_{2} \, dx \\ &= \|h_{4}\|_{L^{\infty}(\Omega)}^{p'} \int_{\Omega} |\nabla u|^{p/q'} \, \frac{\omega_{2}}{\omega_{1}} \, \omega_{1} \, dx \\ &\leq \|h_{4}\|_{L^{\infty}(\Omega)}^{p'} \bigg(\int_{\Omega} |\nabla u|^{p} \, \omega_{1} \, dx \bigg)^{1/q'} \bigg(\int_{\Omega} \Big(\frac{\omega_{1}}{\omega_{2}} \Big)^{q} \, \omega_{1} \, dx \bigg)^{1/q} \\ &\leq \|h_{4}\|_{L^{\infty}(\Omega)}^{p'} \bigg(\|u\|_{X}^{p/q'} \|\omega_{2}/\omega_{1}\|_{L^{q}(\Omega,\omega_{1})}. \end{split}$$

Hence,

$$\begin{split} \|Hu\|_{L^{p\,\prime}(\Omega,\omega_2)} & \leq C_p \bigg[\|K_2\|_{L^{p\,\prime}(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p\,\prime} \\ & + \|h_4\|_{L^{\infty}(\Omega)} \|\omega_2/\omega_1\|_{L^q(\Omega,\omega_1}^{1/p\,\prime} \|u\|_X^{(p-1)/q\,\prime} \bigg]. \end{split}$$

(ii) By the same argument used in Step 1 (ii)(and condition (H5)), we obtain analogously, if $u_m \to u$ in X then

$$Hu_m \rightarrow Hu$$
, in $L^{p'}(\Omega, \omega_2)$. (6)

Step 4. We also have

$$\begin{split} |T(\phi)| & \leq \int_{\Omega} |f_0| |\phi| \, dx + \sum_{j=1}^n \int_{\Omega} |f_j| |D_j \phi| \, dx \\ & = \int_{\Omega} \frac{|f_0|}{\omega_2} |\phi| \omega_2 \, dx + \sum_{j=1}^n \int_{\Omega} \frac{|f_j|}{\omega_1} |D_j \phi| \, \omega_1 \, dx \\ & \leq \|f_0/\omega_2\|_{L^{p'}(\Omega,\omega_2)} \|\phi\|_{L^p(\Omega,\omega_2)} + \sum_{j=1}^n \|f_j/\omega_1\|_{L^{p'}(\Omega,\omega_1)} \|D_j \phi\|_{L^p(\Omega,\omega_1)} \\ & \leq \left(\|f_0/\omega_2\|_{L^{p'}(\Omega,\omega_2)} + \sum_{j=1}^n \|f_j/\omega_1\|_{L^{p'}(\Omega,\omega_1)}\right) \|\phi\|_X. \end{split}$$

Moreover, using (H4), (H8) and the Hölder inequality, we also have

$$\begin{split} |B(u,\phi)| &\leq |B_{1}(u,\phi)| + |B_{2}(u,\phi)| + |B_{3}(u,\phi)| \\ &\leq \sum_{j=1}^{n} \int_{\Omega} |\mathcal{A}_{j}(x,u,\nabla u)| |D_{j}\phi| \, \omega_{1} \, dx + \int_{\Omega} |\Delta u|^{r-2} \, |\Delta u| \, |\Delta \phi| \, \nu \, dx \\ &+ \int_{\Omega} |b(x,u,\nabla u)| \, |\phi| \, \omega_{2} \, dx. \end{split} \tag{7}$$

