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Abstract. Motivated by a recent paper of U. Höhle and T. Kubiak
on regular sup-preserving maps, we investigate a particular Galois-type
connection between relations on one set X to another Y and functions
on the power set P (X) to P (Y ) .

Since relations can largely be identified with union-preserving set
functions, the results obtained can be used to provide some natural gene-
ralizations of most of the former results on relations and relators (families
of relations). The results on inverses seem to be the only exceptions.

1 Introduction

In this paper, a subset R of a product set X×Y is called a relation on X to
Y. And, a function U on the power set P (X) to P (Y ) is called a corelation
on X to Y.

Motivated by a recent paper of Höhle and Kubiak [9] , for any relation R

on X to Y, we define a correlation R� on X to Y such that R� (A) = R [A ]
for all A ⊂ X. Moreover, for any correlation U on X to Y , we define a relation
U∗ on X to Y such that U∗(x) = U

(
{x}

)
for all x ∈ X.

And, we show that the functions � and ∗ establish an interesting Galois-
type connection between the family P (X×Y ) of all relations on X to Y and
the family Q (X, Y ) of all correlations on X to Y, whenever P (X×Y ) is
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considered to be partially ordered by the ordinary set inclusion and Q (X, Y )
by the pointwise one.

Since relations can largely be identified with union-preserving correlations,
the results obtained can be used to provide some natural generalizations of
most of the former results on relations and relators (families of relations). ( The
most relevant ones are in [21] and [16] .) The results on inverse relations and
relators seem to be the only exceptions.

To keep the paper almost completely self-contained, the most important
definitions concerning relations, functions, ordered sets and Galois connec-
tions [5, p. 155] will be briefly listed in the next two preparatory sections in
somewhat novel forms. They will clarify our subsequent results and show the
way to further investigations on Galois-type connections.

2 Relations and functions

A subset F of a product set X×Y is called a relation on X to Y. If in particular
F ⊂ X2, with X2 = X×X, then we may simply say that F is a relation on X.
In particular, ΔX = {(x, x) : x ∈ X} is called the identity relation on X.

If F is a relation on X to Y, then for any x ∈ X and A ⊂ X the sets
F(x) = {y ∈ Y : (x, y) ∈ F} and F [A ] =

⋃
a∈A F(a) are called the images

of x and A under F respectively. If (x, y) ∈ F, then we may also write x F y.

Moreover, the sets DF = { x ∈ X : F(x) �= ∅ } and RF = F [X ] are called
the domain and range of F, respectively. If in particular DF = X, then we say
that F is a relation of X to Y, or that F is a non-partial relation on X to Y.

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f(x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function � of X to itself is called a unary operation on X.
While, a function ∗ of X2 to X is called a binary operation on X. And, for
any x, y ∈ X, we usually write x� and x ∗ y instead of �(x) and ∗((x, y)).
For any relation F on X to Y, we may naturally define a set-valued function

F� on X such that F�(x) = F(x) for all x ∈ X. This F� can be identified with
F. However, thus in contrast to F ⊂ X×Y we already have F� ⊂ X×P(Y).

Therefore, instead of F�, it is usually more convenient to work with F or
its selection functions. A function f of DF to Y is called a selection of F if
f ⊂ F , i. e., f (x) ∈ F (x) for all x ∈ DF .

Thus, the Axiom of Choice can be briefly expressed by saying that every
relation has at least one selection function. Moreover, it can be easily seen
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that each relation is the union of its selection functions.

If F is a relation on X to Y, then F =
⋃

x∈X {x}×F(x). Therefore, the values
F(x), where x ∈ X, uniquely determine F. Thus, a relation F on X to Y can
be naturally defined by specifying F(x) for all x ∈ X.

For instance, the complement relation Fc can be naturally defined such
that Fc(x) = F(x)c = Y \ F(x) for all x ∈ X. The latter notation will not cause
confusions, since thus we also have Fc = X×Y \ F .

Quite similarly, the inverse relation F−1 can be naturally defined such that
F−1(y) = {x ∈ X : y ∈ F(x)} for all y ∈ Y. Thus, the operations c and −1

are compatible in the sense
(
F c

)−1
=

(
F−1

)c
.

