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Abstract. In this work we are interested in the existence and uniqueness
of solutions for the Navier problem associated to the degenerate nonlinear

elliptic equations

Ap(x) lau 2 Au) — 3 Djfw (1, V)]
j=1

n
+ b(x,u, Vu) wy(x Z ), in Q

in the setting of the Weighted Sobolev Spaces.

1 Introduction

In this work we prove the existence and uniqueness of (weak) solutions in the
weighted Sobolev space X = W2T(Q,v) ﬁW;’p(Q, w1, wy) (see Definition 4
and Definition 5) for the Navier problem

Lu(x) = fo(x) = > Djfj(x), in Q

() ]:1
u(x) = Au(x) =0, on 0Q
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where L is the partial differential operator

Lu(x) = Av(x) [Au 2 Au) — Y Dj [ (x)4;(x, 1(x), Vu(x))]
j=1
+ b(x,u, Vu) wy(x)

where Dj = 9/0xj, Q is a bounded open set in R", wj, w; and v are three
weight functions, A is the Laplacian operator, 1 < p < oo and the functions
Aj : OxRxR" =R (j = 1,...,n) and b : QxRxR"—=R satisfy the following
assumptions:

(H1) The function x+—.A4;(x,m, &) is measurable on Q for all (n,&) € RxR™.
The function (1, &) —.A4;(x,1, &) is continuous on RxR™ for almost all x€Q).
(H2) there exists a constant 67 > 0 such that

LA, &) = Al 7, E)].(E— £) 201 & — &
whenever & E€R™, E£E, A(x,1,&) = (A1, 8),..., An(x,1,&)) (Where a

dot denote here the Euclidian scalar product in R™).

(H3) A(x,n,&). E=MIEP + Aiinf® — gi(x)Inl = g2(x)IE], where A; and Ay are
nonnegative constants, gi/w; € LP (Q, w,) and g2/w; € LP (Q, wy).

(H4) [A(x1,8)| < Ki(x) + hi()mPP" + ha(x)|EFP/P", where Ky, hy and hy
are nonegative functions, with hy and h,€L*®(Q), and K;eLP'(Q, w;) (with
T/p+1/p'=1).

(H5) The function x—b(x,n, &) is measurable on Q for all (n,&) € RxR™.
The function (n, &) —b(x,1, &) is continuous on RxR™ for almost all x€Q.
(H6) there exists a constant 6, > 0 such that

[b(x)ﬂ> &) - b(X)ﬁ) 5)](11 _ﬁ) >0, |T] _ﬁ|p)

whenever n,NER, n#n.

(HT7) b(x,n, &En >N E J/r/\zhﬂp —93(x) Inl—ga(x)I€|, where A;>0 and Az > 0
are constants, g3/wy€lP (Q,w;) and gswy/wi€ P (Q, wq).

(H8) [b(x,n, &) < Ka(x) + ha(x)P’P" + hy(x)E]%, where Ky, hs and hy are
nonnegative functions, with K, € LP'(Q, w,), hs and hy € L>°(Q), and a =
(p—1)/q’, where 1 < q< oo (1/q+1/q'=1).

(H9) A + A, > 0.

By a weight, we shall mean a locally integrable function w on R™ such that
w(x) > 0 for a.e. x € R™. Every weight w gives rise to a measure on the
measurable subsets on R™ through integration. This measure will be denoted
by w. Thus, u(k) = IE w(x) dx for measurable sets E C R™.



28 A. C. Cavalheiro

In general, the Sobolev spaces W*P(Q) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coeflicients, it is natural to look for solutions in weighted Sobolev spaces
(see [1, 2, 4, 8, 13]).

A class of weights, which is particularly well understood, is the class of A,-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[10]). These classes have found many useful applications in harmonic analysis
(see [12]). Another reason for studying Ap-weights is the fact that powers of
the distance to submanifolds of R™ often belong to A, (see [9]). There are, in
fact, many interesting examples of weights (see [8] for p-admissible weights).

