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Abstract. In this article, the time fractional order Burgers equation
has been solved by quadratic B-spline Galerkin method. This method has
been applied to three model problems. The obtained numerical solutions
and error norms L2 and L∞ have been presented in tables. Absolute error
graphics as well as those of exact and numerical solutions have been given.

1 Introduction

The Burgers equation is a nonlinear equation for diffusive waves in fluid dy-
namics. It exists various physical problems such as one-dimensional sound
waves in a viscous medium, waves in fluid filled viscous elastic tubes, shock
waves in a viscous medium and magnetohy-drodynamic waves in a medium
with finite electrical conductivity, turbulence etc. [1]. Numerical solutions of
the Burgers equation in the literature have been obtained using different meth-
ods and techniques [2, 3, 4, 5, 6, 7]. In addition, the fractional order Burgers
equation has been solved by many authors [8, 9, 10, 11, 12, 13, 14].
The main idea underlying the finite element method, finite element nodes

that are related to entire of the equivalent system can discretize the problem
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area and the most appropriate one will be a true physical behavioral model
to choose the most appropriate type of element. Thus with the help of this
method, an equation which is hard to solve can be turned into a few solvable
set of equations. Finite element adjustable yet small enough and large enough
to reduce computation load of the problem in available sizes[15].
Due to its capacity for non-integer order derivatives and integrals of frac-

tional calculus have become an indispensable part of applied mathematics.
Applications of differentiation and integration with non-integer orders can be
traced back to premature in history, so it can be said that it is not new[16].
Many different techniques and methods of dealing with fractional differential
equations resulting analytical and numerical solutions can be found in a wide
variety of studies in the literature [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31].
In this paper, we consider the time fractional Burgers equation for 0 < γ < 1

∂γU(x, t)

∂tγ
+U(x, t)

∂U(x, t)

∂x
− ν

∂2U(x, t)

∂x2
= f(x, t) (1)

with the boundary conditions

U(a, t) = h1(t) , U(b, t) = h2(t), t ≥ 0 (2)

and the initial condition

U(x, 0) = g(x) , a ≤ x ≤ b, (3)

where ν is a viscosity parameter and

∂γU(x, t)

∂tγ
=

1

Γ(1− γ)

∫ t
0

(t− τ)−γ ∂U(x, τ)

∂τ
dτ

is the Caputo fractional derivative [32]. In this paper, to achieve a finite ele-
ment layout of the time fractional Burgers equation, Caputo fractional deriva-
tive formulation can be discretizated through L1 formulae [17]:

∂γf(t)

∂tγ
|tm =

(Δt)−γ

Γ(2− γ)

m−1∑
k=0

[
(k+ 1)1−γ − k1−γ

]
[f(tm−k) − f(tm−1−k)] .

2 Quadratic B-spline finite element Galerkin solu-
tions

In this section, the time fractional Burgers equation has been solved by quadratic
B-spline Galerkin method. For this firstly, Eq. (1) is multiplied with weigh
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function W(x) and then integrated over the region, we get

b∫

a

(
∂γU

∂tγ
+U

∂U

∂x
− ν

∂2U

∂x2

)
Wdx =

b∫

a

Wf(x, t)dx. (4)

In Eq. (4), if we apply partial integration, we have weak form

xm+1∫

xm

(
W

∂γU

∂tγ
+WU

∂U

∂x
+ ν

∂W

∂x

∂U

∂x

)
dx = νW

∂U

∂x

∣∣∣∣
xm+1

xm

+

xm+1∫

xm

Wf(x, t)dx.

(5)
which is on only one of the [xm, xm+1] finite element of Eq. (1). To modify the
global coordinate system to the local one we did made use of transformation
ξ = x− xm. So, Eq. (5) turns into the form

h∫

0

(
W

∂γU

∂tγ
+WU

∂U

∂ξ
+ ν

∂W

∂ξ

∂U

∂ξ

)
dξ = ν W

∂U

∂ξ

∣∣∣∣
h

0

+

h∫

0

Wf̃(ξ, t)dξ. (6)

We describe quadratic B-spline base functions. Let us consider the interval
[a, b] is partitioned into N finite elements of uniformly equal length by the
knots xm, m = 0, 1, 2, ...,N such that a = x0 < x1 · · · < xN = b and h =
xm+1 − xm. The quadratic B-splines Qm(x) , (m = −1(1)N), at the knots xm
are defined over the interval [a, b] by [33]

Qm(x) =
1
h2

⎧⎪⎪⎨
⎪⎪⎩

(x− xm−1)
2, x ∈ [xm−1, xm],

(x− xm−1)
2 − 3(x− xm)

2, x ∈ [xm, xm+1],
(x− xm−1)

2 − 3(x− xm)
2 + 3(x− xm+1)

2, x ∈ [xm+1, xm+2],
0, otherwise.