Moreover, if in addition G is a relation on Y to Z, then the composition
relation G ◦ F can be naturally defined such that (G ◦ F )(x) = G [ F(x) ] for
all x ∈ X. Thus, we also have (G ◦ F ) [A ] = G

[
F [A ]

]
for all A ⊂ X.

On the other hand, if G is a relation on Z to W, then the box product
relation F�G can be naturally defined such that (R�G )(x, z) = F(x)×G(z)
for all x ∈ X and z ∈ Z .

The box product relation, whose origin seems to go back to a thesis of J.
Riquet in 1951, has been mainly investigated in [21] . In that, for instance, we
have proved that ( F�G ) [A ] = G ◦A ◦ F−1 for all A ⊂ X×Z.

Hence, by taking A = {(x, z)} , and A = ΔY if Y = Z , one can see that
the box and composition products are actually equivalent tools. However, the
box product can immediately be defined for an arbitrary family of relations.

3 Generalized ordered sets and Galois connections

Now, a relation R on X may be called reflexive if ΔX ⊂ R , and transitive if
R ◦ R ⊂ R . Moreover, R may be called symmetric if R−1 ⊂ R , and antisym-
metric if R ∩ R−1 ⊂ ΔX.

Thus, a reflexive and transitive (symmetric) transitive relation may be called
a preorder (tolerance) relation. And, a symmetric (antisymmetric) preorder
relation may be called an equivalence (partial order) relation.

For instance, for A ⊂ X, the Pervin relation PA = A2 ∪ Ac×X [18] is a
preorder relation on X. While, for a pseudo-metric d on X and r > 0 , the
surrounding Bd

r =
{
(x, y) ∈ X2 : d(x, y) < r

}
is a tolerance relation on X.

Moreover, we may recall that if A is a partition of X, i. e., a family of
pairwise disjoint, nonvoid subsets of X such that X =

⋃ A , then EA =⋃
A∈A A2 is an equivalence relation on X, which can be identified with A.
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According to [15] , an ordered pair X(≤) =
(
X, ≤ ) , consisting of a set X

and a relation ≤ on X, will be called a generalized ordered set, or an ordered
set without axioms. And, we shall usually write X in place of X(≤) .

Now, a generalized ordered set X(≤) may, for instance, be called reflexive
if the relation ≤ is reflexive. Moreover, the generalized ordered set X′(≤′) =
X (≤−1 ) may be called the dual of X(≤ ) .

Having in mind the terminology of Birkhoff [1, p. 1] , a generalized ordered
set will be briefly called a goset. Moreover, a preordered (partially ordered)
set will be called a proset (poset).
Thus, every set X is a proset with the universal relation X2 . Moreover, X

is a poset with the identity relation ΔX . And every subfamily of the power
set P (X) is a poset with the ordinary set inclusion ⊂ .

The usual definitions on posets can be naturally extended to gosets [15] .
(And also to relator spaces [14] which include formal context [7, p. 17] as an
important particular case).

For instance, for any subset A of a goset X, we may naturally define

lb (A) =
{
x ∈ X : ∀ a ∈ A : x ≤ a

}
,

ub (A) =
{
x ∈ X : ∀ a ∈ A : a ≤ x

}
,

and

min (A) = A ∩ lb (A) , max (A) = A ∩ ub (A) ,

inf (A) = max
(
lb (A)

)
, sup (A) = min

(
ub (A)

)
.

Thus, for instance, min may be considered as a relation on P(X) to X,
or as a function of P(X) of to itself. However, if X is antisymmetric, then
card

(
min (A)

) ≤ 1 for all A ⊂ X. Therefore, min is actually a function.

Now, a goset Xmay, for instance, be naturally called inf-complete if inf(A) �=
∅ for all A ⊂ X. In [3] , as an obvious extension of [1, Theorem 3, p. 112 ] ,
we have proved that thus “inf-complete” is also equivalent to “sup-complete”.

