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Abstract. In this paper the notions of solvable right transversal and
nilpotent right transversal are defined. Further, it is proved that if a core-
free subgroup has a generating solvable transversal, then the whole group
is solvable.

1 Introduction

Let G be a group and H a proper subgroup of G. A normalized right transversal
is a subset of G obtained by selecting one and only one element from each right
coset of H in G, including the identity from the coset H. Now we will call it
a transversal in place of normalized right transversal. Suppose that S is a
transversal of H in G. We define an operation ◦ on S as follows: for x, y ∈ S,
{x ◦ y} := S ∩ Hxy. It is easy to check that (S, ◦) is a right loop, that is the
equation of the type X◦a = b, X is unknown and a, b ∈ S has a unique solution
in S, and (S, ◦) has a two-sided identity. In [5], it has been shown that for each
right loop there exists a pair (G,H) such that H is a core-free subgroup of
the group G and the given right loop can be identified with a transversal of
H in G. Not all transversals of a subgroup generate the group. But for finite
groups, it is proved by Cameron in [2], that if a subgroup is core-free, then
always there exists a transversal which generates the whole group. We call
such a transversal a generating transversal.
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Let (S, ◦) be a right loop (identity denoted by 1). Let x, y, z ∈ S. Define
a map R(y, z) from S to S as follows: R(y, z)(x) is the unique solution of the
equation X ◦ (y ◦ z) = (x ◦ y) ◦ z, where X is unknown. It is easy to verify
that R(y, z) is a bijective map. For a set X, let Sym(X) denote the symmetric
group on X. We denote by RInn(S) the subgroup of Sym(S), generated by
the set {R(y, z) | y, z ∈ S}. This group is called the right inner mapping group
of the right loop S. It measures the deviation of a right loop from being a
group. Also note that right multiplication Rs by an element s ∈ S gives a
bijective map from S to S. The subgroup generated by {Rs | s ∈ S} is the
right multiplication group RMlt(S) of the right loop S. One should note that
the right multiplication group RMlt(S) factorizes as RInn(S)R(S) in Sym(S),
where R(S) = {Rs | s ∈ S}. We will follow the right action convention for the
map, that is the image of an element x under a map f is denoted by xf. Note
that if H is a core-free subgroup of a group G and S is a generating transversal
of H in G, then G ∼= RMlt(S) such that H ∼= RInn(S) (see [6, Lemma, p.
1343]).

A non-empty subset T of right loop S is called a right subloop of S, if it is
right loop with respect to induced binary operation on T ([7, Definition 2.1, p.
2683]). An equivalence relation R on a right loop S is called a congruence in S,
if it is a right subloop of S× S. Also an invariant right subloop of a right loop
S is precisely the equivalence class of the identity of a congruence in S ([7,
Definition 2.8, p. 2689]). It is observed in the proof of [7, Proposition 2.10, p.
2690] that if T is an invariant right subloop of S, then the set S/T = {T ◦x|x ∈ S}
becomes right loop called as quotient of S mod T. Let R be the congruence
associated to an invariant right subloop T of S. Then we also denote S/T by
S/R.

2 Some properties of right loops

In this section, we will recall some basic facts about right loops and also prove
some of the results which will be used in next sections. Let (S, ◦, /, 1) be a
right loop, with right division / and two-sided identity 1. Then (S, ◦, /, 1) is
Mal’tsev algebra with Mal’tsev term P(x, y, z) = (x/y) ◦ z.

The proof of the following Fundamental Theorem of homomorphism for
right loops is as usual.

Proposition 1 Let ρ : S→ S′ be a homomorphism of right loops. Then there
exists a unique injective homomorphism ρ̄ : S/Kerρ→ S′ such that ρ̄ ◦ ν = ρ,
where ν : S→ S/Kerρ is the natural homomorphism.
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Lemma 1 Let G be a group, H a subgroup of G and S a transversal of H in
G. Suppose that N E G containing H. Then

G/N = HS/N ∼= S/N ∩ S.