In (7) we have

$$\begin{split} & \int_{\Omega} |\mathcal{A}(x,u,\nabla u)| \, |\nabla \phi| \, \omega_1 \, dx \\ & \leq \int_{\Omega} \left(K_1 + h_1 |u|^{p/p \; \prime} + h_2 |\nabla u|^{p/p \; \prime} \right) |\nabla \phi| \, \omega_1 \, dx \\ & \leq \|K_1\|_{L^{p \; \prime}(\Omega,\omega_1)} \|\nabla \phi\|_{L^p(\Omega,\omega_1)} + \|h_1\|_{L^{\infty}(\Omega)} \|u\|_{L^p(\Omega,\omega_2)}^{p/p \; \prime} \|\nabla \phi\|_{L^p(\Omega,\omega_1)} \\ & + \|h_2\|_{L^{\infty}(\Omega)} \|\nabla u\|_{L^p(\Omega,\omega_1)}^{p/p \; \prime} \|\nabla \phi\|_{L^p(\Omega,\omega_1)} \\ & \leq \left(\|K_1\|_{L^{p \; \prime}(\Omega,\omega_1)} + (\|h_1\|_{L^{\infty}(\Omega)} + \|h_2\|_{L^{\infty}(\Omega)}) \|u\|_X^{p/p \; \prime} \right) \|\phi\|_X, \end{split}$$

and

$$\begin{split} &\int_{\Omega} |\Delta u|^{r-2} |\Delta u| |\Delta \phi| \nu \, dx = \int_{\Omega} |\Delta u|^{r-1} |\Delta \phi| \nu \, dx \\ &\leq \left(\int_{\Omega} |\Delta u|^r \nu \, dx \right)^{1/r} \left(\int_{\Omega} |\Delta \phi|^r \nu \, dx \right)^{1/r} \\ &\leq \|u\|_X^{r/r} \|\phi\|_X, \end{split}$$

and

$$\begin{split} & \int_{\Omega} |b(x,u,\nabla u)| \, |\phi| \, \omega_2 \, dx \leq \int_{\Omega} \left(K_2 + h_3 |u|^{p/p} \,' + h_4 |\nabla u|^a \right) |\phi| \, \omega_2 \, dx \\ & \leq \int_{\Omega} K_2 \, |\phi| \, \omega_2 \, dx + \|h_3\|_{L^{\infty}(\Omega)} \int_{\Omega} |u|^{p/p} \,' |\phi| \, \omega_2 \, dx \\ & + \|h_4\|_{L^{\infty}(\Omega)} \int_{\Omega} |\nabla u|^a |\phi| \, \omega_2 \, dx \\ & \leq \left(\|K_2\|_{L^p \,'(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p \,'} \right) \|\phi\|_X \\ & + \|h_4\|_{L^{\infty}(\Omega)} \left(\int_{\Omega} |\nabla u|^{a \, p \,'} \, \omega_2 \, dx \right)^{1/p \,'} \left(\int_{\Omega} |\phi|^p \, \omega_2 \, dx \right)^{1/p} \\ & \leq \left(\|K_2\|_{L^p \,'(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p \,'} \right) \|\phi\|_X \\ & + \|h_4\|_{L^{\infty}(\Omega)} \left(\int_{\Omega} |\nabla u|^{p/q \,'} \frac{\omega_2}{\omega_1} \, \omega_1 \, dx \right)^{1/p \,'} \|\phi\|_X \\ & \leq \left(\|K_2\|_{L^p \,'(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p \,'} \right) \|\phi\|_X \\ & \leq \left(\|K_2\|_{L^p \,'(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p \,'} \right) \|\phi\|_X \end{split}$$

$$\begin{split} &+ \|h_4\|_{L^{\infty}(\Omega)} \bigg(\int_{\Omega} |\nabla u|^p \, \omega_1 \, dx \bigg)^{1/(p \, ' \, q \, ')} \|\omega_2/\omega_1\|_{L^q(\Omega,\omega_1)}^{1/p \, '} \|\phi\|_X \\ &\leq \bigg(\|K_2\|_{L^{p \, '}(\Omega,\omega_2)} + \|h_3\|_{L^{\infty}(\Omega)} \|u\|_X^{p/p \, '} \\ &+ \|h_4\|_{L^{\infty}(\Omega)} \|\omega_2/\omega_1\|_{L^q(\Omega,\omega_1)}^{1/p \, '} \|u\|_X^{p/(q \, 'p \, ')} \bigg) \|\phi\|_X. \end{split}$$