However, it now more important to note that, for any two subsets A and
B of a goset X, we also have

lb(A) ⊂ ′ B ⇐⇒ B ⊂ lb(A) ⇐⇒ A ⊂ ub(B) .

Therefore, the set-functions lb and ub form a Galois connection between
the poset P(X) and its dual in the sense of [5, Definition 7.23] , suggested by
Schmidt’s reformulation [12, p. 209] of Ore’s Galois connexion [10] .

Instead of Galois connections, it is usually more convenient to use residuated
mappings of Blyth and Janowitz [2] in some modified and generalized forms
suggested by the present author in [19, 17, 24, 22] .
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However, now for a function f of one goset X to another Y and a function
g of Y to X, we shall say that

(1) f and g form an increasing upper Galois connection between X and Y

if f(x) ≤ y implies x ≤ g(y) for all x ∈ X and y ∈ Y,

(2) f and g form an increasing lower Galois connection between X and Y

if x ≤ g(y) implies f(x) ≤ y for all x ∈ X and y ∈ Y.

Now, if both (1) and (2) hold, then we may naturally say that the functions
f and g form an increasing Galois connection between X and Y. Important
examples for Galois connections can be found in [6] . ( See also [13, 16, 4] .)

In the theory of relator spaces, it has turned out that the increasing upper
and lower Galois connections are actually particular cases of upper and lower
semicontinuous pairs of relations [20] .

Therefore, they can be naturally extended to relators between relator spaces
[23]. For this, it is enough to study first these connections only for functions
between power sets instead of those between gosets.

4 Functions on one power set to another

Definition 1 If U is a function on one power set P(X) to another P(Y),
then we simply say that U is a correlation on X to Y.

Remark 1 According to Birkhoff [1, p. 111] , the term “operation on X”
could also be used. However, this may cause some confusions because of the
customary meaning of this expression.

Definition 2 A correlation U on X to Y, is called

(1) increasing if U(A) ⊂ U(B) for all A ⊂ B ⊂ X ,

(2) quasi-increasing if U
(
{x}

) ⊂ U(A) for all x ∈ A ⊂ X ,

(3) union-preserving if U (
⋃ A ) =

⋃
A∈A U(A) for all A ⊂ P (X) .

Remark 2 In the X = Y particular case, U may also be naturally called
extensive, intensive, involutiv, and idempotent if A ⊂ U(A) , U(A) ⊂ A ,
U
(
U(A)

)
= A , and U

(
U(A)

)
= U(A) for all A ⊂ X, respectively.

Moreover, in particular an increasing and idempotent correlation may be
called a projection or modification operation. And an extensive (intensive)
projection operation may be called a closure (interior) operation.

Simple reformulations of properties (2) and (1) in Definition 1 give the
following two theorems.
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Theorem 1 For a correlation U on X to Y, the following assertions are
equivalent:

(1) U is quasi-increasing ,

(2)
⋃

x∈A U
(
{x}

) ⊂ U(A) for all A ⊂ X.

Theorem 2 For a corelation U on X to Y, the following assertions are equi-
valent:

(1) U is increasing ,

(2)
⋃

A∈AU(A) ⊂ U (
⋃ A ) for all A ⊂ P (X) ,

(3) U(A) ∪U(B) ⊂ U(A ∪ B) for all A, B ⊂ X.

Hence, it is clear that in particular we also have

Corollary 1 A correlation U on X to Y is union-preserving if and only if it
is increasing and U (

⋃ A ) ⊂ ⋃
A∈A U(A) for all A ⊂ P (X) .

However, it now more important to note that we also have the following
theorem which has also been proved, in a different way, by Pataki [11] .

Theorem 3 For a correlation U on X to Y, the following assertions are
equivalent :

(1) U is uninon-preserving ,

(2) U(A) =
⋃

x∈A U
(
{x}

)
for all A ⊂ X.

Proof. Since A =
⋃

x∈A {x} for all A ⊂ X, it is clear that (1) implies (2).

On the other hand, if (2) holds, then we can note that U is already increa-
sing. Therefore, to obtain (1), by Corollary 1, we need only prove that U (

⋃ A )
⊂ ⋃

A∈A U(A) for every A ⊂ P (X) .