In the non-degenerate case (i.e. with w(x) = 1), for all f € LP(Q) the Poisson
equation associated with the Dirichlet problem

—Au="F(x), in Q
u(x) =0, on 00

is uniquely solvable in W2P(Q) N Wg)’p (Q) (see [7]), and the nonlinear Dirichlet
problem

—Apu=1~(x), in Q
u(x) =0, on 0Q

is uniquely solvable in W;’p(Q) (see [3]), where Apu = div( IVulP2Vu) is the
p-Laplacian operator. In the degenerate case, the weighted p-Biharmonic op-
erator has been studied by many authors (see [11] and the references therein),
and the degenerated p-Laplacian has been studied in [4]. The problem with
degenerated p-Laplacian and p-Biharmonic operators

Alw(x)|AuP2Au) — diviw (x)[VulP 2V = f(x) — div(G(x)), in Q
u(x) =Au(x) =0, in 0Q

has been studied by the author in [2].
The following theorem will be proved in section 3.

Theorem 1 Assume (H1)-(H9). If

(i) ve Ay and wi,wy € Ay (1 <p,1,00), w1 < Wy a.e., wy/wy € LI(Q, w1)
(1 <q <o),

(i) fo/wy € LP'(Q, wy) and fj/wy € P (Q,w1) (j=1,...,n).

Then the problem (P) has a unique solution

ue X = WA (Qv)NW P (Q, wr, w;).
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2 Definitions and basic results

Let w be a locally integrable nonnegative function in R™ and assume that
0 < w(x) < oo almost everywhere. We say that w belongs to the Muckenhoupt
class Ap, 1 < p < oo, or that w is an Ap-weight, if there is a constant C = C,,

such that ]
1 ! 1/(1-p) "
<|B|J w(x )dx> <|B| J w P (x)dx> <C

for all balls B C R™, where |.| denotes the n-dimensional Lebesgue measure in
R™ If 1 < q < p, then Ay C A, (see [6, 8, 12] for more information about A-
weights). The weight w satisfies the doubling condition if there exists a positive
constant C such that w(B(x;21)) < Cu(B(x;r)) for every ball B = B(x;r) CR™,
where (B IB x) dx. If weA,, then u is doubling (see Corollary 15.7 in
8)).

As an example of A,-weight, the function w(x) = [x|¥, x€R™, is in A,, if and
only if —n < « < n(p —1) (see Corollary 4.4, Chapter IX in [12]).

[EI\P H(E) . . n .
If weA,, then Bl < Cm whenever B is a ball in R™ and E is a

measurable subset of B (see 15.5 strong doubling property in [8]). Therefore, if
w(E) = 0 then |E| = 0.

Definition 1 Let w be a weight, and let QO CR™ be open. For 0 < p < co we
define LP(Q, w) as the set of measurable functions f on QO such that

1/p
Iflltr (,w) = <JQ |f(X)|pw(X)dx> < 0.

If we Ap, 1 <p < oo, then wVP=1) s locally integrable and we have
[P(Q,w)C L] .(Q) for every open set Q (see Remark 1.2.4 in [13]). It thus
makes sense to talk about weak derivatives of functions in LP(Q, w).

Definition 2 Let QO CR"™ be open, k be a nonnegative integer and w € A,
(1 <p < 00). We define the weighted Sobolev space W*P(Q, w) as the set of
functions u € LP(Q, w) with weak derivatives D*u € LP(Q, w) for1 < |a| < k.
The norm of w in WoP(Q, w) is defined by

1/p
IIuIIWk,p(Q,w)z<Llu(x)|P Xdx+ ) J ID%u( (x)dx) . (1)

1<l <k
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We also define Wg P(Q, w) as the closure of C3°(Q) with respect to the norm
[l wier (0,0 -

If w € Ap, then WKP(Q, w) is the closure of C*®(Q) with respect to the
norm (1) (see Theorem 2.1.4 in [13]). The spaces W*P(Q, w) and Wg’p(Q, w)
are Banach spaces.

It is evident that the weight function w which satisfies 0 < ¢1 < w(x) <
cy for x € Q (cy and ¢, positive constants), gives nothing new (the space
ng’p(Q, w) is then identical with the classical Sobolev space ng’p(Q)). Con-
sequently, we shall be interested above in all such weight functions w which
either vanish in somewhere O U 9Q) or increase to infinity (or both).

