Finite groups with a certain number of cyclic subgroups II

Marius Tărnăuceanu
Faculty of Mathematics,
"Al. I. Cuza" University, Iaşi, Romania
email: tarnauc@uaic.ro

Abstract

In this note we describe the finite groups G having $|G|-2$ cyclic subgroups. This partially solves the open problem in the end of [3].

Let G be a finite group and $C(G)$ be the poset of cyclic subgroups of G. The connections between $|\mathrm{C}(\mathrm{G})|$ and $|\mathrm{G}|$ lead to characterizations of certain finite groups G. For example, a basic result of group theory states that $|C(G)|=|G|$ if and only if G is an elementary abelian 2-group. Recall also the main theorem of [3], which states that $|C(G)|=|G|-1$ if and only if G is one of the following groups: $\mathbb{Z}_{3}, \mathbb{Z}_{4}, S_{3}$ or D_{8}.

In what follows we shall continue this study by describing the finite groups G for which

$$
\begin{equation*}
|\mathrm{C}(\mathrm{G})|=|\mathrm{G}|-2 . \tag{*}
\end{equation*}
$$

First, we observe that certain finite groups of small orders, such as $\mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, D_{12} and $\mathbb{Z}_{2} \times D_{8}$, have this property. Our main theorem proves that in fact these groups exhaust all finite groups G satisfying (*).

Theorem 1 Let G be a finite group. Then $|\mathrm{C}(\mathrm{G})|=|\mathrm{G}|-2$ if and only if G is one of the following groups: $\mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathrm{D}_{12}$ or $\mathbb{Z}_{2} \times \mathrm{D}_{8}$.

[^0]Proof. We will use the same technique as in the proof of Theorem 2 in [3]. Assume that G satisfies $(*)$, let $n=|G|$ and denote by $d_{1}=1, d_{2}, \ldots, d_{k}$ the positive divisors of n. If $n_{i}=\left|\left\{H \in C(G)| | H \mid=d_{i}\right\}\right|, i=1,2, \ldots, k$, then

$$
\sum_{i=1}^{k} n_{i} \phi\left(d_{i}\right)=n .
$$

Since $|C(G)|=\sum_{i=1}^{k} n_{i}=n-2$, one obtains

$$
\sum_{i=1}^{k} n_{i}\left(\phi\left(d_{i}\right)-1\right)=2,
$$

which implies that we have the following possibilities:
Case 1. There exists $\mathfrak{i}_{0} \in\{1,2, \ldots, k\}$ such that $\mathfrak{n}_{i_{0}}\left(\phi\left(d_{i_{0}}\right)-1\right)=2$ and $\mathfrak{n}_{\mathfrak{i}}\left(\phi\left(\mathrm{d}_{\mathfrak{i}}\right)-1\right)=0, \forall \mathfrak{i} \neq \mathfrak{i}_{0}$.

Since the image of the Euler's totient function does not contain odd integers >1, we infer that $n_{i_{0}}=2$ and $\phi\left(d_{i_{0}}\right)=2$, i.e. $d_{i_{0}} \in\{3,4,6\}$. We remark that $d_{i_{0}}$ cannot be equal to 6 because in this case G would also have a cyclic subgroup of order 3, a contradiction. Also, we cannot have $\mathrm{d}_{\mathrm{i}_{\mathrm{o}}}=3$ because in this case G would contain two cyclic subgroups of order 3 , contradicting the fact that the number of subgroups of a prime order p in G is $\equiv 1(\bmod p)$ (see e.g. the note after Problem 1C. 8 in [1]). Therefore $d_{i_{0}}=4$, i.e. G is a 2-group containing exactly two cyclic subgroups of order 4 . Let $n=2^{m}$ with $m \geq 3$. If $m=3$ we can easily check that the unique group G satisfying $(*)$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. If $m \geq 4$ by Proposition 1.4 and Theorems 5.1 and 5.2 of [2] we infer that G is isomorphic to one of the following groups:

- $\mathrm{M}_{2 \mathrm{~m}}$;
$-\mathbb{Z}_{2} \times \mathbb{Z}_{2^{\text {m-1 }}} ;$
$-\left\langle a, b \mid a^{2^{m-2}}=b^{8}=1, a^{b}=a^{-1}, a^{2^{m-3}}=b^{4}\right\rangle$, where $m \geq 5 ;$
- $\mathbb{Z}_{2} \times D_{2^{\text {m-1 }}} ;$
$-\left\langle a, b \mid a^{2^{m-2}}=b^{2}=1, a^{b}=a^{-1+2^{m-4}} c, c^{2}=[c, b]=1, a^{c}=a^{1+2^{m-3}}\right\rangle$, where $m \geq 5$.