For this, note that if A ⊂ P (X) , then by (2) we have

U
(⋃

A
)
=

⋃
x∈ ⋃ A

U
(
{x}

)
.

Therefore, if y ∈ U (
⋃ A ) , then there exists x ∈ ⋃ A such that y ∈ U

(
{x}

)
.

Thus, in particular there exists Ao ∈ A such that x ∈ Ao , and so {x} ⊂ Ao .
Hence, by using the increasingness of U, we can already infer that

y ∈ U
(
{x}

) ⊂ U(Ao ) ⊂
⋃

A∈A
U(A) .

Therefore, the required inclusion is also true. �
From this theorem, by Theorem 1, it is clear that in particular we also have
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Corollary 2 A correlation U on X to Y is union-preserving if and only if it
is quasi-increasing and U(A) ⊂ ⋃

x∈A U
(
{x}

)
for all A ⊂ X.

Definition 3 For any two correlations U and V on X to Y, we write

U ≤ V ⇐⇒ U(A) ⊂ V (A) for all A ⊂ X .

Remark 3 Note that if in particular U ⊂ V , then U(A) = V (A) for all
A ∈ DU and U(A) = ∅ ⊂ V(A) for all A ⊂ X with A /∈ DU . Therefore, we
have U(A) ⊂ V (A) for all A ⊂ X, and thus U ≤ V .

Theorem 4 With the inequality considered in Definition 3, the family Q(X, Y )
of all correlations on X to Y, forms a complete poset.

Proof. It can be easily seen that if U is a family of correlations on X to Y

and
V (A) =

⋃
U∈U

U(A)

for all A ⊂ X, then V ∈ Q(X, Y ) such that V = sup (U ) .

Therefore, Q(X, Y ) is sup-complete, and hence it is also inf-complete. �

Remark 4 Note that if in particular each member of U is increasing (quasi-
increasing), then V is also increasing (quasi-increasing).

Therefore, with the inequality given in Definition 3, the family Q1(X, Y ) of
all quasi-increasing correlations on X to Y is also a complete poset.

5 A Galois connection between relations and corre-
lations

According to the corresponding definitions of Höhle and Kubiak [9] , we may
also naturally introduce the following

Definition 4 For any relation R on X to Y, we define a correlation R� on
X to Y such that

R� (A) = R [A ]

for all A ⊂ X.

Conversely, for any correlation U on X to Y, we define a relation U∗ on X

to Y such that
U∗(x) = U

(
{x}

)

for all x ∈ X.
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Now, by using the corresponding definitions, we can easily prove the follo-
wing two theorems.

Theorem 5 If U is a correlation on X to Y, then R� ≤ U implies R ⊂ U∗

for any relation R on X to Y.

Proof. If R� ≤ U, then by the corresponding definitions

R(x) = R
[
{x}

]
= R�

(
{x}

) ⊂ U
(
{x}

)
= U∗(x)

for all x ∈ X. Therefore, R ⊂ U∗ also holds. �

Theorem 6 For a correlation U on X to Y, the following assertions are
equivalent :

(1) U is quasi-increasing ,

(2) R ⊂ U∗ implies R� ≤ U for any relation R on X to Y.

Proof. If (1) holds and R ⊂ U∗, then

R� (A) = R [A ] =
⋃
x∈A

R(x) ⊂
⋃
x∈A

U∗(x) =
⋃
x∈A

U
(
{x}

) ⊂ U(A)

for all A ⊂ X. Therefore, R� ≤ U, and thus (2) also holds.

Conversely, if (2) holds, then because of U∗ ⊂ U∗ we have
(
U∗)� ≤ U.

Therefore, for any A ⊂ X, we have

U∗�(A) ⊂ U(A).

Moreover, by using the corresponding definitions, we can see that

U∗�(A) = U∗ [A ] =
⋃
x∈A

U∗(x) =
⋃
x∈A

U
(
{x}

)
.