Proof. Suppose that ◦ denotes the induced right loop operation on S. Consider
the map ψ : S→ HS/N defined as xψ = xN. This is a homomorphism, for

(x ◦ y)ψ = (x ◦ y)N
= hxyN for some h ∈ H
= (x)ψ(y)ψ (H ⊆ N).

Also, Kerψ = {x ∈ S| xN = N} = S ∩ N. Since for h ∈ H and x ∈ S, we
have hxN = xN and xψ = xN, ψ is onto and so by Proposition 1, S/N ∩ S ∼=
HS/N. �

Let G be a group, H a subgroup and S a transversal of H in G. Suppose that
◦ is the induced right loop structure on S. We define a map f : S× S→ H as:
for x, y ∈ S, f(x, y) := xy(x ◦ y)−1. We further define the action θ of H on S
as {xθh} := S ∩ Hxh where h ∈ H and x ∈ S. Identifying S with the set H\G
of all right cosets of H in G, we get a transitive permutation representation
χS : G → Sym(S) defined by {(x)(g)χS} = S ∩ Hxg, g ∈ G, x ∈ S. The kernel
kerχS of this action is CoreG(H), the core of H in G.
One can check that (〈S〉∩H)χS ∼= RInn(S), where 〈S〉 denotes the subgroup of
G generated by S. Since χS is injective on S and if we identify S with (S)χS, then
(〈S〉)χS ∼= RMlt(S). One can also verify that ker(χS|〈S〉 : 〈S〉 → RMlt(S)) =
ker(χS|〈S〉∩H : 〈S〉 ∩ H → RInn(S)) = Core〈S〉(〈S〉 ∩ H) and χS|S=the identity
map on S.

With these notations it is easy to prove following lemma.

Lemma 2 For x, y, z ∈ S, we have xR(y, z) = xθf(y, z).

Lemma 3 Let H be a subgroup of a group G and S a transversal of H in G.
Let U be a congruence on S considered as a right loop such that {(x, xθh) | h ∈
H, x ∈ S} ⊆ U. Let T be the equivalence class of 1 under U. Then S/U is a
group. Moreover, N = HT E HS = G (and so H ≤ N and N ∩ S = T) and
G/N ∼= S/U.

Proof. Let R be a congruence on S generated by {(x, xR(y, z))|x, y, z ∈ S}.
Then, clearly R ⊆ U and S/U is a group. Let φ : G→ S/U be the map defined
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by (hx)φ = T ◦ x, h ∈ H, x ∈ S. This is a homomorphism, because for all
h1, h2 ∈ H and x1, x2 ∈ S,

(h1x1h2x2)φ = (h1h(x1θh2 ◦ x2))φ for some h ∈ H
= T ◦ (x1θh2 ◦ x2)
= (T ◦ x1) ◦ (T ◦ x2) (for (x1, x1θh2) ∈ U)
= (h1x1)φ(h2x2)φ.

Let h ∈ H and x ∈ S. Then hx ∈ Kerφ if and only if x ∈ T. Hence Kerφ =
HT = N(say). This proves the lemma. �

3 Solvable right loops

In this section, we will define a solvable right loop and obtain some of its
properties.

Definition 1 A right loop S is said to be a solvable right loop if it has a finite
composition series with abelian group factors.

Definition 2 Let S be a transversal of a subgroup H of G. We call S a solvable
transversal if it is solvable with respect to the induced right loop structure.

We define S(1) to be the smallest invariant right subloop of S such that S/S(1)

is an abelian group. We define S(n) by induction. Suppose S(n−1) is defined.
Then S(n) is an invariant right subloop of S such that S(n) = (S(n−1))(1).

Theorem 1 If a group has a solvable generating transversal with respect to a
core-free subgroup, then the group is solvable.

