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Abstract. Let R be a ring, MR a module, S a monoid, ω : S −→ End(R)
a monoid homomorphism and R ∗ S a skew monoid ring. Then M[S] =
{m1g1 + · · · + mngn |n ≥ 1, mi ∈ M andgi ∈ S for each 1 ≤ i ≤ n}
is a module over R ∗ S. A module MR is Baer (resp. quasi-Baer) if the
annihilator of every subset (resp. submodule) of M is generated by an
idempotent of R. In this paper we impose S-compatibility assumption on
the module MR and prove: (1) MR is quasi-Baer if and only if M[s]R∗S
is quasi-Baer, (2) MR is Baer (resp. p.p) if and only if M[S]R∗S is Baer
(resp. p.p), where MR is S-skew Armendariz, (3) MR satisfies the ascend-
ing chain condition on annihilator of submodules if and only if so does
M[S]R∗S, where MR is S-skew quasi-Armendariz.
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1 Introduction and preliminaries

Throughout this paper R denotes an associative ring with identity and MR is
a right R-module. According to [16] a ring R is Baer if the right annihilator of
every nonempty subset of R is generated by an idempotent. Quasi-Baer rings
were initially introduced by Clark [10]. A ring R is quasi-Baer if the right
annihilator of every right ideal of R generated by an idempotent. Another
generalization of Baer rings is p.p.-rings. Recall that a ring R is called right
(resp. left) p.p if right (left) annihilator of every element of R is generated by an
idempotent. Birkenmeier et al. in [7] introduced principally quasi-Baer rings.
A ring R is called right principally quasi-Baer (or p.q.-Baer for short) if the
right annihilator of a principal right ideal of R is generated by an idempotent.

In [1] Armendariz studied the behaver of a polynomial ring over Baer ring.
He proved for a reduced ring R, R[x] is Baer if and only if R is Baer [1, Theorem
B]. Also, he provid an example to show that the “Armendariz” condition is
not superfluous. Birkenmeier and park [9] extended this result to monoid ring.

We now introduce the definitions and notions used in this paper. If A and
B are non-empty subsets of a monoid S, then an element s0 ∈ AB = {ab : a ∈
A, b ∈ B} is said to be a unique product element (u.p. element for short) in the
product of AB if it is uniquely presented in the form of s = ab where a ∈ A
and b ∈ B.

Recall that a monoid S is called unique product monoid (u.p. monoid for
short) if for any two non-empty finite subsets A,B ⊆ S there exist a ∈ A
and b ∈ B such that ab is u.p. element in the product of AB. The class
of u.p. monoids are quite large. For example this class includes the right or
left ordered monoid and torsion free nilpotent groups. Every u.p. monoid S is
cancellative [9, Lemma 1.1] and has no non-unit element of finite order.

Assume that R is a ring, S a monoid and ω : S −→ End(R) a monoid homo-
morphism. For each g ∈ S we denote the image of g by ωg (i.e., ω(g) = ωg).
Then all finite formal combinations

∑n
i=1 aigi, with point-wise addition and

multiplication induced by (ag)(bh) = (aωg(b))gh form a ring that is called
skew monoid ring and it is denoted by R∗S. The construction of skew monoid
ring generalizes some classical ring construction such as skew polynomial rings,
skew Laurent polynomial rings and monoid rings. Hence any result on skew
monoid ring has its counterpart in each of the subclasses.

As a generalization of monoid rings, we introduce the notion of modules over
skew monoid rings. For a module MR, let M[S] = {m1g1 + · · · +mngn |n ≥
1, mi ∈M andgi ∈ S for each 1 ≤ i ≤ n}. Then M[S] is a right module over R∗
S under the following scaler product operation: form(s) = m1g1+· · ·+mngn ∈



404 E. Hashemi, M. Yazdanfar, A. Alhevaz

M[S] and f(s) = a1h1 + · · ·+ amhm ∈ R ∗ S, m(s)f(s) :=
∑
i,jmiωgi(aj)gihj.

For a nonempty subset X of MR, let annR(X) = {r ∈ R |Xr = 0}.
The notion of reduced, Armendariz, Baer, p.p and quasi-Baer module in-

troduced in [18] by Lee and Zhou. A module MR is called reduced if for any
m ∈ M and a ∈ R, ma = 0 implies mR ∩Ma = 0. A module MR is called
Baer if, for any nonempty subset X of M, annR(X) = eR where e2 = e ∈ R.
A module MR is called p.p if for any element m ∈ M, annR(m) = eR where
e2 = e ∈ R. A module MR is called quasi-Baer if, for any right R-submodule X
of M, annR(X) = eR where e2 = e ∈ R. Clearly, R is reduced (resp. Baer, right
p.p, quasi-Baer) if and only if RR is reduced (resp. Baer, right p.p, quasi-Baer).
Lee and Zhou [18] proved that MR is reduced if and only if M[x]R[x] is reduced.
Various results of reduced rings were extended to modules in [18, 2].

