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Abstract. Upper bounds for σ(n) are provided in terms of other arith-
metic functions as ϕ(n), d(n), ψ(n), P(n), etc. Comparision of older
results are given, too.

1 Introduction

Let n > 1 be written in its canonical form

n = pa11 · · ·parr (1)

where pi are distinct primes, ai ≥ 1 integers, i = 1, 2, . . . , r.
Then it is well-known the following representations formula for the sum of

divisors function σ(n), and number of divisors function d(n):

σ(n) =

r∏

i=1

(pai+1i − 1

pi − 1

)
, d(n) =

r∏

i=1

(ai + 1) (2)

Similarly, for the Euler’s totient ϕ(n), and Dedekind’s totient ψ(n) one has:

ϕ(n) = n

r∏

i=1

(
1−

1

pi

)
, ψ(n) = n

r∏

i=1

(
1+

1

pi

)
(3)
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Here r = ω(r) usually denotes the number of distinct divisors of n, in contrast
with the total number of prime factors of n, which is a1+a2+· · ·+an = Ω(n).
In what follows, let P(n) denote the greatest prime factor of n. This defini-

tion applies for n > 1, but in (2) and (3) it is obvious the completion for the
case n = 1, namely:

σ(1) = d(1) = ϕ(n) = ψ(1) = 1 (4)

There are many inequalities for these arithmetical functions; for a survey of
results, see the monograph [4], or the recent papers [5], [6], [8], [9], [10], [11].
Partcularly, the following upper bounds for the function σ(n) are known:

σ(n) ≤ n2

ϕ(n)
for n ≥ 1, (5)

σ(n) ≤ ϕ(n)(d(n))2 for n ≥ 2, (6)

σ(n) ≤ nd(n) −ϕ(n) for n ≥ 2, (7)

σ(n) ≤ ϕ(n) + d(n)(n−ϕ(n)
)
for n ≥ 1, (8)

σ(n) ≤ (n+ 1

2

)
d(n) for n ≥ 1. (9)

We note that inequality (5) has been rediscovered many times in the litera-
ture. In a slightly different form it appeared in a paper by O. Meissener from
1907 (see [4], p. 77). Inequality (6) is due to A. Makowski (1974, see [4], p.
11); (7) is due to A. Makowski (1960, see [4], p. 11), while (8) is due to the
first author (1989, see [4], p. 10). Finally, (9) is due to E.S. Langford (1978,
see [4], p. 86).
An improvement of (6) for odd values of n, is due to first author (1988, see

[4], p. 10):

σ(n) ≤ ϕ(n)d(n) for n ≥ 1 odd. (10)

It is easy to see that (10) implies for even values:

σ(n) < 2ϕ(n)d(n) for n ≥ 2 even. (11)

In the same year, K.T. Atanassov (see [4], p. 88) proved the upper bounds:

σ(n) ≤ ϕ(n)P(n) for n odd, (12)

σ(n) < 4ϕ(n)P(n) for n even. (13)

Here, as above, relation (13) is an immediate consequence of (12).
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Remark 1 As d(n) and P(n) are not generally comparable, inequalities (10)
and (11) are independent of each other. For any n = p = prime, one has
d(n) = 2 < P(n), so (10) is better than (12). Also for n = p2, when d(n) =
3 ≤ P(n) for n odd. However, even for prime powers n = pa, when p > a+ 1,
clearly (12) will be stronger than (10).

2 Main results

I. New inequalities

One of the aims of this paper is to offer an improvement of (12) and (13); as
follows:

Theorem 1 One has

σ(n) <
3

4
ϕ(n)P(n) for n ≥ 3 odd, (14)

and

σ(n) < 3ϕ(n)P(n) for n even. (15)

Proof. The following auxiliary result by R. A. Rankin (1963, see [1], p. 193)
will be used:

Lemma 1 For all n ≥ 1 one has

1 · 3 · 5 · · · (2n− 1))

2 · 4 · 6 · · · 2n ≤
√

3/4

2n+ 1
(16)

Now, as a consequence, we can deduce an upper bound for
(

n
ϕ(n)

)2
=

∏
p|n

(
p
p−1

)2 ≤ 32

22
· 52
42

· · · (2m+1)2

(2m)2
, where we have denoted the greatest prime

divisior of n as 2m + 1. Now, remark that by (16) one has 3·5···(2m+1)
2·4···(2m) ≤√