Definition 3 Let QO CR™ be open, 1 < p < oo, and let wy and w; be Ap-
weights. We define the weighted Sobolev space WHP(Q, w1, w1) as the set of
Junctions welP(Q, w,) with weak derivatives DyjuelP(Q,wq), j = 1,...,n
The norm of w in WHP(Q, w1y, w>) is given by

1/p
wlwie (@,wr,w,) = <J lu(x)Pw,(x dx—l—ZJ IDju(x)Pws (x )dx) . (2)
Q

The space W(])’p(Q, w1, W) is the closure of C§°(Q) with respect to the norm
(2). The dual space of W&’p(Q, w1, wy) is the space

WIP(Q, wr, w))l* = WP (Q, wi,y w))

f , £
—(T=fy—divF:F=(f1,...,fn), —€l?'(Q,w;), —€LP (Q, w)k
w? w1

In this article we use the following results.

Theorem 2 Let w € Ay, 1 <p < oo, and let QO be a bounded open set in R™.
If um—u in LP(Q, w) then there exist a subsequence {um, } and a function
® € ILP(Q,w) such that

(1) um, (x)—=u(x), my — oo, p-a.e. on Q;

(ii) lum, (x)] < ©(x), p-a.e. on Q;

(where u(E) = fE w(x) dx)

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [5]. J

Lemma 1 Let 1 <p < co.
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a) There exists a constant &, such that
P
) -2 _
X4 x — P2y | < o X —yl(IxI+ )P 2, Vx,y € R™

(b) There exist two positive constants By, Yp such that for every x,y € R™

By (X + ly)P~2x —yl? < (IXP2x — lyP2y).(x — y) < vp (x| + yHP2x — yl%.

Proof. See [3], Proposition 17.2 and Proposition 17.3. O
N (E) | o

Lemma 2 If w € A, then Bl <Gy, (B) whenever B is a ball in R

and E is a measurable subset of B (where u(kE) = J'E

Proof. See Theorem 15.5 Strong doubling of A,-weights in [8]. O

By Lemma 2, if w(E) =0 then |E| = 0.
Definition 4 We denote by X = W>™(Q, V) ﬂW&’p(Q, w1, wy) with the norm

[wllx = [l (0w, F 1IVUI@,w,) + 1A )
Definition 5 We say that an element w € X is a (weak) solution of problem
(P) if, for all @ € X,
J IAU2 AuAg@vdx + ZJ w1 Aj(x,u(x), Vu(x))Dje(x)dx
j=1 71

JrJ b(x,u, Vu)e wy dx
Q
- L fo(x)(x)dx + ; JQ f;(x)Dj @ (x) dx.

3 Proof of Theorem 1

The basic idea is to reduce the problem (P) to an operator equation Au =T
and apply the theorem below.

Theorem 3 Let A : X—X* be a monotone, coercive and hemicontinuous op-
erator on the real, separable, reflexive Banach space X. Then for each T € X*
the equation Aw =T has a solution ueX.



32 A. C. Cavalheiro

Proof. See Theorem 26.A in [15]. O

To prove the existence of solutions, we define B, By, B,B3 : X x X—= R and
T:X—R by

B(u) (P) =By (LL, (P) + Bl(u) (P) + B3(LL, (P),

n

Bi(u, @) = Z JQ w1 Aj(x,u, Vu)Djedx = J w1 A(x,u, Vu).Veo dx,

=1 =

Bl(u> (P) = b(X) u, VU,) ¢® w2 dX,
JO

Bi(u, @) = | |Au?AuAevdx,
JQ
r n

T(@)=| folx)@(x) dx+ZJ f;(x) Dj@(x) dx.
JQ : Q
j=1

Then u € X is a (weak) solution to problem (P) if for all ¢ € X
B(u, @) = Bi(u, @) + Ba(u, @) + B3 (u, @) = T(e).
Step 1. For j = 1,...,n we define the operator F; : X —=LP "(Q, w;) by
(Fuw) (x) = Aj(x, u(x), Vu(x)).