All these groups have cyclic subgroups of order 8 for $m \geq 5$ and thus they do not satisfy $(*)$. Consequently, $m=4$ and the unique group with the desired property is $\mathbb{Z}_{2} \times \mathrm{D}_{8}$.

Case 2. There exist $i_{1}, \mathfrak{i}_{2} \in\{1,2, \ldots, k\}, i_{1} \neq i_{2}$, such that $n_{i_{1}}\left(\phi\left(d_{i_{1}}\right)-1\right)=$ $n_{i_{2}}\left(\phi\left(d_{i_{2}}\right)-1\right)=1$ and $n_{i}\left(\phi\left(d_{i}\right)-1\right)=0, \forall i \neq i_{1}, \mathfrak{i}_{2}$.

Then $n_{i_{1}}=n_{\mathfrak{i}_{2}}=1$ and $\phi\left(d_{i_{1}}\right)=\phi\left(d_{i_{2}}\right)=2$, i.e. $d_{i_{1}}, d_{i_{2}} \in\{3,4,6\}$. Assume that $d_{i_{1}}<d_{i_{2}}$. If $d_{i_{2}}=4$, then $d_{i_{1}}=3$, that is G contains normal cyclic subgroups of orders 3 and 4 . We infer that G also contains a cyclic subgroup of order 12 , a contradiction. If $\mathrm{d}_{\mathrm{i}_{2}}=6$, then we necessarily must have $\mathrm{d}_{\mathrm{i}_{1}}=3$. Since G has a unique subgroup of order 3 , it follows that a Sylow 3-subgroup of G must be cyclic and therefore of order 3 . Let $n=3 \cdot 2^{m}$, where $m \geq 1$. Denote by n_{2} the number of Sylow 2-subgroups of G and let H be such a subgroup. Then H is elementary abelian because G does not have cyclic subgroups of order 2^{i} with $i \geq 2$. By Sylow's Theorems,

$$
n_{2} \mid 3 \text { and } n_{2} \equiv 1(\bmod 2)
$$

implying that either $n_{2}=1$ or $n_{2}=3$. If $n_{2}=1$, then $G \cong \mathbb{Z}_{2}^{m} \times \mathbb{Z}_{3}$, a group that satisfies $(*)$ if and only if $m=1$, i.e. $G \cong \mathbb{Z}_{6}$. If $n_{2}=3$, then $\left|\operatorname{Core}_{\mathrm{G}}(\mathrm{H})\right|=2^{\mathrm{m}-1}$ because $\mathrm{G} / \operatorname{Core}_{\mathrm{G}}(\mathrm{H})$ can be embedded in S_{3}. It follows that G contains a subgroup isomorphic with $\mathbb{Z}_{2}^{m-1} \times \mathbb{Z}_{3}$. If $m \geq 3$ this has more than one cyclic subgroup of order 6 , contradicting our assumption. Hence either $m=1$ or $m=2$. For $m=1$ one obtains $G \cong S_{3}$, a group that does not have cyclic subgroups of order 6 , a contradiction, while for $m=2$ one obtains $\mathrm{G} \cong \mathrm{D}_{12}$, a group that satisfies $(*)$. This completes the proof.

References

[1] I. M. Isaacs, Finite group theory, Amer. Math. Soc., Providence, R. I., 2008.
[2] Z. Janko, Finite 2-groups G with $\left|\Omega_{2}(\mathrm{G})\right|=$ 16, Glas. Mat. Ser. III, 40 (2005), 71-86.
[3] M. Tărnăuceanu, Finite groups with a certain number of cyclic subgroups, Amer. Math. Monthly, 122 (2015), 275-276.

[^0]: 2010 Mathematics Subject Classification: Primary 20D99; Secondary 20E34
 Key words and phrases: cyclic subgroups, finite groups