Proof. Let G be a group and H a core-free subgroup of it. Suppose that S is
a generating transversal of H in G. Then the group G can be written as HS.
By Lemma 1, G/HG(1) ∼= S/S ∩HG(1). So,

S(1) ⊆ S ∩HG(1). (1)

By Lemma 3, HS(1) is a normal subgroup of G. Thus G/HS(1) = S/S(1)

(Lemma 1). Since S/S(1) is abelian, G(1) ⊆ HS(1). Thus

S ∩HG(1) ⊆ S(1). (2)
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From (2) and (1), it is clear that

S ∩HG(1) = S(1) (3)

and
HG(1) = HS(1). (4)

We will use induction to prove that HS(n) = H(HS(n−1))(1) for n ≥ 1. Define
S(0) = S. For n = 1, HS(1) = HG(1) = H(HS(0))(1) (by (4)). By induction,
suppose that HS(n−1) = H(HS(n−2))(1).

Since S(n−1)/S(n) ∼= HS(n−1)/HS(n) is an abelian group, (HS(n−1))(1) ⊆ HS(n).
Thus H(HS(n−1))(1)⊆ HS(n).

Further, HS(n−1)/H(HS(n−1))(1) ∼= S(n−1)/(S(n−1)∩H(HS(n−1))(1)) by Lemma
1. So S(n) ⊆ S(n−1) ∩H(HS(n−1))(1) = S ∩H(HS(n−1))(1). That is,

HS(n) = H(HS(n−1))(1) for all n ≥ 1. (5)

Now (5) implies that

HS(n) = H(HS(n−1))(1) ⊇ H(H(HS(n−2))(1))(1) ⊇ H(HS(n−2))(2). (6)

Proceeding inductively, we have HS(n) ⊇ H(HS)(n) = HG(n). Suppose that S
is a solvable right loop, that is there exists n ∈ N such that S(n) = {1}. Then
G(n) ⊆ H. Since G(n) is a normal subgroup of G contained in H, so G(n) = {1}.
This proves the theorem. �

The converse of the above theorem is not true. For example take G to be
the symmetric group on three symbols and H to be any two order subgroup
of it. Then H has no solvable generating transversal but we know that G is
solvable. Following is an easy consequence of the above theorem.

Corollary 1 The right multiplication group of a solvable right loop is a solv-
able group.

4 Nilpotent right loops

In this section, we define nilpotent right loops as a special case of the nilpotent
Mal’tsev algebras defined in [8]. We will obtain some properties of nilpotent
right loops. This will generalize a result of [1].

Definition 3 [8, Definition 211, p. 24] Let β and γ be congruences on a right
loop S. Let (γ|β) be a congruence on β. Then γ is said to centralize β by means
of the centering congruence (γ|β) such that following conditions are satisfied:
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(i) (x, y) (γ|β) (u, v) ⇒ x γ u, for all (x, y), (u, v) ∈ β.

(ii) For all (x, y) ∈ β, the map π : (γ|β)(x,y) → γx defined by (u, v) 7→ u

is a bijection, where for a set X and an equivalence relation δ on X, δw
denotes the equivalence class of w ∈ X under δ.

(iii) For all (x, y) ∈ γ, (x, x) (γ|β) (y, y).

(iv) (x, y) (γ|β) (u, v) ⇒ (y, x) (γ|β) (v, u), for all (x, y), (u, v) ∈ β.

(v) (x, y) (γ|β) (u, v) and (y, z) (γ|β) (v,w) ⇒ (x, z) (γ|β) (u,w), for all
(x, y), (u, v), (y, z) and (v,w) in β.

