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Abstract. In this paper we will investigate the growth of solutions of
certain class of nonhomogeneous linear differential equations with entire
coefficients having the same order and type. This work improves and
extends some previous results in [1], [7] and [9].

1 Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory (see [6]). We denote by σ (f) the order of growth of f that defined by

σ (f) = lim sup
r→+∞

log T(r, f)

log r
;

and the type of a meromorphic function f of finite order σ is defined by

τ (f) = lim sup
r→+∞

T(r, f)

rσ
,
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where T (r, f) is the Nevanlinna characteristic function of f. We remark that if
f is an entire function then we have

σ (f) = lim sup
r→+∞

log logM(r, f)

log r

and

τM (f) = lim sup
r→+∞

logM(r, f)

rσ

where M (r, f) = max|z|=r |f (z)| .
Consider the linear differential equation

f(k) +Ak−1(z)f
(k−1) + ...+A0(z)f = H (z) , (1)

where A0 �≡ 0,A1, ..., Ak−1, H �≡ 0 are entire functions. It is well known that
all solutions of (1) are entire functions. The case when the coefficients are
polynomials has been studied by Gundersen, Steinbart and Wang in [5] and
if p is the largest integer such that Ap is transcendental, Frei proved in [3]
that there exist at most p linearely independent finite order solutions of the
corresponding homogeneous equation

f(k) +Ak−1(z)f
(k−1) + ...+A0(z)f = 0. (2)

Several authors studied the case when the coefficients have the same order.
In 2008, Tu and Yi investigated the growth of solutions of the homogeneous
equation (2) when most coefficients have the same order, see [8]. Next, in
2009, Wang and Laine improved this work to nonhomogeneous equation (1)
by proving the following result.

Theorem 1 [9] Suppose that Aj(z) = hj (z) e
Pj(z) (j = 0, ..., k− 1) , where

Pj (z) = ajnz
n + .....+ aj0 are polynomials with degree n ≥ 1, hj (z) are entire

functions of order less than n, not all vanishing, and that H (z) �≡ 0 is an en-
tire function of order less than n. If ajn (j = 0, ..., k− 1) are distinct complex
numbers, then every solution of (1) is of infinite order.

Now how about the case when ajn (j = 0, ..., k− 1) are equals? we will
answer this question in this paper. For the homogeneous equation case, Huang
and Sun proved the following result.

Theorem 2 [7] Let Aj(z) = Bj (z) e
Pj(z) (j = 0, ..., k− 1) ,where Bj (z) are en-

tire functions, Pj (z) are non constant polynomials with
deg (Pj (z) − Pi (z)) ≥ 1 and max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) (i �= j).
Then every transcendental solution f of (2) satisfies σ (f) = ∞.
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The nonhomogeneous case of this result is improved later in Theorem 4.
Recentely, in [1] the authors investigated the order and hyper-order of solutions
of the linear differential equation

f(k)+
(
Ak−1(z)e

Pk−1(z)eλz
m

+Bk−1(z)
)
f(k−1)+...+

(
A0(z)e

P0(z)eλz
m

+B0(z)
)
f = 0,

where λ ∈ C − {0} , m ≥ 2 is an integer and maxj=0,...,k−1 {deg Pj (z)} <

m, Aj, Bj (j = 0, ..., k− 1) are entire functions of order less than m.

In this paper we will investigate certain class of nonhomogeneous linear
differential equations with entire coefficients having the same order and type.
In fact we will prove the following results.

Theorem 3 Consider the linear differential equation

f(k) + Bk−1 (z) e
Pk−1(z)eλz

m

f(k−1) + ...+ B0 (z) e
P0(z)eλz

m

f = H (z) , (3)

where λ �= 0 is a complex constant, m ≥ 2 is an integer, Pj (z) = ajnz
n +

...+ aj0 (j = 0, ..., k− 1) be non constant polynomials such that n < m; B0 �≡
0, B1, ..., Bk−1, H �≡ 0 are entire functions of order smaller than n. If one of
the following occurs:

(1) ajn (j = 0, ..., k− 1) are distinct complex numbers;

(2) there exist s, t ∈ {0, 1, ..., k− 1} such that argasn �= argatn and for j �=
s, t ajn = cjasn or ajn = cjatn with 0 < cj < 1, BsBt �≡ 0;

then every solution of (3) is of infinite order.

