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Abstract. Unbounded solutions for the iterative-difference equation

f2(x) = λf(x+ a) + µx, x ∈ R,

have been considered in [Continuous solutions of an iterative-difference
equation and Brillouët problem, Publ. Math. Debrecen, 78 (2011), 613–
624], where λ, µ, a are real constants. In this paper, we continue to study
the solutions not being included there, and further give the convex and
concave ones. Finally, continuous solutions of this equation with an extra
item were also given, which continuously depend on the parameter a.

1 Introduction

The iterative-difference equation

f2(x) = f(x+ a) − x, x ∈ R (1)

proposed by N. Brillouët-Belluot [2], was deduced from the equation x+ f(y+
f(x)) = y+ f(x+ f(y)), a special form of the functional equation

x+ g(y+ f(x)) = y+ f(x+ g(y))
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investigated in [8, 12]. Although the nonexistence of continuous solutions and
existence of special solutions were discussed [1, 7, 11], it is still treated as a dif-
ficult problem to find continuous solutions of Eq.(1). In 2010, as a generalized
form of (1), the equation

f2(x) = λf(x+ a) + µx, (2)

where λ, µ, a are real and aλ 6= 0 was considered on a compact interval by
N. Brillouët-Belluot and W. Zhang ([3]). In fact, when a = 0 all continuous
solutions were presented in 1974 by S. Nabeya ([10]) and continuous solutions
defined on a real Hausdorff topological linear space were studied by J. Dhom-
bres ([5]) in the case that λ + µ = 1. The authors in [3] not only searched all
affine solutions, but also constructed piecewise continuous solutions of Eq.(2).
Later, Y. Zeng and W. Zhang [17] investigated the solutions on the whole R
and gave the unbounded continuous solutions of Eq.(2) in some cases, where
the following cases are still open: (E1) |λ| ∈ (0, 1]; (E2) |λ| ∈ (1, 2] and
|µ| ∈ [|λ| − 1,+∞); (E3) |λ| ∈ (2,+∞) and |µ| ∈ (λ2/4,+∞). Although when
λ = 1 and µ ≤ −1, a special case of (E1), was solved (see Theorem 1 in
[17]), the existence or nonexistence of solutions almost remains unknown for
the cases (E1)-(E3). This paper is a continuation of studying Eq.(2) on the
whole R. We first consider the continuous solutions with the form of

f(x) = αx+ f1(x), (3)

where α is a real constant and f1 : R → R is continuous. By using the Ba-
nach fixed point principle, the existence and uniqueness of solutions including
convex and concave ones, are given for cases (E2)-(E3). Finally, in order to
show the characterization of solutions for case (E1), we investigate the con-
tinuous solutions of Eq.(2) with an extra item and prove that those solutions
continuously depend on the parameter a.

2 Existence of unbounded solutions

By replacing the function f(x) with g(x) := 1
af(ax), it suffices to consider the

solutions of Eq.(2) with a = 1, i.e.,

f2(x) = λf(x+ 1) + µx, x ∈ R. (4)

Further, substituting (3) into (4) we obtain

f2(x− 1) = α(α(x− 1) + f1(x− 1)) + f1(α(x− 1) + f1(x− 1))

= λαx+ λf1(x) + µ(x− 1),
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and then

f1(x) =
α2 − λα− µ

λ
x+

α

λ
f1(x− 1) +

1

λ
f1(f1(x− 1) + αx− α) −

α2 − µ

λ
.

Let

Φ(R;L) = {f : R → R | Lipf ≤ L}

for a given real constant L > 0. We note that Φ(R;L) is a complete metric
space equipped with the metric d(f, g) := supx∈R|f(x) − g(x)|.