By (i) and (iv), we observe that (x, y) (γ|β) (u, v) ⇒ y γ v.
Let S be a right loop. If a congruence α on S is centralized by S× S, then it

is called a central congruence (see [8, p. 42]). By [8, Proposition 221, p. 34] and
[8, Proposition 226, p. 38], there exists a unique maximal central congruence
ζ(S) on S, called as the center congruence of S. For a right loop, it is product
of all centralizing congruences. The center Z(S) of S is defined as ζ1, the
equivalence class of the identity 1. In [4, Proposition 3.3, p. 6], it is observed
that if x ∈ Z(S), then x ◦ (y ◦ z) = (x ◦y) ◦ z for all y, z ∈ S. In [4, Proposition
3.4, p. 6], it is observed that if x ∈ Z(S), then x ◦ y = y ◦ x for all y ∈ S. This
means that the center Z(S) is an abelian group.

Definition 4 A right loop S is said to be nilpotent if it has a central series

{1} = Z0 ≤ Z1 ≤ · · · ≤ Zn = S

for some n ∈ N, where

Zi+1/Zi = Z(S/Zi) and Z1 = Z(S).

On can observe that Zi (0 ≤ i ≤ n) is an invariant right subloop of S. We call
a transversal S of a subgroup H of a group G to be nilpotent, if it is nilpotent
with respect to the induced right loop structure.

Lemma 4 Every nilpotent right loop is a solvable right loop.

Proof. It follows from the fact that the central series of a nilpotent right loop
is a composition series with abelian group factors. �

Since a nilpotent right loop S is solvable, by Corollary 1, RMlt(S) is solvable.
But in this proof we do not know much about the structure of RInn(S). We
will obtain that if S is a nilpotent right loop of prime power order, then the
order of RMlt(S) will be a prime power.



208 V. Kakkar, V. K. Jain

Proposition 2 Let S be a right loop. Let θ : RInn(S) → RInn(S/Z(S)) be
the onto homomorphism induced by the natural projection ν : S →S/Z(S).
Then Kerθ is isomorphic to a subgroup of an abelian group

∏
AZ(S) for some

indexing set A.

Proof. Let A = {x1, · · · , xi, · · · } be a set obtained by choosing one element
from each right coset of Z(S) in S, with x1 = 1 ∈ Z(S). Then S = txi∈A(Z(S)◦
xi). Let h ∈ Kerθ. Then xih = z ◦ xi for some z ∈ Z(S). If y = ui ◦ xi, where
ui ∈ Z(S), then
(y)h = (ui ◦ xi)h = ui ◦ (xi)h (by condition (C7) of [5, Definition 2.1, p. 71]

and [4, Proposition 3.3, p. 6])
= ui ◦ (z ◦ xi)
= (ui ◦ z) ◦ xi (for ui ∈ Z(S))
= (z ◦ ui) ◦ xi
= z ◦ (ui ◦ xi) (for z ∈ Z(S))
= z ◦ y.

Thus h ∈ Kerθ is completely determined by xih (xi ∈ A). Therefore, it
defines a map η : Kerθ → ∏

AZ(S) by (h)η = (zi)A, where (xi)h = zi ◦ xi.
One can check that η is injective homomorphism. �

Following is the finite version of above proposition.

Corollary 2 Let S be a finite right loop with |S/Z(S)| = k. Let θ : RInn(S) →
RInn(S/Z(S)) be the onto homomorphism induced by natural projection ν :
S→ S/Z(S). Then Kerθ is isomorphic to a subgroup of abelian group Z(S)×
· · · × Z(S) (k− 1 times).

Let S be a nilpotent right loop with central series

{1} = Z0 ≤ Z1 ≤ · · · ≤ Zn = S. (7)

Let θj : RInn(S) → RInn(S/Zj) (0 ≤ j ≤ n − 1) be onto homomorphism
induced by the natural projection νj : S→ S/Zj. Then this will give a series

{1} = Kerθ0 ≤ · · · ≤ Kerθn−1 = RInn(S).

Let θ : RInn(S/Zj) → RInn((S/Zj)/(Zj+1/Zj)) be onto homomorphism in-
duced by the natural projection ν : S/Zj → (S/Zj)/(Zj+1/Zj). By Proposition
2, Kerθ is isomorphic to a subgroup of

∏
B Zj+1/Zj for some indexing set B.