Corollary 1 Consider the linear differential equation

f(k) + Bk−1 (z) e
λz3+ak−1z

2+bk−1zf(k−1) + ...+ B0 (z) e
λz3+a0z

2+b0zf = H (z)

where λ ∈ C − {0} , aj are distinct complex numbers (or satisfy the condition
(2) of Theorem 3) and B0 �≡ 0, B1, ..., Bk−1, H �≡ 0 are entire functions of order
smaller than 2. Then every solution f of this differential equation is of infinite
order.

Theorem 4 Let Aj(z) = Bj (z) e
Pj(z) (j = 0, ..., k− 1) , where Bj (z) are entire

functions, Pj (z) be non constant polynomials with
deg (Pj (z) − Pi (z)) ≥ 1 and max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) (i �= j) ,
and let H (z) �≡ 0 be an entire function of order less than 1. Then every solution
of (1) is of infinite order.
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Example 1 Consider the linear differential equation

f(4) +B3 (z) e
z2+zf(3) +B2 (z) e

2z2+zf′′ +B1 (z) e
2z2+izf′ +B0 (z) e

z2+izf = H (z) ,

where B0 �≡ 0, B1, B2,H �≡ 0 are entire functions of order less than 1. By
Theorem 4, every solution of this differential equation is of infinite order.

Theorem 5 Let Aj (z) = Bj (z)Pj

(
eR(z)

)
+Gj (z)Qj(e

−R(z)) for j = 0, 1, ..., k−

1 where P
j
(z), Qj(z) and R(z) = cdz

d + ...+ c1z+ c0 (d ≥ 1) are polynomials;
and let Bj (z) , Gj (z) , H (z) �≡ 0 be entire functions of order less than d.
Suppose that B0 (z)P0 (z)+G0 (z)Q0(z) �≡ 0 and there exists s (0 ≤ s ≤ k− 1)
such that for j �= s, deg Ps > deg Pj and degQs > degQj. Then every solution
f of (1) is of infinite order.

Example 2 By Theorem 5, every solution of the differential equation

f′′ + sin
(
2z2

)
f′ + cos

(
z2
)
f = sin z

is of infinite order.

2 Preliminaries Lemmas

We need the following lemmas for our proofs.

Lemma 1 [4] Let f(z) be a transcendental meromorphic function of finite
order σ, and let ε > 0 be a given constant. Then there exists a set E ⊂ [0, 2π)
of linear measure zero such that for all z = reiθ with |z| sufficiently large and
θ ∈ [0, 2π) \E, and for all k, j, 0 ≤ j ≤ k, we have

∣∣∣∣∣
f(k) (z)

f(j) (z)

∣∣∣∣∣ ≤ |z|(k−j)(σ−1+ε) .

Lemma 2 [2] Let P (z) = anz
n + ...+ a0, (an = α+ iβ �= 0) be a polynomial

with degree n ≥ 1 and A (z) (�≡ 0) be entire function with σ (A) < n. Set
f (z) = A (z) eP(z), z = reiθ, δ (P, θ) = α cosnθ − β sinnθ. Then for any given
ε > 0, there exists a set E ⊂ [0, 2π) that has linear measure zero, such that
for any θ ∈ [0, 2π) \E ∪H, where H = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set,
there is R > 0 such that for |z| = r > R, we have
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(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1+ ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

exp {(1+ ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1− ε) δ (P, θ) rn} .