Theorem 1 For a given α ∈ R, Eq. (4) has a unique solution f(x) = αx +
f1(x), where f1 ∈ Φ(R;L) provided that L > 0 and

|
α2 − λα− µ

λ
|+ 2|

α

λ
|L+

1

|λ|
L2 ≤ L, (5)

|α|+ 1+ L

|λ|
< 1. (6)

Proof. For a given L > 0, define a mapping F : Φ(R;L) → C0(R) by

Ff1(x) = α2−λα−µ
λ x+ α

λ f1(x− 1) +
1
λf1(f1(x− 1) + αx− α) −

α2−µ
λ , (7)

where f1 ∈ Φ(R;L). It follows from (5) that for every x, y ∈ R,

|Ff1(x) − Ff1(y)| =
∣∣∣∣α2 − λα− µ

λ
x+

α

λ
f1(x− 1) +

1

λ
f1(f1(x− 1) + αx− α)

−
α2 − λα− µ

λ
y+

α

λ
f1(y− 1) +

1

λ
f1(f1(y− 1) + αy− α)

∣∣∣∣
≤
∣∣∣∣α2 − λα− µ

λ

∣∣∣∣|x− y|+ ∣∣∣∣αλ
∣∣∣∣L|x− y|

+
1

|λ|
L|αx+ f1(x− 1) − αy− f1(y− 1)|

≤
(∣∣∣∣α2 − λα− µ

λ

∣∣∣∣+ 2∣∣∣∣αλ
∣∣∣∣L+ 1

|λ|
L2
)
|x− y| ≤ L|x− y|.
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This implies that F maps Φ(R;L) into itself. Furthermore, for every f1, f2 ∈
Φ(R;L) we have

|Ff1(x) − Ff2(x)|

= |αλ f1(x− 1) +
1
λf1(f1(x− 1) + αx− α) −

α
λ f2(x− 1) −

1
λf2(f2(x− 1) + αx− α)|

≤ |αλ |d(f1, f2) +
1
|λ|
|f1(f1(x− 1) + αx− α) − f2(f2(x− 1) + αx− α)|

≤ |αλ |d(f1, f2) +
1
|λ|
|f1(f1(x− 1) + αx− α) − f2(f1(x− 1) + αx− α)|

+ 1
|λ|
|f2(f1(x− 1) + αx− α) − f2(f2(x− 1) + αx− α)|

≤ (|α|+1+L)
|λ|

d(f1, f2), ∀x ∈ R,

i.e.,

d(Ff1,Ff2) ≤
(|α|+ 1+ L)

|λ|
d(f1, f2).

Hence, F : Φ(R;L) → Φ(R;L) is a contraction if condition (6) holds. Therefore,
by Banach’s fixed point theorem, F has a unique fixed point in the class
Φ(R;L). �

Remark 1 In view of Theorem 1, the assumptions on α, L, λ and µ are given
by (5)-(6). Compared with Theorem 2 in [17], although our conditions seem
complicated because of the inequalities between α, λ, µ, cases (E2)-(E3) in
Theorem 1 were not considered in [17].

Example 1 Take α = 0.4, λ = −2, µ = 1 and L = 0.28.

It is easy to see that λ, µ satisfy (E2). Moreover,

|
α2 − λα− µ

λ
|+ 2|

α

λ
|L+

1

|λ|
L2 = 0.1712 < 0.28,

|α|+ 1+ L

|λ|
= 0.84 < 1,

which implies that (5)-(6) hold. Therefore, Eq. (4) has a unique solution f(x) =
2
5x+ f1(x), where f1 ∈ Φ(R; 725).

Example 2 Choose α = 0.5, λ = −2.2, µ = 1.25, and L = 0.3.
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One can check that λ, µ fulfills case (E3). Furthermore,

|
α2 − λα− µ

λ
|+ 2|

α

λ
|L+

1

|λ|
L2 < 0.224 < L,

|α|+ 1+ L

|λ|
< 0.82 < 1.

Thus, conditions (5)-(6) in Theorem 1 are satisfied and Eq. (4) has a unique
solution f(x) = 1

2x+ f1(x) for f1 ∈ Φ(R; 310).
In what follows, we turn to consider the convex and concave solutions of Eq.

(4). A function f is convex (concave) if f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)
for all x, y ∈ R and t ∈ [0, 1] (if the reverse of the inequality holds). Let

Φcv(L) = {f ∈ Φ(R;L) : f is convex and increasing}.

Φcc(L) = {f ∈ Φ(R;L) : f is concave and increasing}.

Clearly, Φcv(L) and Φcc(L) are closed subsets of Φ(R;L), which are also com-
plete metric spaces.

Theorem 2 Replace Φ(R;L) in Theorem 1 by Φcv(L)(Φcc(L)) and suppose
that the conditions of Theorem 1 hold. If λ > 0, α > 0 and α2 − λα − µ > 0,
then Eq. (4) has a unique convex (concave) solution f(x) = αx+ f1(x), where
f1 ∈ Φcv(L)(Φcc(L)).