Therefore, in (7) we obtain, for all $u, \varphi \in X$

$$\begin{split} |B(u,\phi)| &\leq \left[\|K_1\|_{L^{p'}(\Omega,\omega_1)} + \|K_2\|_{L^{p'}(\Omega,\omega_2)} \right. \\ &+ \left. (\|h_1\|_{L^{\infty}(\Omega)} + \|h_2\|_{L^{\infty}(\Omega)} + \|h_3\|_{L^{\infty}(\Omega)}) \|u\|_X^{p/p'} \right. \\ &+ \|u\|_X^{r/r'} + \|h_4\|_{L^{\infty}(\Omega)} \|\omega_2/\omega_1\|_{L^q(\Omega,\omega_1)}^{1/p'} \|u\|_X^{p/(p'q')} \right] \|\phi\|_X. \end{split}$$

Since B(u,.) is linear, for each $u \in X$, there exists a linear and continuous operator $A: X \to X^*$ such that $\langle Au, \varphi \rangle = B(u, \varphi)$, for all $u, \varphi \in X$ (where $\langle f, x \rangle$ denotes the value of the linear functional f at the point x) and

$$\begin{split} \|Au\|_* & \leq \|K_1\|_{L^{p'}(\Omega,\omega_1)} + \|K_2\|_{L^{p'}(\Omega,\omega_2)} \\ & + (\|h_1\|_{L^{\infty}(\Omega)} + \|h_2\|_{L^{\infty}(\Omega)} + \|h_3\|_{L^{\infty}(\Omega)}) \|u\|_X^{p/p'} \\ & + \|u\|^{r/r'} + \|h_4\|_{L^{\infty}(\Omega)} \|\omega_2/\omega_1\|_{L^{q}(\Omega,\omega_1)}^{1/p'} \|u\|_X^{p/(p'q')}. \end{split}$$

Consequently, problem (P) is equivalent to the operator equation

$$Au = T$$
, $u \in X$.

Step 5. Using condition (H2), (H6) and Lemma 1(b), we have

$$\begin{split} \langle Au_1 - Au_2, u_1 - u_2 \rangle &= B(u_1, u_1 - u_2) - B(u_2, u_1 - u_2) \\ &= \int_{\Omega} \omega_1 \, \mathcal{A}(x, u_1, \nabla u_1). \nabla (u_1 - u_2) \, dx + \int_{\Omega} |\Delta u_1|^{r-2} \, \Delta u_1 \, \Delta (u_1 - u_2) \, \nu \, dx \\ &+ \int_{\Omega} b(x, u_1, \nabla u_1) (u_1 - u_2) \, \omega_2 \, dx - \int_{\Omega} b(x, u_2, \nabla u_2) (u_1 - u_2) \, \omega_2 \, dx \\ &- \int_{\Omega} \omega_1 \, \mathcal{A}(x, u_2, \nabla u_2). \nabla (u_1 - u_2) \, dx - \int_{\Omega} |\Delta u_2|^{r-2} \, \Delta u_2 \, \Delta (u_1 - u_2) \, \nu \, dx \\ &= \int_{\Omega} \omega_1 \left(\mathcal{A}(x, u_1, \nabla u_1) - \mathcal{A}(x, u_2, \nabla u_2) \right). \nabla (u_1 - u_2) \, dx \end{split}$$