Therefore,
⋃

x∈A U
(
{x}

) ⊂ U(A) , and thus (1) also holds. �
Now, as an immediate consequence of the above two theorems, we can also

state

Corollary 3 For an arbitrary relation R and a quasi-increasing correlation
U on X to Y, we have

R� ≤ U ⇐⇒ R ⊂ U∗ .
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Remark 5 This corollary shows that the operation � and the restriction of
∗ to Q1(X, Y ) establish an increasing Galois connection between the posets
P (X×Y ) and Q1(X, Y ) .

Therefore, the extensive theory of Galois connections ( see [2, 8, 5] ) could
be applied here. However, because of the simplicity of Definition 4, it seems
now more convenient to use some elementary, direct proofs.

6 Some further properties of the operations �
and ∗

By the corresponding definitions, we evidently have the following

Theorem 7 Under the notation of Definition 4,

(1) R ⊂ S implies R� ≤ S� for any relations R and S on X to Y,

(2) U ≤ V implies U∗ ⊂ V∗ for any correlations U and V on X to Y.

Remark 6 Note that, by using Corollary 3, instead of assertion (2), we could
only prove that the restriction of the operation ∗ to Q1(X, Y ) is increasing.

From (2), by using Remark 3, we can immediately derive

Corollary 4 U ⊂ V also implies U∗ ⊂ V ∗ for any correlations U and V on
X to Y.

Moreover, we can also easily prove the following theorem whose first state-
ment has also been established by Höhle and Kubiak [9] .

Theorem 8 For any two relations R and S on X to Y,

(1) R�∗ = R ,

(2) R� ≤ S� implies R ⊂ S .

Proof. By the corresponding definitions, we have

R�∗(x) =
(
R�

)∗
(x) = R�

(
{x}

)
= R

[
{x}

]
= R(x)

for all x ∈ X. Therefore, (1) is also true.

To prove (2), note that if R� ≤ S� holds, then by Theorem 7 we also have
R�∗ ⊂ S�∗ . Hence, by using (1), we can see that R ⊂ S also holds. �
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Remark 7 The above theorem shows that the function � is injective, ∗ is
onto P (X, Y ) , and � ∗ is the identity function of P (X×Y ).

Moreover, by Theorems 7 and 8, we can also at once state

Corollary 5 For any two relations R and S on X to Y, we have R ⊂ S if
and only if R� ≤ S�.

Concerning the dual operation ∗ � , we can only prove the following theorem
which, to some extent, has also been established by Höhle and Kubiak [9] and
Pataki [11] .

Theorem 9 For a corelation U on X to Y, the following assertions are equi-
valent :

(1) U∗� = U ,

(2) U is union-preserving ,

(3) U = R� for some relation R on X to Y .

Proof. If (2) holds, then by the proof of Theorem 6, and Theorem 3, we have

U∗�(A) =
⋃
x∈A

U
(
{x}

)
= U(A)

for all A ⊂ X. Therefore, (1) also holds.

Now, since (1) trivially implies (3), we need only show that (3) also implies
(2). For this, note that if (3) holds, then

U(A) = R�(A) = R [A ] =
⋃
x∈A

R(x) =
⋃
x∈A

R
[
{x}

]
=

⋃
x∈A

R�
(
{x}

)
=

⋃
x∈A

U
(
{x}

)

for all A ⊂ X. Therefore, by Theorem 3, assertion (2) also holds. �

Remark 8 The above theorem shows that the function � maps P (X×Y )
onto the family Q3(X, Y ) of all union-preserving correlations on X to Y.

Moreover, the restriction of ∗ to Q3(X, Y ) is injective and that of ∗� is the
identity function of Q3(X, Y ) . Therefore, the Galois connection mentioned in
Remark 5 is rather particular.

Now, as an immediate consequence of Theorems 7 and 9, we can also state
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Corollary 6 For any two union-preserving correlations U and V on X to
Y, we have U ≤ V if and only if U∗ ⊂ V ∗.

