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Abstract. In the paper, the authors find necessary and sufficient con-
ditions such that a function related to the Catalan-Qi function, which is
an alternative generalization of the Catalan numbers, is logarithmically
complete monotonic.

1 Introduction

It is stated in [11, 40] that the Catalan numbers Cn for n ≥ 0 form a sequence
of natural numbers that occur in tree enumeration problems such as “In how
many ways can a regular n-gon be divided into n − 2 triangles if different
orientations are counted separately?” whose solution is the Catalan number
Cn−2. The Catalan numbers Cn can be generated by
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One of explicit formulas of Cn for n ≥ 0 reads that

Cn =
4nΓ(n+ 1/2)√
π Γ(n+ 2)

,

where

Γ(z) =

∫∞
0

tz−1e−t d t, <(z) > 0

is the classical Euler gamma function. In [8, 11, 40, 43], it was mentioned that
there exists an asymptotic expansion
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for the Catalan function Cx.
A generalization of the Catalan numbers Cn was defined in [9, 10, 16] by

pdn =
1

n

(
pn

n− 1

)
=

1

(p− 1)n+ 1

(
pn

n

)
for n ≥ 1. The usual Catalan numbers Cn = 2dn are a special case with p = 2.

In combinatorics and statistics, the Fuss-Catalan numbers An(p, r) are de-
fined [6, 45] as numbers of the form

An(p, r) =
r

np+ r

(
np+ r

n

)
= r

Γ(np+ r)

Γ(n+ 1)Γ(n(p− 1) + r+ 1)
.

It is easy to see that

An(2, 1) = Cn, n ≥ 0 and An−1(p, p) = pdn, n ≥ 1.

There have existed some literature, such as [2, 4, 5, 7, 12, 14, 18, 19, 20, 21,
41, 42, 45], on the investigation of the Fuss-Catalan numbers An(p, r).

In [31, Remark 1], an alternative and analytical generalization of the Catalan
numbers Cn and the Catalan function Cx was introduced by

C(a, b; z) =
Γ(b)

Γ(a)

(
b

a

)z
Γ(z+ a)

Γ(z+ b)
, <(a),<(b) > 0, <(z) ≥ 0.

For the uniqueness and convenience of referring to the quantity C(a, b; x),
we call the quantity C(a, b; x) the Catalan-Qi function and, when taking
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x = n ≥ 0, call C(a, b;n) the Catalan-Qi numbers. In the recent papers [13,
15, 22, 24, 25, 29, 30, 31, 32, 33, 34, 39], among other things, some proper-
ties, including the general expression and a generalization of the asymptotic
expansion (1), the monotonicity, logarithmic convexity, (logarithmically) com-
plete monotonicity, minimality, Schur-convexity, product and determinantal
inequalities, exponential representations, integral representations, a generating
function, connections with the Bessel polynomials and the Bell polynomials
of the second kind, and identities, of the Catalan numbers Cn, the Cata-
lan function Cx, the Catalan-Qi numbers C(a, b;n), the Catalan-Qi function
C(a, b; x), and the Fuss-Catalan numbers An(p, r) were established. Very re-
cently, we discovered in [25, Theorem 1.1] a relation between the Fuss-Catalan
numbers An(p, r) and the Catalan-Qi numbers C(a, b;n), which reads that

An(p, r) = r
n

∏p
k=1C

(
k+r−1
p , 1;n

)∏p−1
k=1 C

(
k+r
p−1 , 1;n

)
for integers n ≥ 0, p > 1, and r > 0.

Recall from [3, 26, 28, 38] that an infinitely differentiable and positive func-
tion f is said to be logarithmically completely monotonic on an interval I if it
satisfies 0 ≤ (−1)k[ln f(x)](k) <∞ on I for all k ∈ N.

From the viewpoint of analysis, motivated by the idea in the papers [27,
35, 36, 37] and closely-related references cited therein, the author considered
in [23] the function Ca,b;x(t) = C(a + t, b + t; x) for t, x ≥ 0 and a, b > 0 and
obtained the following conclusions:

1. the function Ca,b;x(t) is logarithmically completely monotonic on [0,∞)
if and only if either 0 ≤ x ≤ 1 and a ≤ b or x ≥ 1 and a ≥ b,

2. the function 1
Ca,b;x(t)

is logarithmically completely monotonic on [0,∞)

if and only if either 0 ≤ x ≤ 1 and a ≥ b or x ≥ 1 and a ≤ b.