(7)
The set of splines {Q−1(x),Q0(x), . . . , QN(x)} forms a basis for the functions
defined over [a, b]. For this reason, an approximation solution UN(x, t) may
be written in terms of the quadratic B-splines trial functions as:

UN(x, t) =

N∑
m=−1

δm(t)Qm(x) (8)

where δm(t)’s are time dependent parameters. Each quadratic B-spline in-
volves three elements therefore every element of [xm, xm+1] is coated with
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three quadratic B-splines. In this problem, the finite elements are described
on the interval [xm, xm+1] and the elements knots xm, xm+1. Using the nodal
values Um and U

′
m supplied in terms of the parameter δm(t)

UN(xm) = Um = δm−1 + δm,

U ′
N(xm) = U ′

m = 2(−δm−1 + δm)/h

the variation of UN(x, t) over the typical element [xm, xm+1] is presented by

UN(ξ, t) =

m+1∑
j=m−1

δj(t)Qj(ξ).

The Eq. (6) is the element equation for a typical element “e”. Eq. (7) can
be written as follows

Qm−1

Qm

Qm+1

= 1
h2

⎧⎨
⎩

(h− ξ)2,
h2 + 2hξ− 2ξ2,

ξ2.

(9)

Inserting equations Eqs. (9) into Eq. (6), we have

m+1∑
j=m−1

⎡
⎣

h∫

0

QiQjdξ

⎤
⎦ δ̇+

m+1∑
k=m−1

m+1∑
j=m−1

⎡
⎣

h∫

0

QiQ
′
kQjdξ

⎤
⎦ δ

+ ν

m+1∑
j=m−1

⎡
⎣

h∫

0

Q ′
iQ

′
jdξ

⎤
⎦ δ− ν

m+1∑
j=m−1

[
QiQ

′
j

]
δ

∣∣∣∣∣∣
h

0

=

h∫

0

Qif̃(ξ, t)dξ, i = m− 1,m,m+ 1

(10)

where γ̇ shows γth order fractional derivative with respect to t. If we take

Ae
ij =

h∫

0

QiQjdξ, B
e
ikj =

h∫

0

QiQ
′
kQjdξ,

Ce
ij =

h∫

0

Q ′
iQ

′
jdξ,D

e
ij = QiQ

′
j

∣∣h
0
, Ee

i =

h∫

0

Qif̃(ξ, t)dξ
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Eq. (10) can be written in the matrix form

Aeδ̇e + Beδe + νCeδe − νDeδe = Ee (11)

where δe = (δm−1, δm, δm+1). When the above integrations are calculated by
using quadratic B-spline functions, we have

Ae
ij =

h∫

0

QiQjdξ =
h

30

⎡
⎣ 6 13 1

13 54 13

1 13 6

⎤
⎦ ,

Be
ikj =

h∫

0

QiQ
′
kQjdξ =

1

30

⎡
⎣ (−10,−19,−1)δe (8, 12, 0)δe (2, 7, 1)δe

(−19,−54,−7)δe (12, 0,−12)δe (7, 54, 19)δe

(−1,−7,−2)δe (0,−12,−8)δe (1, 19, 10)δe

⎤
⎦ ,

Ce
ij =

h∫

0

Q ′
iQ

′
jdξ =

2

3h

⎡
⎣ 2 −1 −1

−1 2 −1

−1 −1 2

⎤
⎦ ,

De
ij = QiQ

′
j

∣∣h
0
=

2

h

⎡
⎣ 1 −1 0

1 −2 1

0 −1 1

⎤
⎦ .

where i, j, k = m−1,m,m+1. By writing the matrices A,B,C,D and E which
are obtained by combining element matrixes in Eq. (11), we have the following
matrix form equation:

