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Abstract. In the paper, the authors find several identities, including
a new recurrence relation for the Stirling numbers of the first kind, in-
volving the falling and rising factorials and the Cauchy, Lah, and Stirling
numbers.

1 Notation and main results

It is known that, for x ∈ R, the quantities

〈x〉n =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1
1, n = 0

=

n−1∏
`=0

(x− `) =
Γ(x+ 1)

Γ(x− n+ 1)
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and

(x)n =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1
1, n = 0

=

n−1∏
`=0

(x+ `) =
Γ(x+ n)

Γ(x)

are respectively called the falling and rising factorials, where

Γ(z) = lim
n→∞ n!nz∏n

k=0(z+ k)
, z ∈ C \ {0,−1,−2, . . . }

is the classical gamma function, see [1, p. 255, 6.1.2]. For removable singulari-

ties of the ratio Γ(x+m)
Γ(x+n) for x ∈ R and m,n ∈ Z, please read [23, Theorem 1.1]

and closely related references therein.
According to [4, pp. 293–294], there are two kinds of Cauchy numbers which

may be defined respectively by

Cn =

∫ 1
0

〈x〉n d x and cn =

∫ 1
0

(x)n d x. (1)

The Cauchy numbers Cn and cn play important roles in some fields, such
as approximate integrals, the Laplace summation formula, and difference-
differential equations, and are also related to some famous numbers such as
the Stirling, Bernoulli, and harmonic numbers. For recent conclusions on the
Cauchy numbers, please read the papers [17, 18, 21, 30].

It is known that the coefficients expressing rising factorials (x)n in terms of
falling factorials 〈x〉k are called the Lah numbers, denoted by L(n, k). Precisely
speaking,

(x)n =

n∑
k=1

L(n, k)〈x〉k and 〈x〉n =

n∑
k=1

(−1)n−kL(n, k)(x)k. (2)

They can be computed by

L(n, k) =

(
n− 1

k− 1

)
n!

k!

and have an interesting meaning in combinatorics: they count the number of
ways a set of n elements can be partitioned into k nonempty linearly ordered
subsets. For more and recent results on the Lah numbers L(n, k), please refer
to [13, 15, 16].



284 F. Qi, X.-T. Shi, F. -F. Liu

The Stirling numbers of the first kind s(n, k) may be generated by

〈x〉n =

n∑
k=0

s(n, k)xk and (x)n =

n∑
k=0

(−1)n−ks(n, k)xk. (3)

The combinatorial meaning of the unsigned Stirling numbers of the first kind
(−1)n−ks(n, k) can be interpreted as the number of permutations of {1, 2, . . . , n}
with k cycles. Recently there are some new results on the Stirling numbers of
the first kind s(n, k) obtained in [17, 20, 21, 22].

An infinitely differentiable function f is said to be completely monotonic
on an interval I if it satisfies (−1)nf(n)(x) ≥ 0 for x ∈ I and n ≥ 0. See [38,
Definition 1.3] and [40, Chapter XII]. An infinitely differentiable function f :
I ⊆ (−∞,∞)→ [0,∞) is called a Bernstein function on I if its derivative f ′(t)
is completely monotonic on I. See [38, Definition 3.1].

The class of completely monotonic functions may be characterized by [40,
Theorem 12b] which reads that a necessary and sufficient condition that f(x)
should be completely monotonic for 0 < x < ∞ is that f(x) =

∫∞
0 e

−xt dα(t),
where α(t) is non-decreasing and the integral converges for 0 < x < ∞. The
Bernstein functions on (0,∞) can be characterized by the assertion that a
function f : (0,∞) → R is a Bernstein function if and only if it admits the
representation

f(x) = a+ bx+

∫∞
0

(
1− e−xt

)
dµ(t), (4)

where a, b ≥ 0 and µ is a Radon measure on (0,∞) satisfying
∫∞
0 min{1, t}dµ(t)

< ∞. See [38, Theorem 3.2]. The triplet (a, b, µ) determines f uniquely and
vice versa. The representing measure µ and the characteristic triplet (a, b, µ)
from the expression (4) are often called the Lévy measure and the Lévy triplet
of the Bernstein function f. The formula (4) is called the Lévy-Khintchine
representation of f.