Proof. Note that if U∗ ⊂ V ∗ holds, then by Theorem 7 we also have U∗� ≤
V ∗� . Hence, by Theorem 9, we can see that U ≤ V also holds. �
Moreover, in addition to Theorem 9, we can also prove the following

Theorem 10 Under the notation ◦ = ∗� , for any two correlations U and
V on X to Y, we have

(1) U◦◦ = U◦,
(2) U ≤ V implies U◦ ≤ V ◦,
(3) U◦ ≤ U if and only if U is quasi-increasing .

Proof. Assertion (2) is immediate from Theorem 7. While, from the proof of
Theorem 6, we know that

U◦(A) = U∗�(A) =
⋃
x∈A

U
(
{x}

)

for all A ⊂ X. Hence, by Definition 2 and Theorem 1, it is clear that (3) is
true.

Moreover, from the above equality, we can also see that

U◦◦(A) =
⋃
x∈A

U◦({x}) =
⋃
x∈A

U
(
{x}

)
= U◦(A)

for all A ⊂ X. Therefore, (1) is also true. �

Remark 9 The above theorem shows that the function ◦ is a projection
operation operation on Q(X, Y) such that its restriction to Q1(X, Y ) is al-
ready an interior operation.

Moreover, from Theorem 9, we can see that, for any correlation U on X to
Y, we have U◦ = U if and only if U is union-preserving. Therefore, Q3(X, Y )
is the family of all open elements of Q(X, Y ).

Now, as some useful consequences of our former results, we can also easily
prove the following two theorems.

Theorem 11 If R is a relation on X to Y and U = R�, then

(1) U is the smallest quasi-increasing correlation on X to Y such that
R ⊂ U∗,
(2) U is the largest union-preserving correlation on X to Y such that

U∗ ⊂ R .
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Proof. From Theorems 9 and 8, we can see that U is union-preserving and
U∗ = R�∗ = R .

Moreover, if V is a quasi-increasing corelation on X to Y such that R ⊂ V ∗ ,
then by Theorem 6 we also have R� ≤ V , and thus U ≤ V . Therefore, (1) is
true.

On the other hand, if V is a correlation on X to Y such that V ∗ ⊂ R ,
then by Theorem 7 we also have V ∗� ≤ R� , and thus V ∗� ≤ U . Hence, if in
particular V is union-preserving, then by Theorem 9 we can see that V ≤ U.
Therefore, (2) is also true. �

Theorem 12 If U is a correlation on X to Y and R = U∗, then

(1) R is the largest relation on X to Y such that R� ≤ U whenever U is
quasi-increasing ,

(2) R is the smallest relation on X to Y such that U ≤ R� whenever U

is union-preserving .

Proof. If U is quasi-increasing, then by Theorem 10 we have R� = U∗� =
U◦ ≤ U. While, if U is union-preserving, then by Theorem 9 we have R� =
U∗� = U.

Moreover, if S is a relation on X to Y such that S� ≤ U, then by Theorem
5 we also have S ⊂ U∗ , and thus S ⊂ R even if U is not supposed to be
quasi-increasing. Thus, in particular (1) is true.

While, if S is a relation on X to Y such that U ≤ S� , then by Theorem
7, we also have U∗ ⊂ S�∗ . Hence, by the definition of R and Theorem 8, we
can see that R ⊂ S even if U is not supposed to be union-preserving. Thus,
in particular (2) is also true. �

Remark 10 Concerning the operations � and ∗ , it is also worth noticing
that if R is relation and U is a correlation on X to Y, then by the correspond-
ing definitions of [14] we have

(1) R�(A) = clR−1(A) for all A ⊂ X ,

(2) R� ≤ U ⇐⇒ A ∈ IntR
(
U(A)

)
for all A ⊂ X.

Moreover, if U is quasi-increasing, then under the notation

Int�(U) =
{
S ⊂ X×Y : S� ≤ U

}

we have U∗ = max
(
Int�(U)

)
=

⋃
Int�(U) by assertion (1) in Theorem 12.
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7 Compatibility of the operation � with some set
and relation theoretic ones

Now, as some immediate consequence of the corresponding results on relations,
we can also state the following theorems.

Theorem 13 If R is a relation on X to Y, then for any family A of subsets
of X we have

(1) R� (
⋃ A ) =

⋃
A∈A R� (A) , (2) R� (

⋂ A ) ⊂ ⋂
A∈A R� (A) .