This implies the logarithmically complete monotonicity of [Ca,b;x(t)]
±1 in t ≥ 0

along with the ray

{
u(t) = a+ t

v(t) = b+ t
on the plane (u, v), where x ≥ 0 and

a, b > 0. Then one may ask a question: how about its logarithmically complete

monotonicity along the ray

{
u(t) = a+ αt

v(t) = b+ βt
for α,β ≥ 0 with (α,β) 6= (0, 0)

when x, t ≥ 0 and a, b > 0? In other words, is the function

Ca,b;x;α,β(t) = C(a+ αt, b+ βt; x), x ≥ 0, a, b > 0
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of logarithmically complete monotonicity in t ∈ [0,∞)? When α = β 6= 0, this
question has been answered essentially by the above-mentioned conclusions
in [23]; when α = 0 or β = 0, this question has been answered virtually by [34,
Theorem 1.2] which states that the function [C(a, b; x)]±1 is logarithmically
completely monotonic

1. with respect to a > 0 if and only if x ≷ 1,

2. with respect to b > 0 if and only if x ≶ 1.

In this paper, we will discuss the rest cases α,β > 0 and α 6= β of the above
question. Our main results can be formulated as the following theorem.

Theorem 1 If and only if α = 0 and β > 0, or α > 0 and β = 0, or α = β >
0, the function Ca,b;x;α,β(t) is of some logarithmically complete monotonicity.
Concretely speaking,

1. the function [C(a, b; x)]±1 is logarithmically completely monotonic

(a) with respect to a > 0 if and only if x ≷ 1,

(b) with respect to b > 0 if and only if x ≶ 1,

2. the function Ca,b;x(t) is logarithmically completely monotonic on [0,∞)
if and only if either 0 ≤ x ≤ 1 and a ≤ b or x ≥ 1 and a ≥ b,

3. the function 1
Ca,b;x(t)

is logarithmically completely monotonic on [0,∞) if

and only if either 0 ≤ x ≤ 1 and a ≥ b or x ≥ 1 and a ≤ b.

2 Proof of Theorem 1

Taking the logarithm of Ca,b;x;α,β(t) and differentiating with respect to t give

[lnCa,b;x;α,β(t)]
′ = ψ(βt+ b) −ψ(αt+ a) + x

(
1

βt+ b
−

1

αt+ a

)
+ψ(αt+ x+ a) −ψ(βt+ x+ b).

Making use of

ψ(z) =

∫∞
0

(
e−u

u
−

e−zu

1− e−u

)
du, <(z) > 0
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in [1, p. 259, 6.3.21] leads to

[lnCa,b;x;α,β(t)]
′ =

∫∞
0

e−(a+αt)u − e−(b+βt)u

1− e−u
du

+ x

∫∞
0

[
e−(b+βt)u − e−(a+αt)u

]
du

+

∫∞
0

e−(b+βt)u − e−(a+αt)u

1− e−u
e−xu du

=

∫∞
0

[
e−xu − 1+ x

(
1− e−u

)]e−(b+βt)u − e−(a+αt)u

1− e−u
du

= x

∫∞
0

(
1− e−u

u
−
1− e−xu

xu

)
e−(b+βt)u − e−(a+αt)u

1− e−u
u du.

It is easy to see that the function 1−e−u

u is positive and strictly decreasing on
(0,∞). Hence,

1− e−u

u
−
1− e−xu

xu
R 0 (2)

for u ∈ (0,∞) if and only if x Q 1.
Recall from [17, Chapter XIII], [38, Chapter 1], and [44, Chapter IV] that

an infinitely differentiable function f is said to be completely monotonic on
an interval I if it satisfies 0 ≤ (−1)kf(k)(x) < ∞ on I for all k ≥ 0. It is
not difficult to see that a positive function f is logarithmically completely
monotonic if and only if the function −(ln f) ′ is completely monotonic. The
famous Bernstein-Widder theorem, [44, p. 160, Theorem 12a], states that a
necessary and sufficient condition that f(x) should be completely monotonic
in 0 ≤ x < ∞ is that f(x) =

∫∞
0 e

−xt dα(t), where α is bounded and non-
decreasing and the above integral converges for 0 ≤ x < ∞. Therefore, it is
sufficient to find necessary and sufficient conditions on a, b > 0 and α,β > 0
with α 6= β for the function

e−(b+βt)u − e−(a+αt)u =

∫ (a+αt)u
(b+βt)u

e−v d v

=

∫ 1
0

[(a− b) + (α− β)t]ue−[(1−s)(b+βt)+s(a+αt)]u d s

=

∫ 1
0

[(a− b) + (α− β)t]e−[(1−s)β+sα]utue−[(1−s)b+sa]u d s

to be completely monotonic in t ∈ [0,∞) for all u ∈ (0,∞).
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By induction, we obtain[
(A+ Bt)e−Dt

](k)
= (−1)kDk−1(BDt+AD− kB)e−Dt, k ≥ 0,

where A,B,D are real constants. Accordingly, the function (A + Bt)e−Dt is
completely monotonic in t ∈ [0,∞) if and only if A,B ≥ 0, D > 0, and

Dk−1(BDt+AD− kB) ≥ 0, k ≥ 0, t ∈ [0,∞). (3)

Simply speaking, the function (A + Bt)e−Dt is completely monotonic in t ∈
[0,∞) if and only if A ≥ 0, B = 0, and D > 0. Applying A to a − b, B to
α−β, and D to [(1− s)β+ sα]u yields that the function e−(b+βt)u− e−(a+αt)u

is completely monotonic in t ∈ [0,∞) if and only if a ≥ b, α = β, and α,β ≥ 0
with (α,β) 6= (0, 0). Combining this result with the inequality (2) and with the
proofs of [23, Theorem 1.1] and [34, Theorem 1.2] concludes that, if and only
if α = 0 and β > 0, or α > 0 and β = 0, or α = β > 0, the function Ca,b;x;α,β(t)
is of some logarithmically complete monotonicity. The proof of Theorem 1 is
thus complete.