It was obtained inductively in [32, Lemma 2.1] that the derivatives of the
functions

hα(t) =

(
1+

1

t

)α
, t > 0, α ∈ (−1, 1)

and

Hα(t) =
hα(t)

α
−
hα−1(t)

α− 1

may be computed by

h
(i)
α (t) =

(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

k!

(
i

k

)(
i− 1

k

)
(α)i−kt

k (5)
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and

H
(i)
α (t) =

(−1)i

ti(1+ t)i+1

(
1+

1

t

)α i−1∑
k=0

k!

(
i+ 1

k

)(
i− 1

k

)
(α)i−kt

k,

for i ∈ N. Consequently,

1. if α ∈ (0, 1), the function hα(t) is completely monotonic on (0,∞);

2. if α ∈ (−1, 0), the function hα(t) is a Bernstein function on (0,∞);

3. if α ∈ (0, 1), the function Hα(t) is completely monotonic on (0,∞).

With the help of [32, Lemma 2.1], it was derived in [32, Theorem 1.1] that the
weighted geometric mean

Gx,y;λ(t) = (x+ t)λ(y+ t)1−λ

is a Bernstein function of t > −min{x, y}, where λ ∈ (0, 1) and x, y ∈ R
with x 6= y. For more and detailed information on this topic, please refer
to [2, 12, 22, 26, 32, 33, 34, 35, 36, 42] and closely related references therein.

In combinatorics, the Bell polynomials of the second kind (also called the
partial Bell polynomials) Bn,k(x1, x2, . . . , xn−k+1) are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑
1≤i≤n
`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0, see [4, p. 134, Theorem A]. The Faà di Bruno formula may be
described in terms of the Bell polynomials of the second kind Bn,k by

dn

d xn
f ◦ g(x) =

n∑
k=0

f(k)(g(x))Bn,k
(
g ′(x), g ′′(x), . . . , g(n−k+1)(x)

)
, (6)

see [4, p. 139, Theorem C].
The aims of this paper are, by virtue of the famous Faà di Bruno formula (6),

to find a new form for derivatives of the function hα(t), and then, by comparing
this new form with (5), to derive some identities involving the falling and rising
factorials and the Cauchy, Lah, and Stirling numbers.

Our main results may be summarized up as the following theorem.
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Theorem 1 For i ∈ N and α ∈ R,

h
(i)
α (t) =

(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

[
i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m

]
tk. (7)

Consequently, the identities

(α)n =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=1

(
n+ k−m

k

)
L(n+ k,m)〈α〉m, (8)

cn =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=1

(
n+ k−m

k

)
L(n+ k,m)Cm, (9)

cn =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
`=1

n∑
m=`

(−1)m−`

(
n+ k−m

k

)
L(n+ k,m)L(m, `)c`,

(10)

and

s(n, `) =
(−1)n−`

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=`

(
n+ k−m

k

)
L(n+ k,m)s(m, `) (11)

hold for all k, ` ≥ 0 and n ∈ N.

In next section, we will give a proof of Theorem 1. In the final section,
we will list some remarks for explaining and interpreting the significance of
identities obtained in Theorem 1.

2 Proof of Theorem 1

Now we are in a position to prove formulas or identities listed in Theorem 1.
The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (12)

and

Bn,k(1!, 2!, 3!, . . . , (n− k+ 1)!) = L(n, k), (13)

see [4, p. 135], where a and b are any complex numbers.
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Taking in (6) f(u) = (1 + u)α and u = g(t) = 1
t , employing (12) and (13),

interchanging the order of the double sum, and simplifying yield

h
(i)
α (t) =

i∑
k=1

〈α〉k(1+ u)α−kBi,k
(
−
1

t2
,
2!

t3
, . . . , (−1)i−k+1

(i− k+ 1)!

ti−k+2

)

=

i∑
k=1

〈α〉k
(
1+

1

t

)α−k
1

tk

(
−
1

t

)i
Bi,k(1!, 2!, . . . , (i− k+ 1)!)