We now observe that each member of Kerθj+1/Kerθj induces a member of
Kerθ. For this, we will see the action of an element of Kerθj+1/Kerθj on the



Solvable and nilpotent right loops 209

elements of (S/Zj)/(Zj+1/Zj). Let hj+1Kerθj ∈ Kerθj+1/Kerθj, where hj+1 ∈
Kerθj+1 and (Zj+1/Zj) ◦ (Zj ◦ x) ∈ (S/Zj)/(Zj+1/Zj). By the definition of θj,
each element of Kerθj acts trivially on the cosets of Zj. Since RInn(S/Zj+1)
∼= RInn((S/Zj)/(Zj+1/Zj)), by definition of θj+1, hj+1 also acts trivially on
(Zj+1/Zj) ◦ (Zj ◦ x). Thus, we have proved the following:

Proposition 3 Let S be a nilpotent right loop with central series 7. Then there
exists a series

{1} = Kerθ0 ≤ · · · ≤ Kerθn−1 = RInn(S)

such that Kerθj+1/Kerθj is isomorphic to a subgroup of
∏

B Zj+1/Zj for some
indexing set B.

Corollary 3 Let S be a nilpotent right loop. Then the right inner mapping
group RInn(S) is a solvable group.

Proof. By Proposition 3, central series of S gives a series of RInn(S) with
abelian quotients. �

Corollary 4 If a group G has a nilpotent generating transversal with respect
to a core-free subgroup H, then H is solvable.

Corollary 5 Let S be a nilpotent generating transversal with respect to a core-
free subgroup H of a finite group G such that |S| = pn for some prime p and
n ∈ N. Then both H and G are p-groups.

5 Some examples

In this section, we will observe some examples and counterexamples. We have
seen that the concepts of solvability and nilpotency of a right loop can be
transferred in term of a generating transversal of a core-free subgroup of a
group. There are examples of groups where no non-trivial subgroup is core-
free. Following is an example of such a group:

Example 1 Consider the group G = 〈x1, x2, x3, x4|xp
n

1 = xp
3

2 = xp
2

3 = xp
2

4 = 1,

[x1, x2] = x
p2

2 , [x1, x3] = x
p
3 , [x1, x4] = x

p
4 , [x2, x3] = x

pn−1

1 , [x2, x4] = x
p2

2 , [x3, x4]
= x

p
4〉 where p is an odd prime and n is the natural number greater than 2.

The above example has been taken from [3]. This is a nilpotent group of class
2 having no nontrivial core-free subgroup.
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We now observe that a solvable right loop which is not a group need not be
a nilpotent right loop.

Example 2 Let G = Alt(4), the alternating group of degree 4 and H =
{I, (1, 2)(3, 4)}, where I denotes the identity permutation. Consider a right
transversal S = {I, (1, 3)(2, 4), (1, 2, 3), (1, 3, 2), (2, 3, 4), (1, 3, 4)} of H in G.
Note that 〈S〉 = G and H is core-free. Then RMlt(S) ∼= G and RInn(S) ∼= H.
Also note that S∩NG(H) = {I, (1, 3)(2, 4)}, where NG(H) denotes the normal-
izer of H in G. By [4, Proposition 3.3, p. 6], Z(S) ⊆ S ∩ NG(H). Let ◦ be
the induced binary operation on S as defined in the Section 1. Observe that
(1, 3)(2, 4)◦(1, 3, 4) 6= (1, 3, 4)◦(1, 3)(2, 4). This implies that Z(S) = {I}. Hence
S can not be nilpotent.

Now by Lemma 1, S/(S∩NG(H)) is isomorphic to the cyclic group of order
3. This implies that S is solvable.

Now, we observe that, unlike for the case of groups, a right loop of prime
power order need not be nilpotent.