3
4(2m+ 1) =

√
3
4P(n), which implies relation (14), by remarking that by

(5) one has σ(n) <
(

n
ϕ(n)

)2 · ϕ(n) ≤ 3
4ϕ(n)P(n), for n ≥ 3 odd, since in (5)

there is equality only for n = 1. If n = 2kN (k ≥ 1,N odd) is an even integer,
then P(n) = P(N), ϕ(n) = 2k−1ϕ(N) and σ(n) = (2k+1 − 1)σ(N), so (15)
follows from (13) by 2k+1 − 1 < 2k+1 and 434 = 3. �
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Remark 2 From the proof of Theorem 1 we can remark that

(
n

ϕ(n)

)2
≤ 3

4
P(n) for n ≥ 3 odd, (17)

and (
n

ϕ(n)

)2
≤ 3P(n) for n even, (18)

which improve the classical inequality (see [5])

n

ϕ(n)
≤ P(n) for all n ≥ 2. (19)

This follows by
(

n
ϕ(n)

)2 ≥ n
ϕ(n) . Clearly, (17) improves (19) for all odd n,

while (18) improves (19) for all n �= 2k (i.e. powers of 2). Indeed, 3P(n) ≤
P2(n) only if P(n) ≥ 3, and for even n this is true for n �= 2k.

Theorem 2 One has

σ(n) < ψ(n) + σ(n) · 3
8
P(n) for n odd, (20)

and

σ(n) < ψ(n) + σ(n) · 3
2
P(n) for n even. (21)

Proof.
The proof of the following auxiliary result may be found in [5]:

Lemma 2 For all n ≥ 1 one has

2 · ψ(n)
n

≥ 1+ n

ϕ(n)
(22)

Now, by (5) and (22) one can write: σ(n) −ψ(n) < n2

ϕ(n) −
n
2 −

n2

2ϕ(n) , so

σ(n) −ψ(n)

ϕ(n)
<

n

2ϕ(n)
· ( n

ϕ(n)
− 1

)
for n > 1. (23)

Now, (20) and (21) are consequences of (17) and (18) as applications to
(23). �
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Theorem 3 One has

σ(n) < ψ(n) +
k · n2
ϕ(n)

, (24)

where k = 1− 6
π2

= 0.392 . . .
For all odd n ≥ 3 one has

σ(n) < ψ(n) +
3

10
ϕ(n)P(n). (25)

Proof. We shall use the following inequality from [6]:

ψ(n) >
c · n2
ϕ(n)

, n ≥ 1, (26)

where c = 6/π2. Now, by (5) and (26) one has σ(n) − ψ(n) < n2

ϕ(n) −
cn2

ϕ(n) =

(1− c) n2

ϕ(n) =
kn2

ϕ(n) , which proves relation (24). Now, as n2

ϕ(n) = ϕ(n) ·
(

n
ϕ(n)

)2
,

and by (17) we get (18), by remarking that 3
4k = 0.294 · · · < 0.3 = 3

10 . �

Remark 3 Relation (25) improves slightly (20), as 3
10 <

3
8 .

Theorem 4 One has

σ(n) <
π2

6
·ψ(n), n ≥ 1. (27)

For all odd n one has

σ(n) < ψ(n) + a ·ϕ(n) · 2ω(n), (28)

where a = π2/6− 1

Proof. For inequality (27) see paper [6]. For (28) use (27) and the remark

that ψ(n)
ϕ(n) =

∏
p|n

p+1
p−1 ≤ 2ω(n) since p+1

p−1 ≤ 2 for p ≥ 3 (i.e. n = odd). Therefore,

we can write σ(n) −ψ(n) < a ·ψ(n) = a ·ϕ(n) · (ψ(n)
ϕ(n)

)
< aϕ(n) · 2ω(n). �

Remark 4 As 0 < a < 1, from (28) we get also

σ(n) < ψ(n) +ϕ(n) · 2ω(n), n odd. (29)
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When n is squarefull, this improves the following inequality by K.T. Atanassov
(see [12]):

σ(n) < ψ(n) +ϕ(n) · 2Ω(n)−ω(n), n ≥ 1. (30)

Indeed, if n is squarefull (i.e., when in (1) all ai ≥ 2 for i = 1, 2, . . . , r), we
get Ω(n) = a1 + · · · + ar ≥ 2r = 2ω(n), so ω(n) ≤ Ω(n) −ω(n), and (29)
refines (30).