Recall that from [6] an idempotent e ∈ R is left (resp. right) semicentral
in R if exe = xe (resp. exe = ex) for all x ∈ R. Equivalently, e = e2 ∈ R is
left (resp. right) semicentral if eR (resp. Re) is an ideal of R. Since the right
annihilator of a right R-module is an ideal, then the right annihilator of a
right R-module is generated by a left semicemtral idempotent in a quasi-Baer
module. We denote the set of all left (resp. right) semiccentral idempotents of
R with S`(R) (resp. Sr(R)).

A module MR is called principally quasi-Baer (or p.q.-Baer for short) if, for
any m ∈M,annR(mR) = eR where e2 = e ∈ R. Clearly R is a right p.q.-Baer
if and only if RR is p.q.-Baer module.

In this paper we introduce and study the concept of S-skew Armendariz
modules as a generalization of S-Armendariz rings [19]. For a u.p. monoid S
and monoid homomorphism ω : S −→ End(R) we show that reduced module
MR is S-skew Armendariz. We investigate the quasi-Baer and related con-
ditions on right R ∗ S-module M[S] for a u.p. monoid S and monoid homo-
morphism ω : S −→ Aut(R). We impose S-compatibility assumption on the
module MR and prove: (1) MR is quasi-Baer if and only if M[s]R∗S is quasi-
Baer, (2) MR is Baer (resp. p.p) if and only if M[S]R∗S is Baer (resp. p.p),
when MR is S-skew Armendariz, (3) MR satisfies the ascending chain condi-
tion on annihilator of submodules if and only if so does M[S]R∗S, when MR

is S-skew quasi-Armendariz. Our results extend Armendariz [1, Theorem B],
Groenewald [11, Theorem 2], Birkenmeier, Kim and Park [8, Theorem 1.2],
Birkenmeier and Park [9, Theorem 1.2, Corollary 1.3].



On extensions of Baer and quasi-Baer modules 405

2 S-skew Armendariz modules

Let R be a ring with an endomorphism σ. According to [4] for a module MR

and an endomorphism σ : R −→ R, we say that MR is σ-compatible if for each
m ∈M and r ∈ R, we have mr = 0 if and only if mσ(r) = 0. For more details
on σ-compatible rings refer to [13, 14].

Definition 1 Let R be a ring, S a monoid and ω : S −→ End(R) a monoid
homomorphism. We say that a module MR is S-compatible if MR is ωg-
compatible for each g ∈ S.

Notic that R is S-compatible if and only if RR is S-compatible. Now we give
some examples of S-compatible modules.

Example 1 [4, Example 4.4] Let R0 be a domain of characteristic zero, and
R := R0[t]. Define σ|R0 = idR0 and σ(t) = −t. Let MR := R0 ⊕ R0 ⊕ R0 ⊕
· · · , where t ∈ R acts on MR as follows: for (m0,m1,m2, . . .) ∈ M, we set
(m0,m1,m2, . . .).t := (0,m0k0,m1k1,m2k2, . . .) where the ki(i ∈ N) are fixed
nonzero integers. We show that M is σ-compatible. For this, it suffices to show
that ann(m) = 0 whenever 0 6= m ∈ M. Suppose that (a0, a1, a2, · · · )(brtr +
br+1t

r+1 + “higher terms”) = 0, where ai, bi ∈ R0 for every i ∈ N and br 6= 0.
First applying tr to (a0, a1, a2, . . .) gives

(0, 0, · · · , 0, a0k0k1 · · · kr−1, a1k1k2 · · · kr, . . .)(br+br+1t+“ higher terms”) = 0.

Upon computing this expression, we deduce that a0k0k1 . . . kr−1br = 0. Since
the characteristic is zero, R is a domain, and k0k1 . . . kr−1br 6= 0, we deduce
that a0 = 0. Now, we may proceed inductively to show that all ai = 0. From
this calculation, we deduce that MR is σ-compatible.

Example 2 [14, Example 1.1] Let R1 be a ring, D a domain and R = Tn(R1)⊕
D[y], where Tn(R1) is upper n × n triangular matrix ring over R1. Let α :
D[y] −→ D[y] be a monomorphism which is not surjective. We define an
endomorphism α : R −→ R of R by α(A ⊕ f(y)) = A ⊕ α(f(y)) for each
A ∈ Tn(R1) and f(y) ∈ D[y]. In [14, Example 1.1] it is shown that R is an
α-compatible.

Example 3 Let R be a ring and σi an endomorphism of R such that R be a σi-
compatible for each 1 ≤ i ≤ n. Let S be a monoid generated by {x1, x2, . . . , xn}

and ω : S −→ End(R) a monoid homomorphism such that ω
x
j
i
= σji. One can

show that R is S-compatible and R ∗ S ∼= R[x1, x2, . . . , xn;σ1, σ2, . . . , σn].
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According to Lee and Zhou [18] a module MR is Armendariz if, for elements
m(x) = m0+m1x+· · ·+mnx

n ∈M[x] and f(x) = a0+a1x+· · ·+amxm ∈ R[x],
m(x)f(x) = 0 implies miaj = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m. In [21]
Zhang and Chen, introduced the concept of a σ-skew Armendariz module and
studied its properties. A module MR is called σ-skew Armendariz module, if,
whenever m(x)f(x) = 0 where m(x) = m0 +m1x + · · · +mnx

n ∈ M[x] and
f(x) = a0+a1x+· · ·+amxm ∈ R[x;σ], we havemiσ

i(bj) = 0 for each 0 ≤ i ≤ n,
0 ≤ j ≤ m. In [19], Liu introduced the concept of a S-Armendariz ring and
studied its properties. In the following we introduce the concept of S-skew
Armendariz module as a generalization of S-Armendariz rings.