Lemma 3 [7] Let n ≥ 2 and Aj (z) = Bj (z) e
Pj(z) (1 ≤ j ≤ n) , where each

Bj (z) is an entire function and Pj (z) is a nonconstant polynomial. Suppose that
deg (Pj (z) − Pi (z)) ≥ 1, max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) for i �= j.
Then there exists a set H1 ⊂ [0, 2π) that has linear measure zero, such that
for any given constant M > 0 and z = reiθ, θ ∈ [0, 2π) − (H1 ∪H2), we have
some integer s = s (θ) ∈ {1, 2, ..., n} , for j �= s,

∣∣Aj

(
reiθ

)∣∣ |z|M
|As (reiθ)|

→ 0, as r → ∞,

where H2 = {θ ∈ [0, 2π) : δ (Pj, θ) = 0 or δ (Pi − Pj, θ) = 0, i �= j} is a finite
set.

Lemma 4 [9] Let f (z) be an entire function and suppose that

G (z) =
log+

∣∣f(k) (z)∣∣
|z|σ

is unbounded on some ray argz = θ with constant σ > 0. Then there exists an
infinite sequence of points zn = rne

iθ (n = 1, 2, ...) , where rn → ∞, such that
G (zn) → ∞ and

∣∣f(j) (zn)
∣∣∣∣f(k) (zn)
∣∣ ≤

1

(k− j) !
(1+ o (1)) rk−j

n , j = 0, 1, ..., k− 1

as n → ∞.

Lemma 5 [9] Let f (z) be an entire function with finite order σ (f). Suppose
that there exists a set E ⊂ [0, 2π) which has linear measure zero, such that
log+|f

(
reiθ

)
| ≤ Mrσfor any ray arg z = θ ∈ [0, 2π) \E, where M is a positive

constant depending on θ, while σ is a positive constant independent of θ. Then
σ (f) ≤ σ.
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Lemma 6 [10] Suppose that f1 (z) , f2 (z) , ..., fn (z) (n ≥ 2) are linearly inde-
pendent meromorphic functions and g1 (z) , g2 (z) , ..., gn (z) are entire fuctions
satisfying the following conditions

(i)
n∑
j=1

fj (z) e
gj(z) ≡ 0.

(ii) gj (z) − gk (z) are not constants for 1 ≤ j < k ≤ n.

(iii) For 1 ≤ i ≤ n, 1 ≤ j < k ≤ n,

T (r, fj) = o
{
T
(
r, egj(z)−gk(z)

)}
, (r → ∞, r /∈ E)

where E is a set with finite linear measure.
Then fj ≡ 0, 1 ≤ j ≤ n.

3 Proof of main results

Proof. [Proof of Theorem 3] We will prove the two cases together. If we
suppose that f is a solution of (3) of finite order σ (f) = σ < ∞, (contrary
to the assertion), then σ ≥ n. Indeed, if σ < n then we get the following
contradiction. From (3), we can write

(
Bk−1 (z) e

Pk−1(z)f(k−1) + ...+ B0 (z) e
P0(z)f

)
eλz

m

= H (z) − fk. (4)

Now for the condition (1), if Bk−1 (z) e
Pk−1(z)f(k−1)+ ...+B0 (z) e

P0(z)f ≡ 0, then
by Lemma 6, we have B0 (z) f ≡ 0, and since B0 (z) �≡ 0, then f ≡ 0, which
implies that H (z) ≡ 0, a contradiction. So

Bk−1 (z) e
Pk−1(z)f(k−1) + ...+ B0 (z) e

P0(z)f �≡ 0.

Then the order of growth of the left side of (4) is equal m and the order of
the right side is smaller than n, a contradiction. So, we have σ (f) = σ ≥ n.

And for the condition (2), to apply Lemma 6 we may collecte terms of the
same power, and we have at least two terms linearly independents: if

Bs (z) f
(s)ePs(z) + Bt (z) f

(t)ePt(z) +

p∑
u=1

Gue
cjuPs(z) +

q∑
v=1

Lve
civPt(z) ≡ 0

by Lemma 6, Bs (z) f
(s) ≡ 0, and since Bs (z) �≡ 0, then f(s) ≡ 0 and so f(k) ≡ 0,

which implies that H (z) ≡ 0, a contradiction. So

Bs (z) f
(s)ePs(z) + Bt (z) f

(t)ePt(z) +

p∑
u=1

Gue
cjuPs(z) +

q∑
v=1

Lve
civPt(z) �≡ 0.
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By similar reasoning as above we get σ (f) = σ ≥ n.