We now show that operator F; is bounded and continuous.
(i) Using (H4) and w; < w; we obtain

4P _ . p’ . ) p’
HF]uHLp ,(.Q,(Uﬂ - J_Q |F]u(X)| w1 dx = JQ |A] (X) u, Vu)| w1 dx
/ / p/
< J <K1 + PP+ hy | VPP ) wi dx
Q
< CPJ [(K*{’ + R Ul + 1Y ’|Vu|P)w1} dx (3)
Q
<G {J K‘;/(m dx—i—J h§’/|u|P w; dx
Q Q
+ J hy IVl w; dx},
Q
where the constant C, depends only on p. We have,

jﬂ hP [P w; dx < [l [ jQ WP wy dx < (P2 o Iul%
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and
JQ R [VuPaor dx < [hallfi o JQ VAP @y dx < a7 o R

Therefore, in (3) we obtain

/ !
IFulle ey < Cp (I|K1||Lp/(g,w1)+(Hh1HLoo(Q)+th||Loo(Q))Hulip )»

and hence the boundedness.

(ii) Let um— win X as m — oo. We need to show that Fju, —Fuin [P "(Q, wy).
We will apply the Lebesgue Dominated Theorem. If u,,— 1 in X, then u,—u
in LP(Q, wj) and |[Vu,|— |Vu| in LP(Q, w1). Using Theorem 2, there exist a
subsequence {um, } and two functions @1 € LP(Q,w;) and @, € LP(Q, w;)
such that

U, (x)—u(x), p2 —a.e. in Q,

U, (X)] < D2(x), 12 —a.e. in Q,
Vi, (X)[=Vu(x)], i —a.e. in Q,
|Vumk(x)| < Dq(x), w —a.e. in Q.

where p; = [¢ wi(x) dx (1 =1,2). Hence, using (H4) and w; < w;, we obtain
Fyvme = Fullfy o ) = L [Fjtm, (x) = Fju(x) P wy dx
= J |A]'(X, Umyy vumk) - -Aj (X, u, Vu)lp / w1 dx
Q

<G JQ (I.Aj (x, umk,Vumk)lp/ + |A4; (%, u, Vu) P /> wi dx

/ / p
<G “ (K1 + hy Iumklp/p +1'L2|Vumk|]”/‘D ) wi dx
Q

/

! / p
+J <K1 +hy PP+ hy | VuP/? > w1 dx]
Q
<20, J

’

! ! p
<K1+h1(D§/p +h2cD§’/p> W dx

Q
gchH KD dx+J hy’/cpg’w]dwrj h P w dx]
Q Q Q
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=2G [”K‘ It /(@ + Ml L) 3 wa dx + [l JQ o dx]
<26 K, g, + I ) 1021 ) 12T 011 |

By condition (H1), we have
Fju-mk (X) = A] (X, Um, (X)> vumk (X))_> “4] (X> LL(X), Vu(x)) = Fju(x)a

as my — +o0. Therefore, by the Lebesgue Dominated Convergence Theorem,
we obtain |[Fijim, — Fjul 7 o, = 0; that is, Fium, = Fu in 1P'(Q, w). By
the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]),
we have

Fium— Fju in LP'(Q, wy). (4)
Step 2. Define the operator G : X—L" (Q,v), (Gu)(x) = IAu(x)[ 2 Au(x).
We also have that the operator G is continuous and bounded. In fact:
(i) We have

IGUlLr () = JQ AU Aul" vdx

= J AW 2T AW v dx = J |Aul" v dx
Q Q
< [l

Hence, [|Gull;;/(q,) < ||u||r/r .

(ii) If uym —uw in X then Auy— Au in L7(Q,v). By Theorem 2, there exist a
subsequence {um, } and a function @3 € L"(Q,v) such that

Aup, (x) = Au(x), u3 —a.e. in Q
|Au-mk (X)| < ®3(X)) u3 — a.e. in Q,

where p3(E) = [¢ v(x) dx. Hence, using Lemma 1(a), we obtain, if r#2

| Gum, — Gu||TU/(QV) = J | Gum, — Gul" vdx
’ Q

.r/

‘ IAumkIF2 Aum, — AW 2Au| vadx

!