Definition 2 Let R be a ring, S a monoid and ω : S −→ End(R) a monoid
homomorphism. We say that a module MR is S-skew Armendariz module if, for
elements m(s) = m1g1+· · ·+mngn ∈M[S] and f(s) = a1h1+· · ·+atht ∈ R∗S,
m(s)f(s) = 0 implies miωgi(aj) = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ t. In the case
of ω is identity homomorphism, we say MR is S-Armendariz module.

Notice that for a ring R and monid S with monoid homomorphism ω : S −→
End(R), R is S-skew Armendariz (resp. S-Armendariz) if and only if RR is
S-skew Armendariz (resp. S-Armendariz).

Theorem 1 Let R be a ring, S a monoid and ω : S −→ End(R) a monoid
homomorphism. Then MR is S-skew Armendariz if and only if for every ele-
ments m(s) = m1g1+ · · ·+mngn ∈M[S] and f(s) = a1h1+ · · ·+atht ∈ R∗S,
m(s)f(s) = 0 implies mi1ωgi1 (aj) = 0 for each 1 ≤ j ≤ t and some 1 ≤ i1 ≤ t.

Proof. The forward direction is clear. For the converse, suppose that m(s) =
m1g1+ · · ·+mngn ∈M[S] and f(s) = a1h1+ · · ·+atht ∈ R∗S with m(s)f(s) =
0. Then there exists 1 ≤ i1 ≤ n such that mi1ωgi1 (aj) = 0 for each 1 ≤
j ≤ t. Without loss of generality we can assume that i1 = 1. Thus 0 =
m(s)f(s) = (m2g2+ · · ·+mngn)f(s). Then by induction on n we can conclude
that miωgi(aj) = 0 for each 1 ≤ i ≤ n and 1 ≤ j ≤ t. Hence MR is S-skew
Armendariz. �

If S is a monoid generated by {x} and ω : S −→ End(R) such that ωxi = σ
i

for an endomorphism σ of R, then the skew monoid ring R ∗S is isomorphic to
skew polynomial ring R[x;σ] and M[S] is isomorphic to M[x]. Thus we have
the following equivalent condition for a module to be σ-skew Armendariz.

Corollary 1 Let MR be a module and σ an endomorphism of R. Then MR is
σ-skew Armendariz if and only if for every polynomials m(x) = m0 +m1x +
· · · +mnx

n ∈ M[x] and f(x) = a0 + a1x + · · · + atxt ∈ R[x;σ], m(x)f(x) = 0

implies mi1σ
i1(aj) = 0 for each 0 ≤ j ≤ t and some 0 ≤ i1 ≤ n.
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Corollary 2 Let R be a ring and σ an endomorphism of R. Then R is σ-skew
Armendariz if and only if for every polynomials f(x) = a0 + a1x+ · · ·+ anxn,
g(x) = b0 + b1x + · · · + bmxm ∈ R[x;σ], f(x)g(x) = 0 implies ai0σ

i0(bj) = 0

for each 0 ≤ j ≤ m and some 0 ≤ i0 ≤ n.

Recall that a module MR is reduced if, for any m ∈ M and a ∈ R, ma = 0

implies mR ∩Ma = 0.

Lemma 1 The following are equivalent for a module MR.

(i) MR is reduced and S-compatible.

(ii) The following conditions hold for any m ∈M,a ∈ R and g ∈ S,

(a) ma = 0 implies mRa = 0.

(b) ma = 0 if and only if mωg(a) = 0.

(c) ma2 = 0 implies ma = 0.

Proof. The proof is straightforward. �

For an element f(s) = a1g1 + · · · + angn ∈ R ∗ S with ai 6= 0 for each i, we
say that length (f(s)) = n and denote it by `(f(s)). Similarly, we can define
`(m(s)) = t for an element m(s) = m1h1 + · · ·+mtht ∈M[S].

Proposition 1 Let R be a ring, S a u.p. monoid and ω : S −→ End(R)
a monoid homomorphism. Then S-compatible reduced module MR is S-skew
Armendariz.

Proof. Assume that m(s) = m1g1 + · · · +mngn ∈ M[S] and f(s) = a1h1 +
· · · + atht ∈ R ∗ S with m(s)f(s) = 0. We proceed by induction on `(m(s)) +
`(f(s)) = n + t. If `(m(s)) = 1 or `(f(s)) = 1, then the result is clear
Since u.p. monoids are cancellative by [6, Lemma 1.1]. From m(s)f(s) = 0