II. Comparison of upper bounds for σ(n)

Many times, there have been published various inequalities containing also
other arithmetic functions, but without comparison to each other. For ex-
ample, it is not remarked in the literature that, inequality (5) is stronger
than (6):

Theorem 5 For all n ≥ 1

σ(n) ≤ n2

ϕ(n)
≤ ϕ(n)(d(n))2, (31)

i.e., inequality (5) implies inequality (6).

Proof. The second inequality of (31) may be rewritten as

ϕ(n)d(n) ≥ n, (32)

which is a known inequality of R. Sivaramakrishnan (1967, see [4], p. 10). The
following improvement of (32) is due to the first author (1989, see [4], p. 10):

ϕ(n)d(n) ≥ ϕ(n) + n− 1,n ≥ 1. (33)

�
Inequality (10) improves also (6) for odd values of n. The following result

improves (10):

Theorem 6

σ(n) ≤ ψ(n) · d(n)
2ω(n)

, n ≥ 1. (34)

For odd n, one has

σ(n) ≤ ψ(n) · d(n)
2ω(n)

≤ ϕ(n)d(n). (35)
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Proof. Inequality (34) is due to the first author (1988, see [2]). Now, the

socond inequality of (35) can be written as ψ(n)
ϕ(n) ≤ 2ω(n), n odd, which is

proved earlier (see the proof of Theorem 4). �

Theorem 7 For all n ≥ 1,
σ(n) ≤ n · [ω(n) + 1]. (36)

For n �= prime one has

σ(n) ≤ n · [ω(n) + 1] ≤ n ·Ω(n). (37)

Proof. Inequality (36) appears in the first author’s paper [3] from 1989,
and it improves the better-known inequality due to R. L. Duncan (1967, see
[4], p. 79):

σ(n) < n · [7ω(n) + 10

6
], n ≥ 1. (38)

Indeed, it is easy to see that, ω(n) + 1 < 7ω(n)+10
6 .

We shall offer here a simple proof of (36). Assume that in the prime factor-
ization (1) one has p1 < · · · < pr. Then p1 ≥ 2, p2 ≥ 3, · · · , pr ≥ r+ 1, so we
get by (3) ϕ(n) ≥ n · (1− 1

2

) · · · (1− 1
r+1

)
= n · 12 · 23 · · · r

r+1 =
n
r+1 , giving:

ϕ(n) ≥ n

ω(n) + 1
, n ≥ 1. (39)

Now, inequality (36) is a consequence of (5) combined with (39). The second
inequality of (37) is true, if Ω(n) − ω(n) ≥ 1. This holds only if in the
prime factorization (1) one has that Ω(n) �= ω(n), i.e. if n �= squarefree (i.e.
n = p1 · · ·pr). The inequality

σ(n) ≤ n ·Ω(n), n �= prime, (40)

is due to first author (1988, see [4], p. 87). In fact, a new proof of (40) will be
offered here, if we prove that, it is true for any n = p1 · p2 · · ·pr (pi distinct
primes), for r ≥ 2. Equivalently,

(p1 + 1) · · · (pr + 1) ≤ p1 · · ·pr · r, r ≥ 2. (41)

As
(
1+ 1

p1

) · · · (1+ 1
pr

) ≤ (
1+ 1

1

)(
1+ 1

3

) · · · (1+ 1
r

)
= 3

2 · 43 · · · r+1r = r+2
2 ≤ r

for r ≥ 2, inequality (40) is proved. �
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Remark 5 The above proof shows that in fact

ψ(n)

n
≤ ω(n) + 2

2
, n ≥ 2. (42)

Theorem 8 If ω(n) ≥ 3, then

σ(n) < n[ω(n) + 1] < d(n) · (n+ 1

2

)
, (43)

(i.e. (36) is stronger than (9)). If ω(n) = 1 and n = pa (p prime, a ≥ 1),
then for a ≥ 3, (43) is true. If ω(n) = 2 and n not squarefree, then (43) is
again true. If ω(n) = 1 and n = pa with a ∈ {1, 2} or n = squarefree, one has

σ(n) ≤ d(n) · (n+ 1

2

)
< n[ω(n) + 1]. (44)