Proof. It suffices to prove the case of convex, the proof for concave is similar.
Firstly, we give some useful facts by the convexity of f1. Note that for every
x, y ∈ R and t ∈ [0, 1],

f1(tx+ (1− t)y− 1) = f1(t(x− 1) + (1− t)(y− 1))

≤ tf1(x− 1) + (1− t)f1(y− 1),
(8)

it follows that

t(f1(x− 1) + αx− α) + (1− t)(f1(y− 1) + αy− α)

= tαx+ α(1− t)y− α+ tf1(x− 1) + (1− t)f1(y− 1)

≥ tαx+ α(1− t)y− α+ f1(t(x− 1) + (1− t)(y− 1))

= tαx+ α(1− t)y− α+ f1(tx+ (1− t)y− 1).
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Thus,

f1(tαx+ α(1− t)y− α+ f1(tx+ (1− t)y− 1)

≤ f1(t(f1(x− 1) + αx− α) + (1− t)(f1(y− 1) + αy− α))

≤ tf1(f1(x− 1) + αx− α) + (1− t)f1(f1(y− 1) + αy− α)

(9)

since f1 is increasing. From (8)-(9), for the function Ff1 defined in (7) we have

Ff1(tx+ (1− t)y)

= α2−λα−µ
λ (tx+ (1− t)y) + α

λ f1(tx+ (1− t)y− 1)

+ 1
λf1(α(tx+ (1− t)y) − α+ f1(tx+ (1− t)y− 1) − 1) − α2+α−µ

λ

≤ tFf1(x) + (1− t)Ff1(y),

which implies that Ff1 is convex and increasing if λ > 0, α > 0, α2−λα−µ > 0.
Therefore, F maps Φcv(L)(Φcc(L)) into itself, and the rest proof is same as
that of Theorem 1. �

Example 3 Take α = 0.8, λ = 2, µ = −0.96 and L = 0.09.

It is easy to see that

|
α2 − λα− µ

λ
|+ 2|

α

λ
|L+

1

|λ|
L2 < 0.077 < 0.09, |

α

λ
|+

1

|λ|
+ L = 0.99 < 1,

and then the conditions in Theorem 2 are satisfied. Therefore, Eq. (4) has a
unique solution f(x) = 4

5x+ f1(x) where f1 ∈ Φcv(L).

3 Unbounded solutions with ε(a)

In this section we discuss the continuous solutions of Eq. (2) with an extra
item, that is,

f2(x) = λf(x+ a) + µx+ ε(a) (10)

for λ ∈ (0, 1], where ε : R → R is continuous with respect to the parameter
a. Clearly, Eq. (2) becomes a second order iterative equation when a = 0,
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which has been extensively studied [4, 6, 9, 13, 14, 15, 16, 18, 19]. In what
follows, our aim is to find a suitable continuous function ε in order to give a
construction of solutions. Here, we consider Eq. (10) under the hypothesis

(H) λ ∈ (0, 1], λ+ µ = 1 and ε(a) := (4− 3λ)a.

The following Theorems are our main results in this section.

Theorem 3 Under hypothesis (H), for a < 0 and each x0 ∈ (−∞,+∞),
Eq.(10) has a continuous solution in (−∞, x0]. Moreover, the solution depends
on arbitrarily chosen orientation-preserving homeomorphism f1 : [x1, x0] →
[x2, x1], where x1 := x0 + 2a and x2 := λ(x1 + a) + µx0 + ε(a).

Theorem 4 Under hypothesis (H), for a > 0 and each x0 ∈ (−∞,+∞), Eq.
(10) has a continuous solution in [x0,+∞). Moreover, the solution depends
on arbitrarily chosen orientation-preserving homeomorphism f1 : [x0, x1] →
[x1, x2], where x1 := x0 + 2a and x2 := λ(x1 + a) + µx0 + ε(a).