there exist 1 ≤ i ≤ n, 1 ≤ j ≤ t such that gihj is u.p. element in the
product of two subsets {g1, . . . , gn} and {h1, . . . , ht} of S. Without loss of
generality we can assume that i = j = 1. Thus m1ωg1(a1) = 0 and so
m1a1 = 0 since MR is S-compatible. Therefore 0 = m(s)f(s)a1 = (m1g1 +
· · · +mngn)(a1ωh1(a1)h1 + · · · + atωht(a1)ht). By using of Lemma 1, from
m1a1 = 0 we have m1ωg1(ajωhj(a1)) = 0 for each 1 ≤ j ≤ t since MR is re-
duced and S-Compatible. Thus 0 = m(s)f(s)a1 = (m2g2+· · ·+mngn)f(s)a1 =
m ′(s)(f(s)a1). Since `(m ′(s))+`(f(s)a1) < n+t satisfyingm ′(s)f(s)a1 = 0, by
induction hypothesise miωgi(ajωhj(a1)) = 0 which implies that miaja1 = 0

for each 2 ≤ i ≤ n, 1 ≤ j ≤ t, since MR is S-compatible. Thus mia
2
1 = 0
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and so mia1 = 0 for each 2 ≤ i ≤ n, by Lemma 1. Hence 0 = m(s)f(s) =
m(s)(a2h2+ · · ·+atht). Then by induction miωgi(aj) = 0 for each 1 ≤ i ≤ n
and 1 ≤ j ≤ t. Therefore MR is S-skew Armendariz. �

If ω is identity homomorphism (i.e. ωg = idR the identity homomorphism of
R for each g ∈ S) we deduce the following corollary.

Corollary 3 Let MR be a reduced and S a u.p. monoid. Then MR is S-
Armendariz.

Corollary 4 [2, Theorem 2.19] Every reduced module is Armendariz.

Corollary 5 Let R be a reduced ring, S a u.p. monoid and ω : S −→ End(R)
a monoid homomorphism. Then R is S-skew Armendariz.

Proposition 2 Let S be a monoid and MR a S-skew Armendariz module. If
m(s) = m1g1 + · · ·+mngn ∈M[S] and fi(s) = a

i
1h
i
1 + · · ·+ aitih

i
ti
∈ R ∗ S for

1 ≤ i ≤ k are such that m(s)f1(s) · · · fk(s) = 0, then

mjωgj(a
1
i1
)ωgjωh1i1

(a2i2) · · ·ωgjωh1i1
. . .ωhk−1

ik−1

(akik) = 0

for each 1 ≤ j ≤ n and 1 ≤ ir ≤ ti, 1 ≤ r ≤ k.

Proof. Suppose m(s)f1(s) · · · fk(s) = 0. Then from m(s)(f1(s) · · · fk(s)) =
0 we have mjωgj(a) = 0 for each 1 ≤ j ≤ n and each coefficient a of
f1(s)f2(s) · · · fk(s), since MR is S-skew Armendariz and S-compatible. Thus
(mjgjf1(s))f2(s) · · · fk(s) = 0 for each 1 ≤ j ≤ n. Thusmjωgj(a

1
i1
)ωgjωh1i1

(a ′) =

0 for each 1 ≤ j ≤ n, 1 ≤ i1 ≤ t1 and each coefficient a ′ of f3(s) · · · fk(s). By
continuing this manner, we see that mjωgj(a

1
i1
)ωgjωh1i1

(a2i2) · · ·ωgjωh1i1
. . .

ωhk−1
ik−1

(akik) = 0 for each 1 ≤ j ≤ n and 1 ≤ ir ≤ ti, 1 ≤ r ≤ k. �

As a consequence of Propositions 1 and 2 we have the following result.

Corollary 6 Let R be a ring, S a u.p. monoid and ω : S −→ End(R) a
monoid homomorphism. Let MR be a S-compatible reduced module. If m(s) =
m1g1 + · · ·+mngn ∈M[S] and fi(s) = a

i
1h
i
1 + · · ·+ aiti ∈ R ∗ S for 1 ≤ i ≤ k

are such that m(s)f1(s) · · · fk(s) = 0, then

mjωgj(a
1
i1
)ωgjωh1i1

(a2i2) · · ·ωgjωh1i1
. . .ωhk−1

ik−1

(akik) = 0

for each 1 ≤ j ≤ n and 1 ≤ ir ≤ ti, 1 ≤ r ≤ k.
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It is proved in [18, Theorem 1.6] MR is reduced if and only if M[x]R[x] is
reduced. In the following we extend this result to M[S]R∗S.

Proposition 3 Let R be a ring, S a u.p. monoid and ω : S −→ End(R) a
monoid homomorphism. Then module MR is reduced and S-compatible if and
only if M[S]R∗S is reduced.

Proof. Assume that MR is reduced and m(s) = m1g1 + · · · +mngn ∈ M[S],
f(s) = a1h1 + · · · + atht ∈ R ∗ S with m(s)f(s) = 0. Let g(s) = b1k1 + · · · +
bmkm ∈ R ∗ S and k(s) = n1s1 + · · · + npsp ∈ M[S] such that m(s)g(s) =
k(s)f(s) ∈ m(s)(R ∗ S) ∩M[S]f(s). From m(s)f(s) = 0 we have miωgi(aj) =
0 = miaj for each 1 ≤ i ≤ n, 1 ≤ j ≤ t, by Proposition 1 and S-compatibility
assumption on MR. Then by Lemma 1 we have miraj = 0 for each r ∈ R
which implies that 0 = m(s)g(s)f(s) = k(s)f2(s). Therefore niajal = 0 for
each 1 ≤ i ≤ p and 1 ≤ j, ` ≤ t by Proposition 2. Thus nia

2
j = 0 and so

niaj = 0 for each 1 ≤ i ≤ p and 1 ≤ j ≤ t by Lemma 1. Therefore k(s)f(s) = 0
which implies that m(s)(R ∗ S) ∩M[S]f(s) = 0 and hence M[S]R∗S is reduced.