Proof. As d(n) ≥ 2ω(n), it is sufficient to prove that

2ω(n)−1 · (n+ 1) ≥ n[ω(n) + 1]. (45)

The inequality

2k−1 ≥ k+ 1, k ≥ 3, (46)

can be proved immediately by induction. By letting k = ω(n), since n+1 > n,
the proof of (41) is complete. Clearly, all inequalities are strict.
If n = pa (p prime), then d(n) = a+ 1 ≥ 4, for a ≥ 3 and d(n) ≥ 4 > 4n

n+1 ,
so again (41) is true with strict inequality.
If n �= pq then n = pa · qb, where at least one of a and b ≥ 2. In this case

d(n) = (a + 1)(b + 1) ≥ 2 · 3 = 6. On the other hand, one has 6 > 6n
n+1 , so

again get the strict inequality.

For n = p one has 2 · (p+12 )
< p · 2, while for n = p2, 3 · (p2+12 )

< p2 · 2 by
3 < p2(p ≥ 2).
Finally, for n = pq, we have 4 · (pq+12 )

< 3pq by pq > 2. �

Remark 6 Therefore (43) is true for all n > 1 which are not primes, or
square of primes, or which are not the product of two distinct primes.

As a comparison of (8) and (9), the following holds true:
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Theorem 9 For all n > 2 even numbers one has

σ(n) < d(n) · (n+ 1

2

)
< ϕ(n) + d(n)(n−ϕ(n)). (47)

When n is odd, generally (8) and (9) are not comparable.

Proof. The first inequality of (47) is strict as in (9) there is equality only for
n = prime. The second inequality may be written also as

d(n) · (2ϕ(n) − n+ 1

2

)
< ϕ(n). (48)

Now, if n is even number, it is well-known (and it easily follows by the first
relation of (2)) that ϕ(n) ≤ n

2 . This implies that

2ϕ(n) − n+ 1 ≤ 1. (49)

Now, if eventually 2ϕ(n) − n + 1 ≤ 0, then (48) is trivially true. Otherwise,
we will use besides (47), the following known inequality (see [4], p. 11):

d(n) < ϕ(n) for n > 30. (50)

Then inequality (48) holds true for all even n > 30. A particular verification
shows that, in fact (48) holds true for all even numbers 4 ≤ n ≤ 30. This
proves the first part of the theorem.
Let n = p2, where p ≥ 5 is prime. As d(p2) = 3 and ϕ(p2) = p2 − p, it is

immediate that the second inequality of (47) holds in reverse order.
The same can be verified for n = 5p, where p ≥ 7 is a prime.
On the other hand, for n = 3p ( p ≥ 5 prime), the inequality holds in

this order. Therefore, there are infinitely many odd values of n for which the
inequality is true in both senses. �

Remark 7 Since (8) may be written also as

σ(n) +ϕ(n) ≤ nd(n) +ϕ(n)(2− d(n)), (51)

by 2 − d(n) ≤ 0, clearly this inequality strongly refines relation (7). Another
refinement of (7), namely

σ(n) +ϕ(n) ≤ n · 2ω(n), (52)

is due to C.A. Nicol (1996, see [4], p. 10).
When n is squarefree (i.e., a product of distinct primes), then, as nd(n) =

2ω(n) and 2 ≤ d(n), clearly (51) is stronger than (52).
It is easy to verify that for n = 2k(k ≥ 1), (52) is stronger than (51).
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An inequality refining (9) for all n, will be provided by

Theorem 10 One has

σ(n) ≤ d(n)σ∗(n)
2ω(n)

≤ d(n) · (n+ 1

2

)
, n ≥ 1, (53)

where σ∗(n) =
r∏
i=1

(paii + 1) (for the prime factorization (1) of n > 1), σ∗(1) =

1, denotes the sum of unitary divisors of n (see [4]).

Proof. The first inequality of (53) is published in first author’s paper [7]
(1994), as an application of an inequality of Klamkin (see also [8])
For the second relation of (53), apply the following auxiliary result:

Lemma 3 For xi ≥ 1 real numbers (i = 1, 2, . . . , r) we have

r∏

i=1

(xi + 1) ≤ 2r−1 ·
( r∏

i=1

xi + 1
)
. (54)

This result is well-known, see e.g. [1].
Apply now (54) for xi = paii , r = ω(n), where n has prime factorization

(1). Then we get

σ∗(n) ≤ 2ω(n)−1 · (n+ 1), n > 1, (55)

which gives the second inequality of (53). �

Remark 8 As ψ(n) =
r∏
i=1

(paii + pai−1i ), clearly σ∗(n) ≤ ψ(n), so the first

inequality of (53) offers a refinement of inequality (34).