Aδ̇+ (B+ νC− νD)δ = E (12)

where δ = (δ−1, δ0, δ1, ..., δN−1, δN). If we write L1 formula

δ̇m =
dγδ

dtγ
=

(Δt)−γ

Γ(2− γ)

n−1∑
k=0

[
(k+ 1)1−γ − k1−γ

] [
δn−k
m − δn−k−1

m

]
,

instead of δ̇ and Crank-Nicolson formula

δm =
1

2
(δnm + δn+1

m )

instead of δ, We have the recurrence correlation between sequential time levels
about the unknown parameters δn+1

m (t)

[A+ (Δt)γΓ(2− γ)(B+ νC− νD)/2] δn+1

= [A− (Δt)γΓ(2− γ)(B+ νC− νD)/2] δn

−A

n∑
k=1

[
(k+ 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
+ (Δt)γΓ(2− γ)E

(13)
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δ = (δm−2, δm−1, δm, δm+1, δm+2)
T . The system (13) is composed of N+2 linear

equations that include unknown parameters N+2. To achieve unique solution
to these systems, we need two additional restrictions. These are obtained from
the boundary conditions and can be used to eliminate δ−1 and δN from the
systems. For this reason, we achieve a N×N solvable system of equations.

Initial state

The initial vector d0 = (δ−1, δ0, δ1, . . . , δN−2, δN−1, δN)
T is obtained by the

initial and boundary conditions. Therefore, the approximation (8) can be
rewritten for the initial condition as

UN(x, 0) =

N∑
m=−1

δm(0)Qm(x)

where the δm(0)’s are unknown parameters. We need the initial numerical
approximation UN(x, 0) provides the conditions:

UN(x, 0) = U(xm, 0), m = 0(1)N
U′

N(x0, 0) = U′(x0, 0).

So, using these conditions leads to a matrix system of the form

Wd0 = b

where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2
h

2
h

1 1

1 1

. . .

1 1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

b = (U ′(x0, 0), U(x0, 0), U(x1, 0), . . . , U(xN−2, 0), U(xN−1, 0), U(xN, 0))T .

3 Numerical examples and results

In this section, we find the numerical solutions of problems which are ob-
tained by quadratic B-spline Galerkin method. We calculate the accuracy of



Numerical solution of time fractional Burgers equation 173

the method by the error norm L2

L2 =
∥∥Uexact −UN

∥∥
2
�

√√√√b− a

N

N∑
j=0

∣∣∣Uexact
j − (UN)j

∣∣∣2

and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥
∞

� max
j

∣∣∣Uexact
j − (UN)j

∣∣∣ .
Problem 1: Firstly, we consider the Eq. (1) with boundary conditions

U(0, t) = t2 , U(1, t) = et2, t ≥ 0

and the initial condition as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The f(x, t) is of the form

f(x, t) =
2t2−γex

Γ(3− γ)
+ t4e2x − νt2ex.

The exact solution of the problem is given by

U(x, t) = t2ex.

The numerical solutions and the error norms for Problem 1 are given in Tables
1-3. If the results for γ = 0.50, Δt = 0.00025, t = 1, ν = 1 and different
number of partitions are examined in Table 1, one can see that when the
number of partitions N are increased, the error norms L2 and L∞ decrease
significantly. The results which are obtained for γ = 0.50, N = 80, t = 1,
ν = 1 and for different Δt time steps are given in Table 2. From this table it is
clearly seen that when the Δt time steps decrease, the error norms L2 and L∞
decrease as it is expected. The results for different values of γ, Δt = 0.00025,
N = 40, t = 1, ν = 1 are given with the error norms L2 and L∞ in Table 3.
The error distributions obtained by quadratic B-spline Galerkin method for
Δt = 0.00025, N = 80, t = 1, ν = 1 and different values of γ are given Fig. 1.
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Table 1: Error norms and numerical solutions of Problem 1 for γ = 0.50,
Δt = 0.00025, t = 1, ν = 1.

x N = 10 N = 20 N = 40 N = 80 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105440 1.105287 1.105216 1.105197 1.105171
0.2 1.222203 1.221644 1.221493 1.221455 1.221403
0.3 1.351078 1.350217 1.349992 1.349935 1.349859
0.4 1.493437 1.492287 1.491996 1.491922 1.491825
0.5 1.650663 1.649270 1.648922 1.648838 1.648721
0.6 1.824294 1.822727 1.822342 1.822247 1.822119
0.7 2.016049 2.014378 2.013979 2.013882 2.013753
0.8 2.227650 2.226118 2.225747 2.225661 2.225541
0.9 2.461512 2.460020 2.459745 2.459680 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 1.632995 0.447720 0.161833 0.092624
L∞ × 103 2.296683 0.625018 0.227352 0.133125