Conversely, assume that M[S]R∗S is reduced and m ∈ M, r ∈ R with mr =
0. Also assume that n ∈ M,a ∈ R such that ma = nr ∈ Mr ∩ mR. Put
m(s) = mg and k(s) = nh for some g, h ∈ S. Thus m(s)a = k(s)r ∈M[S]r ∩
m(s)(R ∗ S). Since M[S]R∗S is reduced M[S]r ∩m(s)(R ∗ S) = 0 which implies
that ma = nr = 0. Hence MR is reduced. Now, assume that mr = 0 for some
m ∈M and r ∈ R. For each g ∈ S we havemgr = mωg(r)g ∈M[S]r∩m(R∗S).
Since M[S]R∗S is reduced, M[S]r∩m(R ∗ S) = 0. Thus mωg(r) = 0. Clearly, if
mωg(r) = 0 for each g ∈ S we have mr = 0. Therefore MR is S-compatible. �

Corollary 7 Let R be a ring and σ an endomorphism of R. Then MR is
reduced and σ-compatible if and only if M[x]R[x;σ] is reduced.

Corollary 8 Let R be a ring and σ an endomorphism of R. Then R is reduced
and σ-compatible if and only if R[x;σ] is reduced.

3 Extensions of Baer and quasi-Baer modules

In this section we study on the relationship between the Baerness and p.p-
property of a module MR and right R ∗ S-module M[S].

According to [5] a module MR is called quasi-Armendariz if whenever m(x)
R[x]f(x) = 0 for m(x) = m0+m1x+ · · ·+mnx

n ∈M[x] and f(x) = a0+a1x+
· · ·+ amxm ∈ R[x], then miRaj = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let S be



410 E. Hashemi, M. Yazdanfar, A. Alhevaz

a monoid. According to [12] a ring R is called S-quasi Armendariz if for each
two elements α = a1g1 + · · · + angn, β = b1h1 + · · · + bmhm ∈ R[S] satisfy
αR[s]β = 0, implies that aiRbj = 0 for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Definition 3 Let R be a ring, S a monoid and ω : S −→ End(R) a monoid
homomorphism. A module MR is called S-skew quasi-Armendariz, if for any
m(s) = m1g1+ · · ·+mngn ∈M[S] and f(s) = a1h1+ · · ·+atht ∈ R ∗S satisfy
m(s)(R∗S)f(s) = 0 implies that migiRgajhj = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ t
and g ∈ S.

Clearly a ring R is S-skew quasi-Armendariz if and only if RR is S-skew quasi-
Armendariz.

Birkenmeier and Park in [9, Theorem 1.2] proved that for a u.p. monoid S
the monoid ring R[S] is quasi-Baer (resp. right p.q.-Baer) if and only if R is
quasi-Baer (resp. right p.q.-Baer). In the following we extend these results to
M[S] as a right R ∗ S-module.

Theorem 2 Let R be a ring, S a u.p. monoid, ω : S −→ Aut(R) a monoid
homomorphism. If MR is S-compatible, then we have the following:

(i) MR is right p.q.-Baer if and only if M[S]R∗S is right p.q.-Baer.

(ii) MR is quasi-Baer if and only if M[S]R∗S is quasi-Baer.

In this case, MR is S-skew quasi-Armendariz.

Proof. (i) Assume that R is right p.q.-Baer. Let m(s) = m1g1+ · · ·+mngn ∈
M[S]. There exists ei ∈ S`(R) such that annR(miR) = eiR for 1 ≤ i ≤ n.
Then e = e1e2 · · · en ∈ S`(R) and eR =

⋂n
i=1 annR(miR). Since every com-

patible automorphism is idempotent stabilizing by [3, Theorem 2.14] we have
e(R∗S) ⊆ annR∗S(m(s)R∗S). Note that annR∗S(m(s)R∗S) ⊆ annR∗S(m(s)R).
Now we show that annR∗S(m(s)R) ⊆ e(R∗S). Let g(s) = b1h1+ · · ·+bmhm ∈
annR∗S(m(s)R). Then m(s)Rg(s) = 0. We proceed by induction on n to show
that g(s) ∈ e(R ∗ S). Let n = 1. Then m1g1R(b1h1 + · · · + btht) = 0. Thus
m1g1Rbjhj = 0 for each 1 ≤ j ≤ t, since S is cancellative, by [9, Lemma 1.1].
Since ωg1 is automorphism m1Rωg1(bj) = 0 and so ωg1(bj) ∈ annR(m1R) =
e1R for each 1 ≤ j ≤ t. Thus ωg1(bj) = e1ωg1(bj) and so bj = e1bj for
each 1 ≤ j ≤ t, since ωg1 is a compatible automorphism of R. Therefore
bj ∈ e1R = eR. Hence g(s) = eg(s) ∈ e(R ∗ S), as desired. Now assume that