$$\begin{split} &+ \int_{\Omega} (|\Delta u_{1}|^{r-2} \Delta u_{1} - |\Delta u_{2}|^{r-2} \Delta u_{2}) \, \Delta(u_{1} - u_{2}) \, \nu \, dx \\ &+ \int_{\Omega} (b(x, u_{1}, \nabla u_{1}) - b(x, u_{2}, \nabla u_{2})) (u_{1} - u_{2}) \, \omega_{2} \, dx \\ &\geq \theta_{1} \int_{\Omega} \omega_{1} \, |\nabla (u_{1} - u_{2})|^{p} \, dx + \beta_{r} \int_{\Omega} (|\Delta u_{1}| + |\Delta u_{2}|)^{r-2} \, |\Delta u_{1} - \Delta u_{2}|^{2} \, \nu \, dx \\ &+ \theta_{2} \int_{\Omega} |u_{1} - u_{2}|^{p} \omega_{2} \, dx \\ &\geq \theta_{1} \int_{\Omega} \omega_{1} \, |\nabla (u_{1} - u_{2})|^{p} \, dx + \beta_{r} \int_{\Omega} (|\Delta u_{1} - \Delta u_{2}|)^{r-2} \, |\Delta u_{1} - \Delta u_{2}|^{2} \, \nu \, dx \\ &+ \theta_{2} \int_{\Omega} |u_{1} - u_{2}|^{p} \omega_{2} \, dx \\ &= \theta_{1} \int_{\Omega} \omega_{1} \, |\nabla (u_{1} - u_{2})|^{p} \, dx + \beta_{r} \int_{\Omega} |\Delta u_{1} - \Delta u_{2}|^{r} \, \nu \, dx \\ &+ \theta_{2} \int_{\Omega} |u_{1} - u_{2}|^{p} \omega_{2} \, dx \geq 0. \end{split}$$

Therefore, the operator A is monotone. Moreover, using (H3), (H7), (H9) and $\omega_1 \leq \omega_2$, we obtain

$$\begin{split} \langle Au,u\rangle &= B(u,u) = B_1(u,u) + B_2(u,u) + B_3(u,u) \\ &= \int_{\Omega} \omega_1 \, \mathcal{A}(x,u,\nabla u). \nabla u \, dx + \int_{\Omega} |\Delta u|^{r-2} \, \Delta u \, \Delta u \, \nu \, dx \\ &\quad + \int_{\Omega} b(x,u,\nabla u) \, u \, \omega_2 \, dx \\ &\geq \int_{\Omega} (\lambda_1 |\nabla u|^p + \Lambda_1 |u|^p - g_1 |u| - g_2 |\nabla u|) \, \omega_1 \, dx + \int_{\Omega} |\Delta u|^r \, \nu \, dx \\ &\quad + \int_{\Omega} (\lambda_2 |\nabla u|^p + \Lambda_2 |u|^p - g_3 |u| - g_4 |\nabla u|) \, \omega_2 \, dx \\ &\geq (\lambda_1 + \lambda_2) \int_{\Omega} |\nabla u|^p \, \omega_1 \, dx + \int_{\Omega} |\Delta u|^r \, \nu \, dx + \Lambda_2 \int_{\Omega} |u|^p \, \omega_2 \, dx \\ &\quad - \int_{\Omega} g_1 |u|^p \, \omega_1 \, dx - \int_{\Omega} g_2 |\nabla u|^p \, \omega_1 \, dx - \int_{\Omega} g_3 |u| \omega_2 \, dx - \int_{\Omega} g_4 |\nabla u| \, \omega_2 \, dx \\ &\geq \gamma \, \left(\|u\|_{L^p(\Omega,\omega_2)}^p + \|\nabla u\|_{L^p(\Omega,\omega_1)}^p + \|\Delta u\|_{L^r(\Omega,\nu)}^r \right) - \gamma_1 \, \|u\|_X, \end{split}$$

where $\gamma = \min\{\lambda_1 + \lambda_2, \Lambda_2, 1\}$ and

$$\begin{split} \gamma_1 &= \|g_1/\omega_2\|_{L^{p'}(\Omega,\omega_2)} + \|g_2/\omega_1\|_{L^{p'}(\Omega,\omega_1)} + \|g_3/\omega_2\|_{L^{p'}(\Omega,\omega_2)} \\ &+ \|g_4\omega_2/\omega_1\|_{L^{p'}(\Omega,\omega_1)}. \end{split}$$