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i∑
k=1

L(i, k)〈α〉k(1+ t)i−k

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
m=0

L(i, i−m)〈α〉i−m(1+ t)m

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

L(i, i− k)〈α〉i−k
k∑
j=0

(
k

j

)
tj

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
j=0

i−1∑
k=j

L(i, i− k)〈α〉i−k
(
k

j

)
tj

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

i−1∑
q=k

L(i, i− q)〈α〉i−q
(
q

k

)
tk

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

i−k∑
m=1

L(i,m)〈α〉m
(
i−m

k

)
tk.

Comparing this with the formula (5) reveals

k!

(
i

k

)(
i− 1

k

)
(α)i−k =

i−k∑
m=1

L(i,m)〈α〉m
(
i−m

k

)
. (14)

From this, the identity (8) follows immediately.
Integrating with respect to α ∈ (0, 1) on both sides of (14) gives

i−k∑
m=1

(
i−m

k

)
L(i,m)

∫ 1
0

〈α〉mdα = k!

(
i

k

)(
i− 1

k

) ∫ 1
0

(α)i−k dα,

that is, by (1),

i−k∑
m=1

(
i−m

k

)
L(i,m)Cm = k!

(
i

k

)(
i− 1

k

)
ci−k.
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This can be rearranged as the identity (9).
Employing the second formula in (2) and the identity (14) acquires

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m =

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

(−1)m−pL(m,p)(α)p,

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

(−1)m−pL(m,p)(α)p = k!

(
i

k

)(
i− 1

k

)
(α)i−k,

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)(α)p = k!

(
i

k

)(
i− 1

k

)
(α)i−k.

Integrating on both sides of the above equality with respect to α ∈ (0, 1) brings
out

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)

∫ 1
0

(α)p dα

= k!

(
i

k

)(
i− 1

k

) ∫ 1
0

(α)i−k dα,

that is,

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)cp = k!

(
i

k

)(
i− 1

k

)
ci−k.

This may be rearranged as (10).
Utilizing the formulas in (3) and (14) results in

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m =

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=0

s(m,p)αp

=

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

s(m,p)αp =

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
L(i,m)s(m,p)αp
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and

k!

(
i

k

)(
i− 1

k

)
(α)i−k = k!

(
i

k

)(
i− 1

k

) i−k∑
p=0

(−1)i−k−ps(i− k, p)αp

= k!

(
i

k

)(
i− 1

k

) i−k∑
p=1

(−1)i−k−ps(i− k, p)αp

=

i−k∑
p=1

k!

(
i

k

)(
i− 1

k

)
(−1)i−k−ps(i− k, p)αp.

Equating coefficients of αp in the above equations leads to

i−k∑
m=p

(
i−m

k

)
L(i,m)s(m,p) = k!

(
i

k

)(
i− 1

k

)
(−1)i−k−ps(i− k, p)

which may be reformulated as (11). The proof of Theorem 1 is complete.

3 Remarks

For explaining and interpreting the significance of formulas or identities ob-
tained in Theorem 1, we are now list several remarks as follows.

Remark 1 Because the sign of

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m

can not be made clear easily, the formula (7) is much more complicated than
the formula (5). Concretely speaking, by virtue of the formula (7), we can not
obviously see the properties that hα(t) for α ∈ (0, 1) is a completely monotonic
function on (0,∞) and that hα(t) for α ∈ (−1, 0) is a Bernstein function on
(0,∞). This implies that [32, Lemma 2.1] is much more useful and significant.

Remark 2 The recurrence relation (11) is a new “horizontal” recurrence re-
lation for the Stirling numbers of the first kind s(n, k), because it is differ-
ent from those “triangular”, “horizontal”, “vertical”, and “diagonal” recur-
rence relations, listed or obtained in [4, pp. 214–215, Theorems A, B, and C]
and [19, 20], for the Stirling numbers of the first kind s(n, k).
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Remark 3 It is a very interesting phenomenon that the variable k ≥ 0 only
appears in the right hand sides of (8) to (11) and that k can change anyway.

Remark 4 Comparing (2) with (8) reveals

L(n,m) =

(
n+k−m

k

)
k!
(
n+k
k

)(
n+k−1
k

)L(n+ k,m).

Remark 5 When letting α→ −1+, the identity (14) becomes

k!