(∗) (m1g1 + · · ·+mngn)R(b1h1 + · · ·+ btht) = 0.
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Since S is u.p. monoid there exist 1 ≤ i ≤ n, 1 ≤ j ≤ t such that gihj is
u.p. element in the product of two subsets {g1, . . . , gn} and {h1, . . . , ht} of S.
Without loss of generality we can assume that i = n, j = t. ThusmngnRbtht =
0. That is ωgn(bt) ∈ annR(mnR) = enR and ωgn(bt) = enωgn(bt). Since ωgn
is a compatible automorphism of R, bt = enbt and bt ∈ enR. Replacing R by
Ren in the equation (∗) we have (m1g1 + · · · + mn−1gn−1)R(enb1h1 + · · · +
enbtht) = 0. By induction on n we have enbj ∈ e1R ∩ e2R ∩ · · · ∩ en−1R
for each 1 ≤ j ≤ t. In particular, bt ∈ e1R ∩ · · · ∩ en−1R. Therefore bt =
enbt ∈ e1R ∩ · · · ∩ enR = eR =

⋂n
i=1 annR(miR). Since ωgi is a compatible

automorphism of R for each 1 ≤ i ≤ n we have

(∗∗) (m1g1 + · · ·+mngn)R(b1h1 + · · ·+ bt−1ht−1) = 0.

Since S is u.p. monoid there exist 1 ≤ i ≤ n, 1 ≤ j ≤ t − 1 such that gihj
is u.p. element in the product of two subsets {g1, . . . , gn} and {h1, . . . , ht−1}

of S. Without loss of generality we can assume that i = n, j = t − 1. Thus
mngnRbt−1ht−1 = 0 which implies that ωgn(bt) ∈ ann(mnR) = enR and
ωgn(bt−1) = enωgn(bt−1). Therefore bt−1 = enbt−1, since ωgn is an idempo-
tent stabilizing automorphism of R. Replacing R by Ren in the equation (∗∗) we
have (m1g1+· · ·+mn−1gn−1)Ren(b1h1+· · ·+bt−1ht−1) = 0. Then by induction
on n we can conclude that enbj ∈ annR(m1R) ∩ · · · ∩ annR(mn−1R) for each
1 ≤ j ≤ t−1 and hence bt−1 = enbt−1 ∈ ∩ni=1annR(miR) = eR. Therefore from
the equation (∗∗) we have 0 = (m1g1 + · · ·+mngn)R(b1h1 + · · ·+ bt−2ht−2).
By continuing this process we can conclude that bj ∈ ∩ni=1annR(miR) = eR

for each 1 ≤ j ≤ t which implies that g(s) = eg(s). Thus annR(m(s)R) ⊆
e(R ∗ S). So we have annR∗S(m(s)(R ∗ S)) ⊆ annR(m(s)R) ⊆ e(R ∗ S). Hence
annR∗S(m(s)R ∗ S) = e(R ∗ S). Therefore M[S]R∗S is p.q.-Baer.

Conversely assume that M[S]R∗S is p.q.-Baer. Take m ∈ M. Then annR∗S
(m(R ∗ S)) = e(s)(R ∗ S) for some idempotent e(s) = e1s1+ · · ·+ ensn in R ∗ S.
Let a ∈ annR(mR). Since MR is S-compatible, annR(mR) ⊆ annR∗S(m(R ∗
S)) = e(s)(R ∗ S). Therefore a = e(s)a = (e1g1 + · · · + engn)a. Thus there
exist 1 ≤ i0 ≤ n such that a = ei0ωgi0 (a) and so annR(mR) ⊆ ei0R. Since
e(s) ∈ annR∗S(m(R ∗ S)) then 0 = mRe(s) = mR(e1s1 + · · · + engn). Since
S is cancellative mRei = 0 for each 1 ≤ i ≤ n. Thus ei0 ∈ annR(mR) and
hence annR(mR) = ei0R. Also, ei0 is idempotent, since ei0 ∈ annR(mR), a =
ei0ωgi0 (a) for each a ∈ annR(mR) and ωgi0 is idempotent stabilizing, we

have ei0 = ei0ωgi0 (ei0) = e
2
i0

. Therefore R is p.q.-Baer.
(ii) Assume that MR is quasi-Baer. First we show that MR is S-skew quasi-

Armendariz. Suppose that m(s) = m1g1 + · · · + mngn ∈ M[S] and f(s) =
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a1h1 + · · ·+ atht ∈ R ∗ S such that m(s)(R ∗ S)f(s) = 0. Thus m(s)rgf(s) = 0
for each r ∈ R, g ∈ S. We proceed by induction on `(m(s)) + `(f(s)) = n + t.
If `(m(s)) = 1, then m1g1rg(a1h1 + · · · + atht) = 0. Since S is cancellative
m1g1rgajhj = 0, as desired. Also if `(f(s)) = 1 the result is clear. From