We only give a proof to Theorem 3. Theorem 4 can be proved similarly.
Proof. Let x1 := x0 + 2a. Substituting x1 and ε(a) defined in (H) into x2 :=
λ(x1 + a) + µx0 + ε(a), we obtain x2 = x1 + 2a. This gives the fact that
x2 < x1 < x0. Then we extend these points to a sequence (xn)

∞
n=2 by the

recurrence formula

xn = λ(xn−1 + a) + µxn−2 + ε(a). (11)

We assert that (xn)
∞
n=2 is a strictly decreasing sequence in (−∞, x0] satisfying

xn = xn−1 + 2a. (12)

In fact, (12) is trivial for n = 2. Suppose that this claim holds for all positive
integers n ≤ k, where k ≥ 2 is a certain integer. Then

xk+1 = λ(xk+a)+µxk−1+ε(a) = λ(xk+a)+µ(xk−2a)+(4−3λ)a = xk+2a

by the fact λ+ µ = 1. Thus, (12) is proved by induction.
The monotonicity of (xn)

∞
n=2 implies that this sequence is divergent, i.e.,

(−∞, x0] = ∞⋃
n=1

In, (13)

where In := [xn, xn−1].
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Choose an orientation-preserving homeomorphism f1 : I1 → I2 arbitrarily
such that

f1(x0) = x1, f1(x0 + a) = x1 + a, f1(x1) = x2.

Then for all n ≥ 2 we recursively define

fn(x) := λfn−1(f
−1
n−1(x) + a) + µf

−1
n−1(x) + ε(a), ∀x ∈ In. (14)

We assert that for each positive integer n ≥ 2 mapping fn : In → In+1 is an
orientation-preserving homeomorphism fulfilling

fn(xn−1) = xn, fn(xn−1 + a) = xn + a, fn(xn) = xn+1. (15)

It is trivial for n = 2. Actually,

f2(x1) = λf1(f
−1
1 (x1) + a) + µf

−1
1 (x1) + ε(a) = λf1(x0 + a) + µx0 + ε(a) = x2,

f2(x1 + a) = λf1(f
−1
1 (x1 + a) + a) + µf

−1
1 (x1 + a) + ε(a)

= λf1(x0 + 2a) + µ(x0 + a) + ε(a)
= λx2 + µ(x0 + a) + (4− 3λ)a
= x2 + a,

and

f2(x2) = λf1(f
−1
1 (x2) + a) + µf

−1
1 (x2) + ε(a) = λf1(x1 + a) + µx1 + ε(a) = x3.

Suppose that the assertion is true for all integers n ≤ k, where k ≥ 2 is a
certain integer. It is easy to see that fk is an orientation-preserving homeo-
morphism. It has an inverse f−1k , which is strictly increasing defined on Ik such
that f−1k (xk) = xk−1 and f−1k (xk+1) = xk. Thus, by (14) fk+1(x) is well defined
on Ik+1. Furthermore, by (15) we have

fk+1(xk) = λfk(f
−1
k (xk) + a) + µf

−1
k (xk) + ε(a)

= λ(xk + a) + µxk−1 + ε(a) = xk+1.

Similarly, we also get fk+1(xk+1) = xk+2. Thus,

fk+1(xk + a) = λfk(f
−1
k (xk + a) + a) + µf

−1
k (xk + a) + ε(a)

= λfk(xk−1 + 2a) + µ(xk−1 + a) + ε(a)
= λxk+1 + µ(xk−1 + a) + (4− 3λ)a
= xk+1 + a
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and (15) is proved by induction.
Finally, for arbitrary x ∈ (−∞, x0] by (13) there exists n ∈ N such that

x ∈ In, where N denotes the set of all positive integers. Define

f(x) := fn(x). (16)

Therefore, (14) and (16) lead to the fact

f2(x) = fn+1 ◦ fn(x) = λfn(x+ a) + µx = λf(x+ a) + µx,

which implies that the function defined by (16) is a continuous solution of Eq.
(10) on (−∞, x0]. This completes the proof. �

Theorems 3-4 present a manner of construction for the continuous and un-
bounded solutions of Eq. (10) with ε(a) = (4−3λ)a. Clearly, this construction
is not unique, which depends on the chosen of ε(a). �

Example 4 Consider the equation

f2(x) =
2

3
f(x+ a) +

1

3
x+ 2a,

where λ = 2
3 , µ = 1

3 and ε(a) = 2a.

All conditions in Theorems 3-4 can be verified respectively and therefore the
equation has unbounded solutions on (−∞,+∞).
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