By Lemma 1, for any given ε (0 < ε < 1) , there exists a set E1 ⊂ [0, 2π) that
has linear measure zero , such that if ψ ∈ [0, 2π) \E1, then

∣∣f(j) (z)∣∣∣∣f(i) (z)∣∣ ≤ |z|kσ , 0 ≤ i < j ≤ k (5)

as z → ∞ along arg z = ψ. Denote E2 = {θ ∈ [0, 2π) : δ (Pj, θ) = 0, 0 ≤ j ≤ k}∪
{θ ∈ [0, 2π) : δ (Pj − Pi, θ) = 0, 0 ≤ i < j ≤ k}∪{θ ∈ [0, 2π) : δ (λzm, θ) = 0}, so
E2 is a finite set. Suppose that Hj ⊂ [0, 2π) is the exceptional set applying
lemma 2 to Aj (z) = Bj (z) e

λzm+Pj(z) (j = 0, ..., k− 1) . Then E3 = ∪k−1
j=0 Hj has

linear measure zero. Set E = E1 ∪ E2 ∪ E3. Take arg z = ψ ∈ [0, 2π) − E. We
need to treat two principal cases:
Case (i): δ = δ (λzm,ψ) < 0. By lemma 2, for a given 0 < ε < 1, we have

|Aj (z)| ≤ exp {(1− ε) δrm} . (6)

Now we prove that
log+

∣∣f(k) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ0. Sup-

pose that it is not the case. By Lemma 4, there is a sequence of points
zi = rie

iθ (i = 1, 2, ...), such that ri → ∞ as i → ∞, and that

log+
∣∣f(k) (zi)

∣∣
|zi|

σ(H)+ε
→ ∞ (7)

and ∣∣f(j) (zi)
∣∣∣∣f(k) (zi)
∣∣ ≤ (1+ o (1)) rt−j

i , j = 0, 1, ..., k− 1. (8)

From (7) and the definition of the order σ (H), it is easy to see that
∣∣∣∣
H (zi)

f(k) (zi)

∣∣∣∣ → 0 (9)

as zi → ∞. From (3), we obtain

1 ≤ |Ak−1 (zi)|

∣∣∣∣∣
f(k−1) (zi)

f(k) (zi)

∣∣∣∣∣+ ...+ |A0 (zi)|

∣∣∣∣
f (zi)

f(k) (zi)

∣∣∣∣+
∣∣∣∣
H (zi)

f(k) (zi)

∣∣∣∣ . (10)

Using (5)-(9) in (10), we get

1 ≤ rki exp{(1− ε) δrmi }.
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This is impossible since δ < 0. Therefore
log+|f(k) (zi) |

|zi|σ(H)+ε
is bounded on the ray

arg z = ψ. Assume that
log+|f(k) (zi) |

|zi|σ(H)+ε
≤ M1 (M1 is a constant) and so

|f(k) (z) | ≤ M1 exp{r
σ(H)+ε}. (11)

Using the elementary triangle inequality for the well know equality

f (z) = f (0)+f′ (0) z+...+
1

(k− 1) !
f(k−1) (0) zk−1+

z∫
0

...

ξ1∫
0

f(k) (ξ)dξdξ1...dξk−1,

and (11), we obtain

|f (z)| ≤ (1+ o (1)) rk|f(k) (z) | ≤ (1+ o (1))M1r
k exp{rσ(H)+ε} ≤ exp{rσ(H)+2ε},

(12)
on any ray arg z = ψ ∈ [0, 2π) − E.