Hence, since $1 < p, r < \infty$, we have

$$\frac{\langle Au, u \rangle}{\|u\|_{Y}} \to +\infty, \text{ as } \|u\|_{X} \to +\infty,$$

that is, A is coercive (using that $\lim_{t+s+\alpha\to\infty}\frac{t^p+s^p+\alpha^r}{t+s+\alpha}=\infty,$ with t>0, s>0 and $\alpha>0$).

Step 6. We need to show that the operator A is continuous. Let $\mathfrak{u}_{\mathfrak{m}} \to \mathfrak{u}$ in X as $\mathfrak{m} \to \infty$. We have,

$$\begin{split} &|B_{1}(u_{m},\phi)-B_{1}(u,\phi)|\\ &\leq \sum_{j=1}^{n}\int_{\Omega}|\mathcal{A}_{j}(x,u_{m},\nabla u_{m})-\mathcal{A}_{j}(x,u,\nabla u)\|D_{j}\phi|\,\omega_{1}\,dx\\ &=\sum_{j=1}^{n}\int_{\Omega}|F_{j}u_{m}-F_{j}u\|D_{j}\phi|\,\omega_{1}\,dx\\ &\leq \sum_{j=1}^{n}\left\|F_{j}u_{m}-F_{j}u\right\|_{L^{p'}(\Omega,\omega_{1})}\|D_{j}\phi\|_{L^{p}(\Omega,\omega_{1})}\\ &\leq \sum_{j=1}^{n}\left\|F_{j}u_{m}-F_{j}u\right\|_{L^{p'}(\Omega,\omega_{1})}\|\phi\|_{X}, \end{split}$$

and

$$\begin{split} &|B_{3}(u_{m},\phi)-B_{3}(u,\phi)|\\ &=\left|\int_{\Omega}|\Delta u_{m}|^{r-2}\Delta u_{m}\,\Delta\phi\,\nu\,dx-\int_{\Omega}|\Delta u|^{r-2}\Delta u\,\Delta\phi\,\nu\,dx\right|\\ &\leq\int_{\Omega}\left||\Delta u_{m}|^{r-2}\,\Delta u_{m}-|\Delta u|^{r-2}\Delta u\,\left||\Delta\phi|\nu\,dx\right.\\ &=\int_{\Omega}|Gu_{m}-Gu||\Delta\phi|\nu\,dx\\ &\leq\|Gu_{m}-Gu\|_{L^{r'}(\Omega,\nu)}\,\|\phi\|_{X}, \end{split}$$

and

$$\begin{split} |B_2(u_m, \varphi) - B_2(u, \varphi)| &\leq \int_{\Omega} |b(x, u_m, \nabla u_m) - b(x, u, \nabla u)| \, |\varphi| \, \omega_2 \, dx \\ &= \int_{\Omega} |Hu_m - Hu| |\varphi| \, \omega_2 \, dx \\ &\leq \|Hu_m - Hu\|_{L^{p'}(\Omega, \omega_2)} \|\varphi\|_X, \end{split}$$

for all $\varphi \in X$. Hence,

$$\begin{split} &|B(u_{\mathfrak{m}},\phi)-B(u,\phi)| \\ &\leq |B_{1}(u_{\mathfrak{m}},\phi)-B_{1}(u,\phi)|+|B_{2}(u_{\mathfrak{m}},\phi)-B_{2}(u,\phi)|+|B_{3}(u_{\mathfrak{m}},\phi)-B_{3}(u,\phi)| \\ &\leq \left[\sum_{j=1}^{n}\left\|F_{j}u_{\mathfrak{m}}-F_{j}u\right\|_{L^{p'}(\Omega,\omega_{1})}+\left\|Gu_{\mathfrak{m}}-Gu\right\|_{L^{r'}(\Omega,\nu)} \\ &+\left\|Hu_{\mathfrak{m}}-Hu\right\|_{L^{p'}(\Omega,\omega_{2})}\right]\|\phi\|_{X}. \end{split}$$