References

[1] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of
Standards, Applied Mathematics Series 55, 10th printing, Washington,
1972.

[2] N. Alexeev, F. Götze, A. Tikhomirov, Asymptotic distribution of singular
values of powers of random matrices, Lith. Math. J., 50 (2010), 121–132;
Available online at http://dx.doi.org/10.1007/s10986-010-9074-4.

[3] R. D. Atanassov, U. V. Tsoukrovski, Some properties of a class of log-
arithmically completely monotonic functions, C. R. Acad. Bulgare Sci.,
41 (1988), 21–23.

[4] J. -C. Aval, Multivariate Fuss-Catalan numbers, Discrete Math., 308
(2008), 4660–4669; Available online at http://dx.doi.org/10.1016/j.
disc.2007.08.100.

[5] D. Bisch, V. Jones, Algebras associated to intermediate subfactors, In-
vent. Math., 128 (1997), 89–157; Available online at http://dx.doi.

org/10.1007/s002220050137.

http://dx.doi.org/10.1007/s10986-010-9074-4
http://dx.doi.org/10.1016/j.disc.2007.08.100
http://dx.doi.org/10.1016/j.disc.2007.08.100
http://dx.doi.org/10.1007/s002220050137
http://dx.doi.org/10.1007/s002220050137


Logarithmically complete monotonicity of Catalan-Qi function 99

[6] N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polyg-
ona m laterum, per diagonales resolvi queat, Nova Acta Academiae Sci.
Petropolitanae, 9 (1791), 243–251.

[7] I. G. Gordon, S. Griffeth, Catalan numbers for complex reflection groups,
Amer. J. Math., 134 (2012), 1491–1502; Available online at http://dx.
doi.org/10.1353/ajm.2012.0047.

[8] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics—A
Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing
Company, Reading, MA, 1994.

[9] P. Hilton, J. Pedersen, Catalan numbers, their generalization, and their
uses, Math. Intelligencer, 13 (1991), 64–75; Available online at http:

//dx.doi.org/10.1007/BF03024089.

[10] D. A. Klarner, Correspondences between plane trees and binary se-
quences, J. Combinatorial Theory, 9 (1970), 401–411.

[11] T. Koshy, Catalan Numbers with Applications, Oxford University Press,
Oxford, 2009.

[12] C. -H. Lin, Some combinatorial interpretations and applications of Fuss-
Catalan numbers, ISRN Discrete Math., 2011 (2011), Article ID 534628,
8 pages; Available online at http://dx.doi.org/10.5402/2011/534628.

[13] F. -F. Liu, X.-T. Shi, F. Qi, A logarithmically completely monotonic
function involving the gamma function and originating from the Catalan
numbers and function, Glob. J. Math. Anal., 3 (2015), 140–144; Available
online at http://dx.doi.org/10.14419/gjma.v3i4.5187.

[14] D. -Z. Liu, C. -W. Song, Z. -D. Wang, On explicit probability densi-
ties associated with Fuss-Catalan numbers, Proc. Amer. Math. Soc., 139
(2011), 3735–3738; Available online at http://dx.doi.org/10.1090/

S0002-9939-2011-11015-3.

[15] M. Mahmoud, F. Qi, Three identities of Catalan-Qi numbers, Math-
ematics, 4 (2) (2016), Article 35, 7 pages; Available online at http:

//dx.doi.org/10.3390/math4020035.

[16] J. McCarthy, Catalan numbers. Letter to the editor: “Catalan num-
bers, their generalization, and their uses” [Math. Intelligencer, 13 (1991),
64–75] by P. Hilton and J. Pedersen, Math. Intelligencer, 14 (1992), 5.

http://dx.doi.org/10.1353/ajm.2012.0047
http://dx.doi.org/10.1353/ajm.2012.0047
http://dx.doi.org/10.1007/BF03024089
http://dx.doi.org/10.1007/BF03024089
http://dx.doi.org/10.5402/2011/534628
http://dx.doi.org/10.14419/gjma.v3i4.5187
http://dx.doi.org/10.1090/S0002-9939-2011-11015-3
http://dx.doi.org/10.1090/S0002-9939-2011-11015-3
http://dx.doi.org/10.3390/math4020035
http://dx.doi.org/10.3390/math4020035


100 F. Qi, B. -N. Guo
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