(∗) (m1g1 + · · ·+mngn)rg(a1h1 + · · ·+ atht) = 0

there exist 1 ≤ i ≤ n, 1 ≤ j ≤ t such that gihj is u.p. element in the prod-
uct of two subsets {g1, . . . , gn} and {h1, . . . , ht} of S. Without loss of gen-
erality we can assume that i = n, j = t. Then mngnrgatht = 0 and so
mnωgn(r)ωgnωg(at) = 0 = mnr

′ωgnωg(at). Thusωgnωg(at) ∈ annR(mnR) =
eR such that e2 = e ∈ R and so ωgnωg(at) = eωgnωg(at). Replacing rg by
reg in the equation (∗) we have

(m1g1 + · · ·+mn−1gn−1)reg(a1h1 + · · ·+ atht) = 0

since ωg is idempotent stabilizing by [3, Theorem 2.14]. Then by induction
we can conclude that migiregajhj = 0 for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ t. Thus
migiregatht = 0 and so migireωg(at)ght = 0 for each 1 ≤ i ≤ n − 1.
Since ωgnωg(at) = eωgnωg(at) and ωgn is a compatible automorphism of
R, ωg(at) = eωg(at). Thus 0 = migireωg(at)ght = migirωg(at)ght for each
1 ≤ i ≤ n−1. On the other handmngnregatht = 0 and hencemigirgatht = 0
for each 1 ≤ i ≤ n. Thus 0 = m(s)rgf(s) = (m1g1 + · · · +mngn)rg(a1h1 +
· · ·+at−1ht−1). Then by induction hypothesis migirgajhj = 0 for each 1 ≤ i ≤
n, 1 ≤ j ≤ t−1. ThereforemigiRgajhj = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ t. Hence
MR is S-skew quasi-Armendariz. Let V be a submodule of M[S]. Let U be a
right R-submodule ofM generated by all coefficients of elements of V. SinceMR

is quasi-Baer annR(U) = eR for some e2 = e ∈ R. Thus e(R ∗S) ⊆ annR∗S(V),
since ωs is compatible automorphism for each s ∈ S. Suppose that g(s) =
b1h1+ · · ·+btht ∈ annR∗S(V). Thus for each m(s) = m1g1+ · · ·+mngn ∈ V,
m(s)(R ∗ S)g(s) = 0 and hence migiRgbjhj = 0 for each 1 ≤ i ≤ n, 1 ≤ j ≤ t
since MR is S-skew quasi-Armendariz. Therefore ωgiωg(bj) ∈ annR(U) = eR
which implies that ωgiωg(bj) = eωgiωg(bj) for each 1 ≤ i ≤ n, 1 ≤ j ≤ t.
Since ωs is compatible automorphism of R for each s ∈ S, bj = ebj for each
1 ≤ j ≤ t. That is g(s) ∈ e(R∗S) and so annR∗S(V) ⊆ e(R∗S). Hence M[S]R∗S
is quasi-Baer.

Conversely, assume that M[S]R∗S is quasi-Bear and U is a right R-submodule
of MR. Then as in the proof of the sufficiently of (i), one can show that
annR(U) is generated as a right R-submodule, by an idempotent of R.Therefore
M is quasi-Baer. �

Now we obtain the following results as a corollary of Theorem 2.
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Corollary 9 Let R be a ring, S a u.p. monoid, ω : S −→ Aut(R) a monoid
homomorphism and MR is a S-compatible module. Then we have the following:

(i) MR is a reduced p.p.- module if and only if M[S]R∗S is a reduced p.p.-
module.

(ii) MR is a reduced Baer module if and only if M[S]R∗S is a reduced Baer
module.

Proof. (i) Clearly reduced p.p.- modules are p.q.-Baer. Then the result follows
from Theorem 2 and Proposition 3.

(ii) The result follows from Theorem 2 and the fact that a reduced quasi-
Baer module is Baer. �

Corollary 10 Let R be a ring and S a u.p. monoid. Then we have the follow-
ing:

(i) [6, Theorem 1.2] R is quasi-Baer (resp. right p.q.-Baer) if and only if
R[S] is quasi-Baer (resp. right p.q.-Baer).

(ii) [6, Corollary 1.3] R is reduced Baer (resp. p.p.- ring) if and only if R[S]
is a reduced Baer (resp. p.p.- ring).

Corollary 11 Let MR be a module. Then the following are equivalent:

(i) MR is quasi-Baer (resp. p.q.-Baer).

(ii) M[x]R[x] is quasi-Baer (resp. p.q.-Baer).

(iii) M[x, x−1]R[x,x−1] is quasi-Baer (resp. p.q.-Baer).

Corollary 12 Let R be a σ-compatible ring for an automorphism σ of R. Then
the following are equivalent:

(i) R is quasi-Baer (resp. p.q.-Baer).

(ii) R[x;σ] is quasi-Baer (resp. p.q.-Baer).

(iii) R[x, x−1;σ] is quasi-Baer (resp. p.q.-Baer).

(iv) R[x] is quasi-Baer (resp. p.q.-Baer).

(v) R[x, x−1] is quasi-Baer (resp. p.q.-Baer).
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Birkenmeier et al. [6, Example 1.5] showed that the “u.p. monoid” condition
on S in Theorem 2 is not superfluous.

The next example shows that the “S-compatibility” assumption on RR in
Theorem 2 is not superfluous.