Example 3 Let G =

〈(1, 3)(2, 4)(5, 7, 6, 8), (1, 4)(2, 3)(5, 8, 6, 7), (1, 5)(2, 6)(3, 7)(4, 8)〉 ≤ Sym(8),

where Sym(n) denotes the symmetric group of degree n. Let H be the stabi-
lizer of 1 in G. Consider S = {I, (1, 2)(3, 4), (1, 3)(2, 4)(5, 7, 6, 8), (1, 4)(2, 3)
(5, 8, 6, 7), (1, 5)(2, 6)(3, 7)(4, 8), (1, 6)(2, 5)(3, 8)(4, 7), (1, 7)(2, 8)(3, 6, 4, 5),
(1, 8)(2, 7)(3, 5, 4, 6)}. Clearly S is right transversal of H in G. Note that the
center Z(G) = {I, (1, 2)(3, 4)(5, 6)(7, 8)} and NG(H) = HZ(G). Since H is core-
free and 〈S〉 = G, G ∼= RMlt(S) and H ∼= RInn(S). Observe that S∩NG(H) =
{I, (1, 2)(3, 4)}. By [4, Proposition 3.3, p. 6], Z(S) ⊆ S ∩ NG(H). Let ◦ be
the induced binary operation on S as defined in the section 1. Observe that
(1, 2)(3, 4)◦ (1, 5)(2, 6)(3, 7)(4, 8) 6= (1, 5)(2, 6)(3, 7)(4, 8)◦ (1, 2)(3, 4). This im-
plies that Z(S) = {I}. Hence S cannot be nilpotent.

Next, we will show that there are core-free subgroups of a nilpotent group
which has none of its generating transversals nilpotent. But before proceeding
to further examples, we need to prove the following results.

Proposition 4 Suppose that G is a nilpotent group of class 2, H is a core-free
subgroup of G and S is generating transversal of H in G. Then Z(G) ∩ S =
Z(S).
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Proof. Take x ∈ Z(S). Then x◦y = y◦x for all y ∈ S. This implies xyx−1y−1 ∈
H for all y ∈ S. Since group is nilpotent of class 2, so all commutators are
central. For H is core-free, so H will not contain any commutator element.
This implies xyx−1y−1 = 1 or xy = yx for all y ∈ S. This proves that Z(S) ⊆
Z(G) ∩ S (for S generates G). Converse is obvious. This proves the lemma. �

Proposition 5 For some prime p, suppose that G is a p-group of nilpotent
class 2, H is a core-free subgroup of G and S is generating transversal of H in
G. Then Z(G) ∩Φ(G) ∩ S = {1} where Φ(G) is the Frattini subgroup of G.

Proof. Suppose that 1 6= x ∈ Z(G) ∩Φ(G) ∩ S. Then by Proposition 4, x ∈
Z(S). Also Z(S) is an invariant right subloop, so |Z(S)| divides |S|. Consider
S′ = S \ {x} ∪ {hx} for some 1 6= h ∈ H. Note that S′ also generates G. Then
by Proposition 4, order of center of S′ is one less than the order of center of S
and also |Z(S′)| divides |S|. This is not possible for order of S is p power. This
proves the lemma. �

Example 4 Consider the group G = 〈x1, x2, x3, x4|xp
n

1 = x
p2

2 = x
p2

3 = x
p4

4 =

1, [x1, x2] = x
p
2 , [x1, x3] = x

p
3 , [x1, x4] = x

p
3 , [x2, x3] = x

pn−1

1 , [x2, x4] = x
p
2 , [x3, x4] =

1〉 where p is an odd prime. The above example has been taken from [3]. By the
Lemma 2.1 of [3], this group is a nilpotent group of of class 2 and its center
and Frattini subgroup are equal. By Propositions 4 and 5, it follows that center
of each generating transversal is trivial. So none of the generating transversal
is nilpotent.
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