Table 2: Error norms and numerical solutions of Problem 1 for γ = 0.50, N = 80,
t = 1, ν = 1.

x Δt = 0.002 Δt = 0.001 Δt = 0.0005 Δt = 0.00025 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105356 1.105276 1.105236 1.105216 1.105171
0.2 1.221768 1.221611 1.221533 1.221493 1.221403
0.3 1.350395 1.350164 1.350049 1.349992 1.349859
0.4 1.492516 1.492218 1.492070 1.491996 1.491825
0.5 1.649543 1.649188 1.649011 1.648922 1.648721
0.6 1.823031 1.822636 1.822440 1.822342 1.822119
0.7 2.014687 2.014282 2.014080 2.013979 2.013753
0.8 2.226387 2.226020 2.225837 2.225747 2.225541
0.9 2.460180 2.459931 2.459807 2.459745 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 0.660788 0.375012 0.232768 0.092624
L∞ × 103 0.936619 0.530231 0.328303 0.133125
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Table 3: Error norms and numerical solutions of Problem 1 for Δt = 0.00025, N = 40,
t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105218 1.105217 1.105216 1.105219 1.105171
0.2 1.221497 1.221495 1.221493 1.221497 1.221403
0.3 1.349997 1.349995 1.349990 1.349996 1.349859
0.4 1.492001 1.492000 1.491993 1.492000 1.491825
0.5 1.648930 1.648928 1.648920 1.648928 1.648721
0.6 1.822351 1.822348 1.822339 1.822347 1.822119
0.7 2.013987 2.013984 2.013977 2.013985 2.013753
0.8 2.225751 2.225750 2.225744 2.225751 2.225541
0.9 2.459747 2.459747 2.459744 2.459749 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 0.167077 0.165443 0.159924 0.166085
L∞ × 103 0.235837 0.232645 0.224523 0.232565

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

x

(a) γ = 0.25

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

x

(b) γ = 0.50

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

x

(c) γ = 0.75

Figure 1: Error distributions of Problem 1 for Δt = 0.00025, N = 80, t = 1, ν = 1.
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Problem 2: We secondly consider the Eq. (1), with boundary conditions

U(0, t) = t2 , U(1, t) = −t2, t ≥ 0

and the initial condition as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The term f(x, t) is of the form

f(x, t) =
2t2−γ cos(πx)

Γ(3− γ)
− πt4 cos(πx) sin(πx) + νπ2t2 cos(πx).

The exact solution of the problem is given by

U(x, t) = t2 cos(πx).

Numerical solutions and the error norms of Problem 2 which are achieved
by the presented method for different values of division numbers, time steps, ν
and γ are given in Tables 4-7, respectively. When the tables are analyzed, it is
easily seen that the numerical solutions converge to exact solution and the error
norms L2 and L∞ decrease considerably by increasing the number of division
number, time step and decreasing the ν. We give the error distributions of this
method for different values of γ, Δt = 0.00025, N = 80, t = 1, ν = 1 in Fig. 2.

Table 4: Error norms and numerical solutions of Problem 2 for γ = 0.50, Δt =
0.00025, t = 1, ν = 1.

x N = 10 N = 20 N = 40 N = 80 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951278 0.950847 0.951005 0.951057 0.951057
0.2 0.808287 0.808744 0.808954 0.809019 0.809017
0.3 0.587257 0.587574 0.587738 0.587788 0.587785
0.4 0.308724 0.308910 0.308993 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.308724 -0.308909 -0.308996 -0.309020 -0.309017
0.7 -0.587257 -0.587574 -0.587741 -0.587787 -0.587785
0.8 -0.808286 -0.808744 -0.808957 -0.809017 -0.809017
0.9 -0.951277 -0.950847 -0.951008 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.435334 0.183000 0.041977 0.001982
L∞ × 103 0.731099 0.273318 0.063233 0.004192
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Table 5: Error norms and numerical solutions of Problem 2 for γ = 0.50, N = 80,
t = 1, ν = 1.