Theorem 14 If R is a relation on X to Y, then for any A, B ⊂ X we have

(1) R� (A)\R� (B) ⊂ R� (A\B ) , (2) R� (A)c ⊂ R� (Ac ) if Y = R [X] .

Remark 11 If in particular R−1 is a function, then the corresponding equal-
ities are also true in the above two theorems.

Theorem 15 If R is a family of relations on X to Y, then for any A ⊂ X

we have

(1) (
⋃ R )� (A ) =

⋃
R∈R R� (A ) , (2) (

⋂ R )� (A ) ⊂ ⋂
R∈R R�(A ) .

Theorem 16 If R and S are relations on X to Y, then for any A ⊂ X we
have

(1) R� (A) \ S� (A) ⊂ (R \ S)� (A) , (2) R� (A)c ⊂ Rc� (A) if A �= ∅ .

Theorem 17 If R is a relation on X to Y, then for any A ⊂ X we have

Rc� (A)c =
⋂

x∈A R(x) .

Moreover, we can also easily prove the following theorem which has also
been established by Höhle and Kubiak [9] .

Theorem 18 For any two relations R on X to Y and S on Y to Z , we have

(S ◦ R )� = S� ◦ R� .

Proof. By the corresponding definitions, we have

(S ◦ R )�(A) = (S ◦ R ) [A ] = S
[
R [A ]

]
= S�

(
R�(A)

)
=

(
S� ◦ R�

)
(A)

for all A ⊂ X. Therefore, the required equality is also true. �
From this theorem, by using Theorem 9, we can immediately derive
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Corollary 7 For an arbitrary relation on R on X to Y and a union-preserving
correlation V on Y to Z , we have

(V ∗ ◦ R )� = V ◦ R� .

In addition to Theorem 18, we can also easily prove the following correction
of a false statement of Höhle and Kubiak [9] .

Theorem 19 For an arbitrary correlation U on X to Y and a union-preserving
correlation V on Y to Z , we have

(V ◦U )∗ = V ∗ ◦ U∗ .

Proof. By the corresponding definitions and Theorem 9, we have

(V ◦U )∗(x) = (V ◦U )
(
{x}

)
= V

(
U
(
{x}

))

= V
(
U∗(x)

)
= V ∗�(U∗(x)

)
= V ∗[U∗(x)

]
=

(
V ∗ ◦U∗)(x)

for all x ∈ X. Therefore, the required equality is also true. �
From this theorem, by using Theorems 9 and 8, we can immediately derive

Corollary 8 For a correlation U on X to Y and a relation S on Y to Z ,
we have

(S� ◦U )∗ = S ◦ U∗ .

Remark 12 In addition to Theorem 18, it is also worth mentioning that if R

is a relation on X to Y and S is a relation on Z to W, then for any A ⊂ X×Z

we have

(R� S )�(A) = S ◦A ◦ R−1 .

8 Partial compatibility of the operation � with the
relation theoretic inversion

Theorem 20 For a relation R on X to Y, the following assertions are equi-
valent :

(1) R−1 ◦ R = ΔX ,

(2)
(
R�

)−1 ⊂ (
R−1

)�
,

(3) R−1 is a function on Y onto X.
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Proof. For any x ∈ X, we have

R�
(
{x}

)
= R

[
{x}

]
= R(x) , and thus {x} ∈ (

R�
)−1(

R(x)
)
.

Hence, if (2) holds, we can infer that

{x} ∈ (
R−1

)�(
R(x)

)
, and thus

(
R−1

)�(
R(x)

)
= {x} .

Therefore,

R−1
[
R(x)

]
= {x} , and thus

(
R−1 ◦ R

)
(x) = ΔX(x) .

Hence, we can see that (1) also holds.

To prove the converse implication, note that if A ⊂ X and B ⊂ Y such that

A ∈ (
R�

)−1
(B) , then we also have

R�(A) = B , and thus R [A ] = B .