Then we obtain

$$\begin{split} \|Au_{\mathfrak{m}} - Au\|_{*} &\leq \sum_{j=1}^{\mathfrak{n}} \|F_{j}u_{\mathfrak{m}} - F_{j}u\|_{L^{\mathfrak{p}'}(\Omega,\omega_{1})} + \|Gu_{\mathfrak{m}} - Gu\|_{L^{\mathfrak{r}'}(\Omega,\nu)} \\ &+ \|Hu_{\mathfrak{m}} - Hu\|_{L^{\mathfrak{p}'}(\Omega,\omega_{2})}. \end{split}$$

Therefore, using (4), (5) and (6) we have $||Au_m - Au||_* \to 0$ as $m \to +\infty$, that is, A is continuous (and this implies that A is hemicontinuous).

Therefore, by Theorem 3, the operator equation Au = T has a solution $u \in X$ and it is a solution for problem (P).

Step 7. Let us now prove the uniqueness of the solution.

Suppose that $u_1, u_2 \in X$ are two solutions of problem (P). Then

$$\begin{split} &\int_{\Omega} \left| \Delta u_i \right|^{r-2} \! \Delta u_i \, \Delta \phi \, \nu \, dx + \int_{\Omega} \omega_1 \, \mathcal{A}(x, u_i, \nabla u_i) . \nabla \phi \, dx \\ &\quad + \int_{\Omega} b(x, u_i, \nabla u_i) \, \phi \, \omega_2 \, dx \\ &\quad = \int_{\Omega} f_0 \, \phi \, dx + \sum_{j=1}^n \int_{\Omega} f_j \, D_j \phi \, dx, \end{split}$$

for all $\varphi \in X$, and i = 1, 2. Hence, we obtain

$$\begin{split} &\int_{\Omega} \left(\left| \Delta u_{1} \right|^{r-2} \Delta u_{1} - \left| \Delta u_{2} \right|^{r-2} \Delta u_{2} \right) \Delta \phi \, \nu \, dx \\ &+ \int_{\Omega} \omega_{1} \left(\mathcal{A}(x, u_{1}, \nabla u_{1}) - \mathcal{A}(x, u_{2}, \nabla u_{2}) \right) . \nabla \phi \, dx \\ &+ \int_{\Omega} \left(b(x, u_{1}, \nabla u_{1}) - b(x, u_{2}, \nabla u_{2}) \right) \phi \, \omega_{2} \, dx = 0. \end{split}$$

In particular, for $\varphi = u_1 - u_2 \in X$ we have, by (H2), (H7) and Lemma 1(b),

$$\begin{split} 0 &= \int_{\Omega} \left(\left| \Delta u_1 \right|^{r-2} \Delta u_1 - \left| \Delta u_2 \right|^{r-2} \Delta u_2 \right) \left(\Delta u_1 - \Delta u_2 \right) \nu \, dx \\ &+ \int_{\Omega} \omega_1 \left(\mathcal{A}(x, u_1, \nabla u_1) - \mathcal{A}(x, u_2, \nabla u_2) \right) . (\nabla u_1 - \nabla u_2) \, dx \\ &+ \int_{\Omega} \left(b(x, u_1, \nabla u_1) - b(x, u_2, \nabla u_2) \right) (u - 1 - u_2) \, \omega_2 \, dx \\ &\geq \beta_r \int_{\Omega} \left| \Delta u_1 - \Delta u_2 \right|^r \nu \, dx + \theta_1 \int_{\Omega} \left| \nabla u_1 - \nabla u_2 \right|^p \, \omega_1 \, dx \\ &+ \theta_2 \int_{\Omega} \left| u_1 - u_2 \right|^p \, \omega_2 \, dx. \end{split}$$

Hence $\|u_1-u_2\|_{L^p(\Omega,\omega_2)} = \|\nabla u_1-\nabla u_2\|_{L^p(\Omega,\omega_1)} = \|\Delta u_1-\Delta u_2\|_{L^r(\Omega,\nu)} = 0.$ Since $u_1,u_2\in X$, then $u_1=u_2$ μ_2 a.e. Therefore, by Lemma 2, $u_1=u_2$ a.e.