x Δt = 0.002 Δt = 0.001 Δt = 0.0005 Δt = 0.00025 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951198 0.951117 0.951078 0.951057 0.951057
0.2 0.809192 0.809093 0.809044 0.809019 0.809017
0.3 0.587927 0.587848 0.587808 0.587788 0.587785
0.4 0.309094 0.309051 0.309030 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.309095 -0.309052 -0.309030 -0.309020 -0.309017
0.7 -0.587926 -0.587847 -0.587807 -0.587787 -0.587785
0.8 -0.809191 -0.809092 -0.809042 -0.809017 -0.809017
0.9 -0.951201 -0.951120 -0.951080 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.124076 0.054112 0.019282 0.001982
L∞ × 103 0.175640 0.077491 0.028460 0.004192

Table 6: Error norms and numerical solutions of Problem 2 for γ = 0.50, Δt = 0.0005,
N = 80, t = 0.1.

x ν = 1 ν = 0.5 ν = 0.1 Exact
0.0 0.010000 0.010000 0.010000 0.010000
0.1 0.009517 0.009517 0.009514 0.009511
0.2 0.008099 0.008098 0.008095 0.008090
0.3 0.005886 0.005885 0.005882 0.005878
0.4 0.003095 0.003094 0.003092 0.003090
0.5 0.000000 0.000000 0.000000 0.000000
0.6 -0.003095 -0.003094 -0.003092 -0.003090
0.7 -0.005886 -0.005885 -0.005882 -0.005878
0.8 -0.008099 -0.008098 -0.008095 -0.008090
0.9 -0.009517 -0.009517 -0.009514 -0.009511
1.0 -0.010000 -0.010000 -0.010000 -0.010000

L2 × 103 0.006442 0.005834 0.003115
L∞ × 103 0.009009 0.008167 0.004425
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Table 7: Error norms and numerical solutions of Problem 2 for Δt = 0.00025, N = 80,
t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951058 0.951058 0.951056 0.951057 0.951057
0.2 0.809021 0.809020 0.809018 0.809019 0.809017
0.3 0.587791 0.587789 0.587787 0.587788 0.587785
0.4 0.309021 0.309020 0.309018 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.309020 -0.309020 -0.309019 -0.309020 -0.309017
0.7 -0.587788 -0.587788 -0.587786 -0.587787 -0.587785
0.8 -0.809020 -0.809018 -0.809016 -0.809017 -0.809017
0.9 -0.951061 -0.951060 -0.951059 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.003492 0.002733 0.001520 0.001886
L∞ × 103 0.006455 0.005257 0.003443 0.004065
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Figure 2: Error distributions of Problem 2 for Δt = 0.00025, N = 80, t = 1, ν = 1.
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Problem 3: Finally, we consider the Eq. (1) with boundary conditions

U(0, t) = 0 , U(1, t) = 0, t ≥ 0

and the initial conditions as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The term f(x, t) is of the form

f(x, t) =
2t2−γ sin(2πx)

Γ(3− γ)
+ 2πt4 sin(2πx) cos(2πx) + 4νπ2t2 sin(2πx).

The exact solution of the problem is given by

U(x, t) = t2 sin(2πx).

Finally, error norms and numerical solutions for Problem 3 which calculated
to test the accuracy of the solutions are given in Tables 8-11. The error norms
and numerical solutions for different values ofN, γ = 0.50, Δt = 0.00025, t = 1,
ν = 1 are presented in Table 8. From the table, it is understood that while the
value of N is increasing, the error norms decrease. The results obtained for
γ = 0.50, N = 120, t = 1, ν = 1, different time steps by this method are given
in Table 9. From the table, it canbe seen that as Δt time steps decrease, error
norms decrease considerably. The tables show us that the numerical solutions
are really close to the exact solutions. For Δt = 0.0005, N = 120, t = 1, ν = 1

and different values of ν numerical solutions and error norms are given in
Table 10. It shows us that while the value of ν is decreasing, the error norms
decrease substantially. Again, for Δt = 0.0005, N = 120, t = 1, ν = 1 and
different values of γ, the result obtained by the presented method are given in
Table 11. The error distributions achieved by the quadratic B-spline Galerkin
method for Δt = 0.0005, N = 120, t = 1, ν = 1 and different values of γ are
presented in Fig. 3.
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Table 8: Error norms and numerical solutions of Problem 3 for γ = 0.50, Δt =
0.00025, t = 1, ν = 1.