Hence, we can infer that

R−1
[
R [A ]

]
= R−1 [B ] , and thus

(
R−1 ◦ R

)
[A ] = R−1 [B ] .

Therefore, if (1) holds, then

ΔX [A ] = R−1 [B ] , and thus A =
(
R−1

)�
(B) .

Hence, it is clear that (2) also holds.

Therefore, (1) and (2) are equivalent. The proof of the equivalence of (1)
and (3) will be left to the reader. �
From Theorem 20, by writing R−1 in place of R we can immediately derive

the following

Theorem 21 For a relation R on X to Y, the following assertions are equi-
valent :

(1) R ◦ R−1 = ΔY ,

(2)
(
R−1

)� ⊂ (
R�

)−1
,

(3) R is a function on X onto Y.

Proof. Note that now R−1 is a relation on Y to X. Therefore, by Theorem
20, the following assertions are equivalent :

(a)
(
R−1

)−1 ◦ R−1 = ΔY ;
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(b)
( (

R−1
)�)−1 ⊂

( (
R−1

)−1
)�

;

(c)
(
R−1

)−1
is a function on X onto Y .

Hence, since R =
(
R−1

)−1
, and

(
R−1

)� ⊂ (
R�

)−1 ⇐⇒
( (

R−1
)�)−1 ⊂ R� ,

it is clear that assertions (1), (2) and (3) are also equivalent. �
Now, as an immediate consequence of the above two theorems, we can also

state

Corollary 9 For a relation R on X to Y, the following assertions are equi-
valent :

(1)
(
R�

)−1
=

(
R−1

)�
,

(2) R−1 ◦ R = ΔX and R ◦ R−1 = ΔY ,

(3) R is an injective function of X onto Y.

9 Partial compatibility of the operation ∗ with the
relation theoretic inversion

From Theorem 20, by writing U∗ in place of R , we can easily derive

Theorem 22 If U is a union-preserving correlation on X to Y such that(
U∗)−1

is a function on Y onto X, then

(
U−1

)∗ ⊂ (
U∗)−1

.

Proof. Now, by Theorems and , we have

U−1 =
(
U∗�)−1

=
( (

U∗)�)−1 ⊂
((

U∗)−1
)�

.

Hence, by using Corollary and Theorem , we can infer that

(
U−1

)∗ ⊂
(((

U∗)−1
)�)∗

=
((

U∗)−1
)�∗

=
(
U∗)−1

.

�
From Theorem 21, we can quite similarly derive the following
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Theorem 23 If U is a union-preserving correlation on X to Y such that U∗

is a function on X onto Y, then

(
U∗)−1 ⊂ (

U−1
)∗
.

Now, as an immediate consequence of the above two theorems, we can also
state

Corollary 10 If U is a union-preserving correlation on X to Y such that U∗

is an injective function of X onto Y, then

(
U∗)−1

=
(
U−1

)∗
.

Moreover, by using Corollary 9, we can also easily prove the following

Theorem 24 If U is an injective, union-preserving correlation on X to Y

such that U−1 is also union-preserving, then the following assertions are equiv-
alent :

(1)
(
U∗)−1

=
(
U−1

)∗
,

(2) U∗ is an injective function of X onto Y.

Proof. Now, since the implication (2) =⇒ (1) has already been established
in Corollary 10, we need only prove that (1) also implies (2).

For this note that if (1) holds, then by Theorem 9 we also have

( (
U∗)�)−1

= (U∗� )−1 = U−1 =
(
U−1

)∗�
=

((
U−1

)∗)�
=

( (
U∗)−1

)�
.

Therefore, by Corollary 9, assertion (2) also holds. �
From Corollary 9, we can also immediately derive the following

Theorem 25 For a symmetric relation R on X, the following assertions are
equivalent :

(1) R2 = ΔX ,

(2) R� is an involution ,

(3) R is an injective function of X onto Y.

Remark 13 Moreover, by Theorem 18, we can at once see that, for an
arbitrary relation R on X, the correlation R� is an involution if and only
if R2 = ΔX . That is, for any x, y ∈ X, we have R(x)∩R−1(y) �= ∅ if and only
if x = y .
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