T
< J [ocr |Aum, — Aul (|Aum, |+ IAuI)”Z)} vdx
Q
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< ol Lmumk —Au (2@3) DTy dx

’ ’ v/ (r—2) ’ ’ (r=r
202 (J Ay, — Aul'v dx> X <J o T /=iy, dx>
Q Q

< o

T

/r

IN

) / / !
Hr=2)r [y, — X ||cDH{T{Q’V),

since (r—2)rr//(r—1') =rif r#£2. If r = 2, we have
IGum, — GuH%Z(Q‘V) = JQ |At, — Auffvdx < [[um, —qu(.

Therefore (for T < r < 00), by the Lebesgue Dominated Convergence Theorem,
we obtain [|Gum, — Gull;r(q,) —0, that is, Gup,— Gu in L"'(Q,v). By the
Convergence Principle in Banach spaces (see Proposition 10.13 in [14]), we
have

Gum — Guin L (Q,v). (5)

Step 3. We define H : X — LP'(Q, w,) by (Hu)(x) = b(x,u(x), Vu(x)). We
also have that the operator H is continuous and bounded. In fact,
(i) Using (H8) and a = (p—1)/q ", we obtain

p’ _ p’ _ p’
IHUI?, o) = JQ HuP w; dx = jﬂ b(x, 1w, VWP s dx

! p '
< J (Kz + ]’L3,|1,L|p/p + h4|Vu|a> w7 dx
Q

IN

cpJ [(Kg' +h [P + hP ’|Vu|ﬂp’)w2] dx
Q

:Cp“ Kglwzdx+J h‘;/lulpwzdx+J hEIIVulap,wzdx.
Q Q Q
We have

! ! i
L R fuP s < s o L P @y dx < ]P0 g g,
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and
J hZIIVulap/wzdx<Hh4||po/o(Q)J IVuP/4 W, dx
Q Q
’ 1
= ||h4||P., J IVulP/4" =2 Wy dx
Il | -
b 1/q’ W1\ q /9
< |Ih4|lP. (J IVulP w; dx) (J — )" wq dx>
Il o (| N
! / !
< Moo IelIX ¢ Nlwz/@illaawy)-
Hence,

MUl 10y < Co [szwmg,wzj gl ey Y

1p ! 1/
Il a1 o, Il

(ii) By the same argument used in Step 1 (ii)(and condition (H5)), we obtain
analogously, if w;; — w in X then

Hum— Hu, in [P/ (Q,w,). (6)
Step 4. We also have

n

Tl < | Tollolax+ 3 | I6Dselex
Q =1 Q
ol =[]
:J *|(P| 2dx +ZJ JID)(ploLndx

< fo/@2llin (0 1l n) + 3 15/l 001D @ im0
j=1

n
< <Hfo/wzlle/(Q,wz) +Y l/wrl, ,(Q,w) lolly.

j=1
Moreover, using (H4), (H8) and the Holder inequality, we also have
|B(LL, (P)| < |B1 (LL, (P)| + |BZ(u) (P)| + |B3(U, (P)|

n
<3| ik VD el @i ds | ?iauAplvax
—Jo Q

+J b, w, V)l @] s dx.
Q
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In (7) we have
J A% w, V)| [Vl wr dx
Q

< J <K1 + hyfuf/?’ +h2|Vu|p/p,>|V(p| w1 dx
0

/
< Kl on IV @l yen) + Tl 1Fe e ) 1 V@l (0,0

2l oo VTS o IV @ (00

/ !
< <||K1 70y + (It llogcy) + Moo o) P >H<P||X>

and
J IAuIrzlAullA(plvdx:J' AU A @|vdx
Q Q
1/v/ 1/r
< <J IAuITvdx> <J IA(plrvdx>
Q
< [l ol
and

J b, w, Vi)l o] w2 dxsj <K2+h3|u|p/P’+h4|Vu|“)|cp|wz dx
Q Q
< | Kalolwadx s [halnio | 1P Tolwn éx
Q Q
Nl J Vullo] wy dx
Q
/ !/
< (szmf(ﬂ,wz) TR )H(PHX
, 1/p’ 1/p
+Hh4HL°°(Q)<J [Vul*? wde> (J Imlpwde>
Q Q
/ !
< <||Kz|m,wz) T gl oy Y )H‘PHX
/ 1/p
Il (|19 2w ax) ol