Case (ii): δ = δ (λzm,ψ) > 0. Now we pass to δj = δ (Pj, ψ) . For the condition
(1), since ajn (j = 0, ..., k− 1) are distinct complex numbers, then there exists
some s ∈ {0, 1, 2..., k− 1} such that δs > δj for all j �= s. For the condition
(2), set δ′ = max {δs, δt} and without loss of generality we may assume that
δ′ = δs. In both cases, we have

∣∣∣∣
Aj (z)

As (z)

∣∣∣∣ |z|M → 0, and
|z|M

|As (z)|
→ 0, (13)

as |z| → ∞, for any M > 0. Suppose that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is unbounded on the

ray arg z = ψ. Then by lemma 4 there is a sequence of points zi = rie
iψ, such

that ri → ∞, and
log+

∣∣f(s) (zi)
∣∣

|zm|
σ(H)+ε

→ ∞, (14)

and ∣∣f(j) (zi)
∣∣∣∣f(s) (zi)
∣∣ ≤ (1+ o (1)) rs−j

i , j = 0, 1, ..., s− 1. (15)

From (14) and the definition of order, it is easy to see that
∣∣∣∣
H (zi)

f(s) (zi)

∣∣∣∣ → 0 (16)
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as ri → ∞. From (3), we can write

1 ≤ 1

|As (zi)|

∣∣∣∣∣
f(k) (zi)

f(s) (zi)

∣∣∣∣∣+
∣∣∣∣∣
f(k−1) (zi)

f(s) (zi)

∣∣∣∣∣
|Ak−1 (zi)|

|As (zi)|
+ ... (17)

+

∣∣∣∣∣
f(s+1) (zi)

f(s) (zi)

∣∣∣∣∣
|As+1 (zi)|

|As (zi)|
+

∣∣∣∣∣
f(s−1) (zi)

f(s) (zi)

∣∣∣∣∣
|As−1 (zi)|

|As (zi)|
+ ...

+

∣∣∣∣
f (zi)

f(s) (zi)

∣∣∣∣
|A0 (zi)|

|As (zi)|
+

1

|As (zi)|

∣∣∣∣
H (zi)

f(s) (zi)

∣∣∣∣ ;

and by using (5), (13), (15) and (16) in (17) a contradiction follows as zi → ∞.

Then
log+|f(s) (zi) |

|zi|σ(H)+ε
is bounded and we have |f(s) (z) | ≤ M2 exp{r

σ(H)+ε} on

the ray arg z = ψ. This implies, as in Case (i), that

|f (z)| ≤ exp{rσ(H)+2ε}.

We conclude that in all cases we have

|f (z)| ≤ exp{rσ(H)+2ε}

on any ray arg z = ψ ∈ [0, 2π) − E, provided that r is large enough. Then
by Lemma 5, σ (f) ≤ σ (H) + 2ε < n (0 < 2ε < n− σ (H)) , a contradiction.
Hence, every solution of (3) must be of infinite order. �
Proof. [Proof of Theorem 4] We suppose contrary to the assertion that f is
a solution of (1) of finite order σ (f) = σ < ∞. First we prove that σ ≥ 1.

Indeed, if σ < 1 then we will have the following contradiction. From (1), we
can write

Bk−1 (z) e
Pk−1(z)f(k−1) + ...+ B0 (z) e

P0(z)f = H (z) − f(k). (18)

By the same rasoning as in the proof of Theorem 3, we get that the order of
the left side of (18) is greather than or equal to 1 and the order of the right
side of (18) is smaller than 1, a contradiction. Therefore σ ≥ 1.

Take arg z = ψ ∈ [0, 2π) − E where E has linear measure zero and set δj =
δ (Pj, ψ) (j = 0, ..., k− 1) . By Lemma 3, there exists some s ∈ {0, 1, 2..., k− 1}

such that for j �= s, M > 0, we have

∣∣∣∣
Aj (z)

As (z)

∣∣∣∣ |z|M → 0, as z → ∞. (19)
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We need to treat two cases:
Case (i): δs > 0. In this case we have also

1

|As (z)|
|z|M → 0, as z → ∞. (20)

We prove that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ. Suppose that

it is not the case. Then by lemma 4 there is a sequence of points zi = rie
iψ0 ,

such that ri → ∞, and (14), (15), (16) hold. As in the proof of Theorem 3, by

using (17) we get a contradiction. Therefore,
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded and so

we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}. (21)

Case (ii): δs < 0. Obsiouly in this case δj < 0 for all j and we have

|Aj (z)| ≤ exp
{
(1− ε) δjr

dj

}
,

where dj = deg (Pj) ; which implies that

|Aj (z)| |z|
M → 0, as z → ∞.

