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Abstract. In this note we describe the finite groups G having |G| — 2
cyclic subgroups. This partially solves the open problem in the end of [3].

Let G be a finite group and C(G) be the poset of cyclic subgroups of G. The
connections between |C(G)| and |G| lead to characterizations of certain finite
groups G. For example, a basic result of group theory states that |C(G)| = |G|
if and only if G is an elementary abelian 2-group. Recall also the main theorem
of [3], which states that |C(G)| = |G|—1 if and only if G is one of the following
groups: Z3, Z4, S3 or Dg.

In what follows we shall continue this study by describing the finite groups
G for which

IC(G) =G| -2 (%)

First, we observe that certain finite groups of small orders, such as Zg, Z; X Z4,
D12 and Z; x Dg, have this property. Our main theorem proves that in fact
these groups exhaust all finite groups G satisfying (x).

Theorem 1 Let G be a finite group. Then |C(G)| = |G| — 2 if and only if G
is one of the following groups: Z¢, Zy X Z4, D12 or Zy x Dg.
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Proof. We will use the same technique as in the proof of Theorem 2 in [3].
Assume that G satisfies (x), let n = |G| and denote by d; = 1,dy,..., dx the
positive divisors of n. If ny = {H € C(G) | [H| =di}|, 1=1,2,...,k, then

K
> nid(di) =n.
i=1
Since |C(G)| = Zlf:] n;{ = n — 2, one obtains

K
D nild(di) —1) =2,
[

which implies that we have the following possibilities:

Case 1. There exists ip € {1,2,...,k} such that ni (d(di,) —1) = 2 and
ni(p(di) —1) =0,Vi# 1.

Since the image of the Euler’s totient function does not contain odd integers
> 1, we infer that ny, =2 and ¢(d;,) = 2, i.e. di, € {3,4,6}. We remark that
d;, cannot be equal to 6 because in this case G would also have a cyclic
subgroup of order 3, a contradiction. Also, we cannot have d;, = 3 because in
this case G would contain two cyclic subgroups of order 3, contradicting the
fact that the number of subgroups of a prime order p in G is = 1 (mod p) (see
e.g. the note after Problem 1C.8 in [1]). Therefore di, =4, i.e. G is a 2-group
containing exactly two cyclic subgroups of order 4. Let n = 2™ with m > 3. If
m = 3 we can easily check that the unique group G satisfying (*) is Zy X Zj.
If m > 4 by Proposition 1.4 and Theorems 5.1 and 5.2 of [2] we infer that G
is isomorphic to one of the following groups:

- Mam;

- Ly X Lym-1;

om—2 om—3

:bsz]’ab:a_])a :b4>,Wherem25;

(a,bla
- Zz X D2m71;

2 4 s
(a,bla?™ " =b?=1,a> =a " ¢, =[c,b] =1, a¢ = o),
where m > 5.
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All these groups have cyclic subgroups of order 8 for m > 5 and thus they do
not satisfy (x). Consequently, m = 4 and the unique group with the desired
property is Z; x Dg.

Case 2. There exist 11,1, € {1,2,...,k}, i1 # iz, such that n;, (p(di,)—1) =
ni, (¢(di,) = 1) =1 and ni(d(di) — 1) = 0,Vi # iy, 1.

Then ni, =ny, =1 and ¢(di,) = d(di,) =2, ie. di,, di, € {3,4,6}. Assume
that di, < di,. If di, = 4, then d;, = 3, that is G contains normal cyclic
subgroups of orders 3 and 4. We infer that G also contains a cyclic subgroup
of order 12, a contradiction. If d;, = 6, then we necessarily must have d;, = 3.
Since G has a unique subgroup of order 3, it follows that a Sylow 3-subgroup of
G must be cyclic and therefore of order 3. Let n = 3-2™, where m > 1. Denote
by n, the number of Sylow 2-subgroups of G and let H be such a subgroup.
Then H is elementary abelian because G does not have cyclic subgroups of
order 2! with i > 2. By Sylow’s Theorems,

ny|3 and n; = 1 (mod 2),

implying that either n; = T orny; = 3. If n; = 1, then G = Z' X Z3, a
group that satisfies (x) if and only if m = 1, i.e. G = Zg. If n; = 3, then
|Coreg(H)| = 2™ ! because G/Coreg(H) can be embedded in S3. It follows
that G contains a subgroup isomorphic with ZE“_1 X Zz. If m > 3 this has
more than one cyclic subgroup of order 6, contradicting our assumption. Hence
either m =1 or m = 2. For m = 1 one obtains G = S3, a group that does not
have cyclic subgroups of order 6, a contradiction, while for m = 2 one obtains
G = Dy, a group that satisfies (). This completes the proof. O
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