/ !/
< <||K2|Lp/(g,w2) 13 loogca 2 >H(P||X



38 A. C. Cavalheiro

1/(p"q’)
1/p’
sl [ 9P wrax) T en/nl fi ol
/ /
< (||Kz||Lp/(Q,wz) gl oy 0l

‘l 1 7 !
Nl lwa/@r 120 /87 ))H@Hx-

Therefore, in (7) we obtain, for all u, @ € X

Bl ) = Kl @00+ Kl 00

+ (["illiee(a) + M2llieoa) + Hh3HL°°(Q))HuH§)(/p

p/p'q’
ully

/v’ 1/p’ )
I+ il oyl /@t 10 | lollx.

Since B(w,.) is linear, for each u € X, there exists a linear and continuous
operator A : X — X* such that (Au, @) = B(u, @), for all u, ¢ € X (where
(f,x) denotes the value of the linear functional f at the point x) and

AU, < K1l 70,00y + K2l /(@)
(Il + I2llios oy + s s o)l
IR 4 Tl w2/ @1 g o Il P
Consequently, problem (P) is equivalent to the operator equation
Au=T ueX.
Step 5. Using condition (H2), (H6) and Lemma 1(b), we have
(Au — Aug, uy —uz) = B(w, w —uz2) — B(uz, wy —up)

= J w1 A(x, w1, Vui).V(u —uy) dx —i—J |Au1|r*2 Aug A(ug —uy)vdx
Q Q
+J b(x, w, Vi) (w —uz) wy dx —J b(x, uz, Vup)(w —uz) wy dx
Q Q
—J w1 A(x,uz, V). V(w —uy) dx —J IAU,ZIT_2 Auy Alu —wy)vdx
Q Q

_ J W <A(x, W, V) — Afx, uz,wz)) Vi — ) dx
Q
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—i—J (| Auy Ir_2 Aug — IAuZIT_2 Auy) Alug —up)vdx
Q
+j (b(x, w1, Vi) — blx, w2, Vi) (1 — 1) oz dx
Q
> e1j w1 [V(w —w)l dx + BTJ (| Aw] + | A2 [Aw — AwsPv dx
Q Q
+ ezJ lu; —wPw,; dx
Q
> e1j w1 V(w1 — )P dx + rsrj (18w — Aw))™2 A — Aw v dx
Q Q
r
+ 6, lug — u2|pwz dx
\)Q
= 0 J w1 [V(ur —up)P dx + BTJ |Au; — Auy|"v dx
Q QO

.
+0,| huy —uwPw,;dx >0.
\IQ

Therefore, the operator A is monotone. Moreover, using (H3), (H7), (H9)
and wi < wy, we obtain

(Au,u) = B(u,u) = By(u,u) + Ba(u,u) + B3(u,u)
= L} wi A(x, u, Vu).Vudx + JQ | AU AuAuv dx
+ JQ b(x,u, Vu) uw; dx
> JQ(M VulP? + Atu? — gilu| — g2/ Vul) wy dx + JQ | Aul"v dx
+ | v+ gl — gaful = gul ) cn
> (A1 + A7) JQ IVulP wy dx + JQ [Aul"vdx + Ay JQ ulP wsy dx

—J grluP wq dx—J g2IVulP? wq dx—J gglulwzdx—J g4/Vul w; dx
Q Q Q Q

2 ¥ (1l 17800 + 1802 ) =71 il
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where Yy = min{A; + A2, Az, 1} and

Y1 =91/W2lltp 7 (0,wy) + 192/ W1l 7 (0,wy) + 193/ W21l 7 (0,5

+ [[gawa/wi1» "(Qyw)*

Hence, since T < p,1 < 00, we have

(Aw,u)
— + 00, as HuHX — + 09,
[ullx
. : tP +sP 4 a' .
that is, A is coercive (using that  lim vrsva _ oo, witht > 0,s > 0

t+sta—oo t+ s+ a
and a > 0).