It is a natural question if (34) and (53) may be further compared. The
following result answers this question:

Theorem 11 For ω(n) ≥ 2 one has

ψ(n)d(n)

2ω(n)
< d(n) · n+ 1

2
. (56)
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Proof. By inequality (42) it will be sufficient to study

n · ω(n) + 2

2
≤ 2ω(n) · n+ 1

2
. (57)

For ω(n) = 1 this becomes 3n ≤ 2(n+ 1), which is false.
Assume ω(n) ≥ 2. Then, as 2k ≥ k+ 2 for any k ≥ 2, by letting k = ω(n),

and remarking that n+ 1 > n, (57) immediately follows. �

Remark 9 Therefore, one has the following completion to Theorem 10:

σ(n) ≤ d(n) · σ∗(n)
2ω(n)

≤ d(n) ·ψ(n)
2ω(n)

< d(n) · n+ 1

2
, for ω(n) ≥ 2. (58)

Remark 10 In 2010 the first author (see [9]) proved a refinement of a new
type of inequality (7):

σ(n) ≤ nd(n) −ϕ(n)

ω(n)
, for n ≥ 2 and distinct from 6, (59)

which clearly gives another improvement of (7), related to (58):

σ(n) ≤ nd(n) −ϕ(n)

2
<
nd(n)

2
, for ω(n) ≥ 2 and n distinct from 6. (60)

For inequalities related to the weaker relation of (60), see also [5].

Theorem 12 1) The following improvement of (9) holds true:

σ(n) <
nd(n) −ϕ(n)

2
<
n− 1

2
· d(n) for ω(n) ≥ 2 and n > 30; (61)

2) The inequality

σ(n) ≤ n− 1

2
· d(n), (62)

holds true for i) ω(n) ≥ 2 and n distinct from 6 . There is equality only for
n = 10. ii) if ω(n) = 1, let n = pk (p prime, k ≥ 1). Then (62) is true if:
a) k = 2 and p ≥ 5; b) k ≥ 3 and p ≥ 5; c) k ≥ 3 and p = 3; d) k ≥ 4 and
p = 2.
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Proof. 1) Applying inequality (59) for ω(n) ≥ 2 and n distinct from 6, the
first inequality of (61) follows. The inequality is strict, since in [9] it is proved
that in (59) there is equality only for n = 10. The second inequality follows
by remarking that one can apply relation (50) for n > 30.
2) i) By (61), relation (62) holds true for ω(n) ≥ 2 and n > 30. A simple

verification for n = 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, which are the n with
ω(n) = 2, and n < 30 shows that (62) is not true only for n = 6. Also, it is
true for n = 10, with equality.
ii) For n = pk inequality (62) becomes

pk+1 − 1

p− 1
<
pk − 1

2
· (k+ 1). (63)

This inequality is not true for k = 1 (i.e. n = p=prime). Let k = 2. Then
(63) becomes after a simple transformation: p(p− 2) > 5. This is clearly true
only for p ≥ 5, so case a) is proved.
Apply now the Cauchy mean-value theorem of differential calculus to the

functions f(x) = xk+1 and g(x) = xk on the interval [1, p], by obtaining:
f(p)−f(1)
g(p)−g(1) = f(c)

g(c) , where c is in (1, p). We get in this particular case: p
k+1−1
pk−1

=

(k+1)·ck
k·ck−1 = k+1

k · c < (k+ 1) · pk .
Now, we have that p

k <
p−1
2 for all k ≥ 3 and p ≥ 5, so case b) follows.

For k ≥ 3 clearly we have to consider only the remaining cases p = 2

and p = 3. For p = 2 we have n = 2k, and the inequality can be written
equivalently as 2k · (k − 3) > k. This is true only for k ≥ 4 (mathematical
induction). Let now p = 3. Then we get the inequality 3k · (k − 2) > k, and
this holds only for k ≥ 3. Therefore, cases c) and d) are completely proved. �

References
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