(
i

k

)(
i− 1

k

)
(−1)i−k =

i−k∑
m=1

(
i−m

k

)
L(i,m)〈−1〉m,

0 =

i−k∑
m=1

(
i−m

k

)
L(i,m)(−1)mm!.

In other words, the identity

i−k∑
m=1

(−1)mm!

(
i−m

k

)
L(i,m) = 0,

which may be reformulated as

n∑
m=1

(−1)m
(
n+ k−m

k

)(
n+ k− 1

m− 1

)
= 0,

holds for all i > k+ 1 ≥ 1 and n ∈ N.
Taking α = ± 12 in (14) respectively reveals

i−k∑
m=1

(−1)m+1 (2m− 3)!!

2m

(
i−m

k

)
L(i,m) = k!

(2(i− k) − 1)!!

2i−k

(
i

k

)(
i− 1

k

)
and

i−k∑
m=1

(−1)m+1 (2m− 1)!!

2m

(
i−m

k

)
L(i,m) = k!

(2(i− k) − 3)!!

2i−k

(
i

k

)(
i− 1

k

)
,

which are equivalent to

n∑
m=1

(−1)m
(2m− 3)!!

2m

(
n+ k−m

k

)
L(n+ k,m)

= −
(2n− 1)!!k!

2n

(
n+ k

k

)(
n+ k− 1

k

)
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and

n∑
m=1

(−1)m
(2m− 1)!!

2m

(
n+ k−m

k

)
L(n+ k,m)

= −
(2n− 3)!!k!

2n

(
n+ k

k

)(
n+ k− 1

k

)
,

holds for all i+ 1 > k ≥ 0 and n ∈ N.

Remark 6 Let u = u(x) and v = v(x) 6= 0 be differentiable functions. In [3,
p. 40], the formula

dn

d xn

(
u

v

)
=

(−1)n

vn+1

∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 . . . 0

u ′ v ′ v . . . 0

u ′′ v ′′ 2v ′ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(n−1) v(n−1)
(
n−1
1

)
v(n−2) . . . v

u(n) v(n)
(
n
1

)
v(n−1) . . .

(
n
n−1

)
v ′

∣∣∣∣∣∣∣∣∣∣∣∣
(15)

for the nth derivative of the ratio u(x)
v(x) was listed. For easy understanding and

convenient availability, we now reformulate the formula (15) as

dn

d xn

(
u

v

)
=

(−1)n

vn+1

∣∣A(n+1)×1 B(n+1)×n
∣∣
(n+1)×(n+1) , (16)

where | · |(n+1)×(n+1) denotes a determinant and the matrices

A(n+1)×1 = (ai,1)0≤i≤n

and
B(n+1)×n = (bi,j)0≤i≤n,0≤j≤n−1

satisfy

ai,1 = u
(i)(x) and bi,j =

(
i

j

)
v(i−j)(x)

under the conventions that v(0)(x) = v(x) and that
(
p
q

)
= 0 and v(p−q)(x) ≡ 0

for p < q. See [39, Lemma 2.1].
Applying u(x) = (1+ t)α and v(x) = tα into (16) yields

ai,1 = [(1+ t)α](i) =
Γ(α+ 1)

Γ(α− i+ 1)
(1+ t)α−i
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and

bi,j =

(
i

j

)
(tα)(i−j) =

(
i

j

)
Γ(α+ 1)

Γ(α− i+ j+ 1)
tα−i+j

for 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. As a result, a new and alternative form for
derivatives of the functions hα(t) and Hα(t) may be established.

Remark 7 In recent years, the first author and his coauthors obtained some
new properties of the Bell, Bernoulli, Euler, Genocchi, Lah, Stirling numbers
or polynomials in [6, 7, 8, 9, 10, 11, 14, 27, 37, 41].

Remark 8 In recent years, the first author and other mathematicians together
considered the complete monotonicity and the Bernstein function properties
in [5, 12, 24, 25, 28, 29, 31].
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the geometric mean of many positive numbers and applications, Math.
Inequal. Appl., 17 (2014), no. 2, 719–729; Available online at http:

//dx.doi.org/10.7153/mia-17-53.

[35] F. Qi, X.-J. Zhang, and W.-H. Li, Lévy-Khintchine representations of the
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