Step 6. We need to show that the operator A is continuous. Let u;,— u in X
as m — oo. We have,

[B1(um, @) — By (u, )|

<y L A (%, s V) — A1 (%, 1, V) [Dy 0] oy dx

J IFjum — FullDje| wq dx
Q

and

B3 (um, @) — B3(u, @)
= ‘ J | At 2 Aum A@ v dx — J | AU AuA@vdx
Q Q

< J ‘ | A ™2 Ay, — IAuIrzAu‘ | Ap|v dx
Q

= J IGum — Gul||[Ap|vdx
Q

< [IGum — Gullrr () l@llxs
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and
B2ty @) — Ba(w, )] < j 1B(x s Vitm) — b(x, u, Vau)| ] w3 dx
Q

= J [Hu, — Hulle| w; dx
Q
< ||Hum - HuHLP "(Q,wy) H(pHX’

for all @ € X. Hence,

B(um, @) — B(u, @)
< IB1(um, @) — By (u, @)+ [B2(um, @) — B2(u, @) + [B3(um, ¢) — B3(u, @)

n
: [ZHFium_FiuHLP’(Q,m) + [[Gum — Gl
=1

T [Hu — Hul,, /(Q,wz)] lollx.

Then we obtain

n
AR — Auf, < 3 [[Fium = Fjullipr (g0, + Gum — Gullr g,
j=1
+ HHum — HLLHLp /(Q,wz)'

Therefore, using (4), (5) and (6) we have ||Aum — Aul,— 0 as m — +o0, that
is, A is continuous (and this implies that A is hemicontinuous).

Therefore, by Theorem 3, the operator equation Au = T has a solution
u € X and it is a solution for problem (P).
Step 7. Let us now prove the uniqueness of the solution.

Suppose that uy,u; € X are two solutions of problem (P). Then

J IAw"?Au; Agvdx + J wi A(x, ui, V).V dx
Q Q

+ J b(x,ui, Vi) @ w; dx
Q

n
:J fo(pdx—i—ZJ fj Dje dx,
Q el
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for all @ € X, and i = 1,2. Hence, we obtain
JQ <|Au1 "2 Auy — IAuZITZAuz) Agvdx
+ JQ w (A(X, uy, Vug) — Alx, uz, Vu2)> Ve dx
+ L) (b(x, uy, Vug) — b(x, uy, Vuz)) @ wydx =0.
In particular, for @ =u; —u, € X we have, by (H2), (H7) and Lemma 1(b),
0= JQ <|Au1 "2 Au; — IAuzlrzAu2> (Au; — Auy)vdx
4 JQ w1 (.A(x, ur, Vug) — A(x, up, Vuz)) (Vur = Vuy) dx
+ JQ <b(x, ug, Vi) — b(x, uz, Vuz)> (u—T1—-u) wydx
> B, JQ |[Auy; — Auy|" v dx + 0, JQ [Vu; — Vuo [P wq dx

+ sz huy —w P w; dx.
Q

Hence Wi — w2500, = VW = V2|l (0,0, = AW = Awz|lir (g, = 0.
Since wy,uy € X, then u; =wy yy a.e. Therefore, by Lemma 2, u; = u, a.e.

Example 1 Let Q ={(x,y) € R?: x?4+y? < 1}. Consider the weight functions
wi,wy and v, wi(x,y) = (2 +y?) V4, wilx,y) = (X +y?) 72 and v(x,y) =
(x? +y2)7V® (we have wi,ws € Ay (p =2) and v € Az (r = 3)), and the
functions A: Q x RxR*=R? andb: Q x R x RZ— R

A((’%U)»ﬂ»ﬁ) = hZ(X)y) &,
b((x,y),m, &) =n(cos®(xy) + 1),

where h(x,y) = 20497 Let us consider the partial differential operator

Lu(x,y) = A((x* +y2)/¢|Au| Au) — div (x2 +y2) 7 A((x, y),u, Vu))
+ (¢ +y) 2 b(x,u, Vu).
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Therefore, by Theorem 1, the problem

) Vg

~ cos(xy) 0 ( sin(xy) \ 0 [ sin(xy) .
bl = <m> ay<¢m>’ m

u(x) =Au(x) =0, on 0Q

has a unique solution u € X = W23(Q,v) ﬂW(])’Z(Q, w1, W2).
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