Example 4 [15, Example 2] Let K be a field, A = K[s, t] a commutative
polynomial ring, and consider the ring R = A/(st). Then R is reduced. Let
s = s + (st) and t = t + (st) in R = A/(st). Define an automorphism σ of R
by σ(s) = t and σ(t) = s. Hirano in [15] showed that R[x;σ] is quasi-Baer but
R is not quasi-Baer. Since σ(st) = 0 but sσ(t) = s2 6= 0 (since R is reduced),
hence σ is not compatible. Therefore the “compatibility” assumption on σ is
not superfluous.

Theorem 3 Let R be a ring, S a u.p. monoid and ω : S −→ Aut(R) a monoid
homomorphism. If MR is a S-compatible and S-skew Armendariz module, then
MR is Baer if and only if M[S]R∗S is Baer.

Proof. The proof is similar to that of Theorem 2. �

Corollary 13 Let R be a ring, S a u.p. monoid and ω : S −→ Aut(R) a
monoid homomorphism. Let MR is S-compatible reduced module. Then MR is
Baer if and only if M[S]R∗S is Baer.

Proof. This follows from Proposition 1 and Theorem 3. �

Corollary 14 Let R be a σ-compatible ring for an automorphism σ of R. If R
is σ-skew Armendariz, then the following are equivalent:

(i) R is Baer.

(ii) R[x;σ] is Baer .

(iii) R[x, x−1;σ] is Baer.

(iv) R[x] is Baer.

(v) R[x, x−1] is Baer.

Theorem 4 Let R be a ring, S a monoid and ω : S −→ End(R) a monoid
homomorphism. If MR is S-compatible and S-skew quasi-Armendariz, then MR

satisfies the ascending chain condition on annihilator of submodules if and only
if so does M[S]R∗S.
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Proof. Assume that MR satisfies the ascending chain condition on annihilator
of submodules. Let V1 ⊆ V2 ⊆ . . . be a chain of annihilator of submodules of
M[S]R∗S. Then there exist submodules Ki of M[S]R∗S such that annR∗S(Ki) =
Vi and Ki ⊇ Ki+1 for each i ≥ 1. Let Ui be a submodule of M generated by
all coefficients of elements of Ki. Clearly U1 ⊇ U2 ⊇ · · · . Then annR(U1) ⊆
annR(U2) ⊆ · · · is a chain of annihilator of submodules of MR. Since MR

satisfies the ascending chain condition on annihilator of submodules there
exists n ≥ 1 such that annR(Un) = annR(Ui) for all i ≥ n. We show that
annR∗S(Kn) = annR∗S(Ki) for all i ≥ n. Let f(s) = a1h1+a2h2+ · · ·+atht ∈
annR∗S(Ki). For each m(s) = m1g1 + · · · + mngn ∈ Ki, m(s)(R ∗ S)f(s) =
0. Therefore migiRgaphp = 0 for each 1 ≤ j ≤ n, 1 ≤ p ≤ t since M[S]
is S-skew quasi-Armendariz. Thus mjRωgjωg(ap) = 0 and so mjRap = 0,
since MR is S-compatible. Therefore ap ∈ ann(Ui) = ann(Un) for each 1 ≤
p ≤ t and hence f(s) ∈ annR∗S(Kn). Thus annR∗S(Kn) = annR∗S(Ki). Now
assume that M[S]R∗S satisfies the ascending chain condition on annihilator of
submodules. Let U1 ⊆ U2 ⊆ · · · be a chain of annihilator of submodules of
MR. Then there exist submodules Mi of M such that annR(Mi) = Ui. Thus
M1 ⊇ M2 ⊇ · · · . Hence Mi[S] is a submodule of M[S]R∗S, Mi[S] ⊇ Mi+1[S]
and annR∗S(Mi[S]) ⊆ annR∗S(Mi+1[S]) for all i ≥ 1. Thus annR∗S(M1[S]) ⊆
annR∗S(M2[S]) ⊆ · · · is a chain of annihilator of submodules of M[S] and so
there exists n ≥ 1 such that annR∗S(Mn[S]) = annR∗S(Mi[S]). We show that
annR(Mn) = annR(Mi) for i ≥ n. Assume that r ∈ annR(Mi). Since M is
S-compatible, r ∈ annR∗S(Mi[S]) = annR∗S(Mn[S]) for all i ≥ n. For each
m(s) ∈ Mn[S] and r ∈ R, m(s)(R ∗ S)r = 0 which implies that mpgpRgr =
0 for each 1 ≤ p ≤ t, g ∈ S, since MR is S-skew quasi-Armendariz. Thus
mpRωgpωg(r) = 0 = mpRr, since MR is S-compatible, and so r ∈ annR(Mn).
Therefore annR(Mi) = annR(Mn). �

Corollary 15 Let MR be a module and σ a compatible automorphism of R.
The following are equivalent:

(i) MR satisfies the ascending chain condition on annihilator of submodules.

(ii) M[x]R[x;σ] satisfies the ascending chain condition on annihilator of sub-
modules.

(iii) M[x, x−1]R[x,x−1;σ] satisfies the ascending chain condition on annihilator
of submodules.
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