x N = 40 N = 50 N = 80 N = 100 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.585106 0.586153 0.587257 0.587505 0.587785
0.2 0.947079 0.948617 0.950262 0.950638 0.951057
0.3 0.947320 0.948761 0.950310 0.950666 0.951057
0.4 0.585586 0.586434 0.587348 0.587562 0.587785
0.5 0.000001 -0.000002 0.000000 0.000007 0.000000
0.6 -0.585584 -0.586437 -0.587346 -0.587548 -0.587785
0.7 -0.947318 -0.948767 -0.950310 -0.950661 -0.951057
0.8 -0.947078 -0.948621 -0.950260 -0.950631 -0.951057
0.9 -0.585106 -0.586155 -0.587257 -0.587503 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 2.899412 1.774196 0.577143 0.305058
L∞ × 103 4.063808 2.495647 0.813220 0.430014

Table 9: Error norms and numerical solutions of Problem 3 for γ = 0.50, N = 120,
t = 1, ν = 1.

x Δt = 0.0025 Δt = 0.002 Δt = 0.001 Δt = 0.0005 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.588970 0.588675 0.588083 0.587788 0.587785
0.2 0.952952 0.952484 0.951545 0.951076 0.951057
0.3 0.952914 0.952458 0.951544 0.951086 0.951057
0.4 0.588914 0.588635 0.588087 0.587810 0.587785
0.5 0.000005 0.000005 0.000005 0.000004 0.000000
0.6 -0.588905 -0.588630 -0.588077 -0.587801 -0.587785
0.7 -0.952912 -0.952456 -0.951540 -0.951084 -0.951057
0.8 -0.952949 -0.952479 -0.951540 -0.951070 -0.951057
0.9 -0.588968 -0.588672 -0.588080 -0.587784 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 1.392372 1.048597 0.359489 0.017828
L∞ × 103 1.974356 1.487805 0.512105 0.032162
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Table 10: Error norms and numerical solutions of Problem 3 for γ = 0.50, Δt =
0.0005, N = 120, t = 0.1.

x ν = 1 ν = 0.5 ν = 0.1 ν = 0.01 ν = 0.005 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.005902 0.005900 0.005890 0.005879 0.005878 0.005878
0.2 0.009550 0.009546 0.009531 0.009512 0.009510 0.009511
0.3 0.009550 0.009546 0.009531 0.009512 0.009510 0.009511
0.4 0.005902 0.005900 0.005890 0.005878 0.005877 0.005878
0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.005902 -0.005900 -0.005890 -0.005878 -0.005876 -0.005878
0.7 -0.009550 -0.009546 -0.009531 -0.009512 -0.009510 -0.009511
0.8 -0.009550 -0.009546 -0.009531 -0.009512 -0.009510 -0.009511
0.9 -0.005902 -0.005900 -0.005890 -0.005879 -0.005878 -0.005878
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.029174 0.026666 0.015017 0.001045 0.000758
L∞ × 103 0.041294 0.037739 0.021269 0.002001 0.002341

Table 11: Error norms and numerical solutions of Problem 3 for Δt = 0.0005, N =
120, t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.586505 0.587787 0.587788 0.587791 0.587785
0.2 0.950362 0.951076 0.951078 0.951082 0.951057
0.3 0.950933 0.951088 0.951088 0.951092 0.951057
0.4 0.587791 0.587813 0.587811 0.587814 0.587785
0.5 0.000000 0.000007 0.000005 0.000004 0.000000
0.6 -0.587833 -0.587798 -0.587802 -0.587804 -0.587785
0.7 -0.951333 -0.951080 -0.951085 -0.951089 -0.951057
0.8 -0.952217 -0.951068 -0.951072 -0.951076 -0.951057
0.9 -0.589827 -0.587784 -0.587785 -0.587788 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.879696 0.017780 0.018641 0.021398
L∞ × 103 2.051516 0.034072 0.033291 0.037357
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Figure 3: Error distributions of Problem 3 for Δt = 0.0005, N = 120, t = 1, ν = 1.

4 Conclusion

In this paper, quadratic B-spline Galerkin method has been applied to ac-
quire the numerical solutions of three problems for the time fractional Burgers
equation. The time fractional derivative operator is made allowance for the
Caputo fractional derivative in these problems. It can be easily viewed from
the numerical solutions and error norms in tables obtained that this is an ex-
tremely good method to achieve numerical solutions of time fractional partial
differential equations arising in physics and engineering.



Numerical solution of time fractional Burgers equation 183

References

[1] L. Debnath, Partial Differential Equations for Scientists and Engineers,
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