We use the same reasoning as in Case (i) in the proof of Theorem 3, we prove

that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ and we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}.

Then by Lemma 5, σ (f) ≤ σ (H) + 2ε < 1 (0 < 2ε < 1− σ (H)) , a contradic-
tion. So, every solution of (1) must be of infinite order. �
Proof. [Proof of Theorem 5] Suppose that f is a solution of (1) of finite
order σ (f) = σ < ∞. By the same reasoning as in the proof of Theorem
4 and taking account the assumption that B0 (z)P0 (z) + G0 (z)Q0(z) �≡ 0

and there exists s (0 ≤ s ≤ k− 1) such that for j �= s, deg Ps > deg Pj and
degQs > degQj, we can prove that σ ≥ d.

Set δ (R, θ) = Real
(
cde

idθ
)
and

P
j

(
eR(z)

)
= ajmj

emjR(z) + a
j(mj−1)e

(mj−1)R(z) + ...+ aj1e
R(z) + aj0,
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Q
j

(
e−R(z)

)
= bjnj

e−njR(z) + b
j(nj−1)e

−(nj−1)R(z) + ...+ bj1e
−R(z) + bj0.

By Lemma 2, it is easy to get the following
(i) If δ (R, θ) > 0, then

exp
{
(1− ε)mjδ (R, θ) r

d
}
≤ |Aj (z)| ≤ exp

{
(1+ ε)mjδ (R, θ) r

d
}
, (22)

(ii) if δ (R, θ) < 0, then

exp
{
−(1− ε)njδ (R, θ) r

d
}
≤ |Aj (z)| ≤ exp

{
−(1+ ε)njδ (R, θ) r

d
}
. (23)

Take arg z = ψ ∈ [0, 2π) − E where E has linear measure zero. We prove that

log+
∣∣f(s) (z)∣∣

|z|σ(H)+ε
is bounded on the ray arg z = ψ. Suppose that it is not the case.

Then by lemma 4 there is a sequence of points zi = rie
iψ0 , such that ri → ∞,

and (14), (15), (16) hold. From (1) we can write

|As (zi)| ≤
∣∣∣∣∣
f(k) (zi)

f(s) (zi)

∣∣∣∣∣+ |Ak−1 (zi)|

∣∣∣∣∣
f(k−1) (zi)

f(s) (zi)

∣∣∣∣∣+ ... (24)

+ |As+1 (zi)|

∣∣∣∣∣
f(s+1) (zi)

f(s) (zi)

∣∣∣∣∣+ |As−1 (zi)|

∣∣∣∣∣
f(s−1) (zi)

f(s) (zi)

∣∣∣∣∣+ ...

+ |A0 (zm)|

∣∣∣∣
f (zi)

f(s) (zi)

∣∣∣∣+
∣∣∣∣
H (zi)

f(s) (zi)

∣∣∣∣ .

If δ (R, θ) > 0, then by using (14), (15), (16) and (22) in (24), we obtain

exp
{
(1− ε)msδ (R, θ) r

d
i

}
≤ rMi exp

{
(1+ ε) (ms − 1) δ (R, θ) rdi

}
,

where M > 0 is a constant. A contradiction follows by taking 0 < ε < 1
2ms−1

.

Now if δ (R, θ) < 0, by using (23) instead of (22) in (24), we obtain

exp
{
−(1− ε)nsδ (R, θ) r

d
}
≤ rMi exp

{
−(1+ ε) (ns − 1) δ (R, θ) rdi

}
,

a contradiction follows by taking 0 < ε < 1
2ns−1

.

Therefore,
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on any ray arg z = ψ ∈ [0, 2π) − E and so

as the previous reasoning we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}.

Then by Lemma 5, σ (f) ≤ σ (H) + 2ε < d (0 < 2ε < d− σ (H)) , a contradic-
tion. So, every solution of (1) must be of infinite order. �
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