Example 1 Let $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Consider the weight functions ω_1, ω_2 and $\nu, \omega_1(x,y) = (x^2 + y^2)^{-1/4}, \omega_2(x,y) = (x^2 + y^2)^{-1/2}$ and $\nu(x,y) = (x^2 + y^2)^{-1/6}$ (we have $\omega_1, \omega_2 \in A_2$ (p = 2) and $\nu \in A_3$ (r = 3)), and the functions $\mathcal{A}: \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ and $b: \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$

$$\mathcal{A}((x,y), \eta, \xi) = h_2(x,y) \xi,$$

 $b((x,y), \eta, \xi) = \eta (\cos^2(xy) + 1),$

where $h(x,y) = 2e^{(x^2+y^2)}$. Let us consider the partial differential operator

$$\begin{split} L\mathfrak{u}(x,y) &= \Delta((x^2+y^2)^{-1/6}|\Delta\mathfrak{u}|\,\Delta\mathfrak{u}) - \mathrm{div}\,((x^2+y^2)^{-1/4}\,\mathcal{A}((x,y),\mathfrak{u},\nabla\mathfrak{u})) \\ &+ (x^2+y^2)^{-1/2}\,b(x,\mathfrak{u},\nabla\mathfrak{u}). \end{split}$$

Therefore, by Theorem 1, the problem

$$(P) \begin{cases} Lu(x) = \frac{\cos(xy)}{\sqrt{x^2 + y^2}} - \frac{\partial}{\partial x} \left(\frac{\sin(xy)}{\sqrt{x^2 + y^2}} \right) - \frac{\partial}{\partial y} \left(\frac{\sin(xy)}{\sqrt{x^2 + y^2}} \right), & \text{in } \Omega \\ u(x) = \Delta u(x) = 0, & \text{on } \partial \Omega \end{cases}$$

 $\textit{has a unique solution } u \in X = W^{2,3}(\Omega,\nu) \cap W^{1,2}_0(\Omega,\omega_1,\omega_2).$

References

- [1] A. C. Cavalheiro, Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, *J. Appl. Anal.*, **19** (2013), 41–54.
- [2] A. C. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-Biharmonic operators, *Appl. Math. E-Notes*, **13** (2013), 234–242.
- [3] M. Chipot, *Elliptic Equations: An Introductory Course*, Birkhäuser, Berlin (2009).
- [4] P. Drábek, A. Kufner, F. Nicolosi, *Quasilinear Elliptic Equations with Degenerations and Singularities*, Walter de Gruyter, Berlin (1997).
- [5] S. Fučik, O. John, A. Kufner, Function Spaces, Noordhoff International Publ., Leyden, (1977).
- [6] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, (1985).
- [7] D. Gilbarg, N. S. Trudinger, *Elliptic Partial Equations of Second Order*, 2nd Ed., Springer, New York (1983).
- [8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, (1993).
- [9] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, (1985).
- [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226.
- [11] M. Talbi, N. Tsouli, On the spectrum of the weighted p-Biharmonic operator with weight, *Mediterr. J. Math.*, 4 (2007), 73–86.

- [12] A. Torchinsky, *Real-Variable Methods in Harmonic Analysis*, Academic Press, San Diego, (1986).
- [13] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, (2000).
- [14] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.I, Springer-Verlag, (1990).
- [15] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, (1990).

Received: May 17, 2016