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Abstract. In this note we describe the finite groups G having |G| − 2
cyclic subgroups. This partially solves the open problem in the end of [3].

Let G be a finite group and C(G) be the poset of cyclic subgroups of G. The
connections between |C(G)| and |G| lead to characterizations of certain finite
groups G. For example, a basic result of group theory states that |C(G)| = |G|

if and only if G is an elementary abelian 2-group. Recall also the main theorem
of [3], which states that |C(G)| = |G|−1 if and only if G is one of the following
groups: Z3, Z4, S3 or D8.

In what follows we shall continue this study by describing the finite groups
G for which

|C(G)| = |G|− 2. (∗)

First, we observe that certain finite groups of small orders, such as Z6, Z2×Z4,
D12 and Z2 × D8, have this property. Our main theorem proves that in fact
these groups exhaust all finite groups G satisfying (∗).

Theorem 1 Let G be a finite group. Then |C(G)| = |G| − 2 if and only if G
is one of the following groups: Z6, Z2 × Z4, D12 or Z2 ×D8.
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Proof. We will use the same technique as in the proof of Theorem 2 in [3].
Assume that G satisfies (∗), let n = |G| and denote by d1 = 1, d2, . . . , dk the
positive divisors of n. If ni = |{H ∈ C(G) | |H| = di}|, i = 1, 2, . . . , k, then

k∑
i=1

niφ(di) = n.

Since |C(G)| =
∑k
i=1 ni = n− 2, one obtains

k∑
i=1

ni(φ(di) − 1) = 2,

which implies that we have the following possibilities:

Case 1. There exists i0 ∈ {1, 2, . . . , k} such that ni0(φ(di0) − 1) = 2 and
ni(φ(di) − 1) = 0, ∀ i 6= i0.

Since the image of the Euler’s totient function does not contain odd integers
> 1, we infer that ni0 = 2 and φ(di0) = 2, i.e. di0 ∈ {3, 4, 6}. We remark that
di0 cannot be equal to 6 because in this case G would also have a cyclic
subgroup of order 3, a contradiction. Also, we cannot have di0 = 3 because in
this case G would contain two cyclic subgroups of order 3, contradicting the
fact that the number of subgroups of a prime order p in G is ≡ 1 (modp) (see
e.g. the note after Problem 1C.8 in [1]). Therefore di0 = 4, i.e. G is a 2-group
containing exactly two cyclic subgroups of order 4. Let n = 2m with m ≥ 3. If
m = 3 we can easily check that the unique group G satisfying (∗) is Z2 × Z4.
If m ≥ 4 by Proposition 1.4 and Theorems 5.1 and 5.2 of [2] we infer that G
is isomorphic to one of the following groups:

- M2m ;

- Z2 × Z2m−1 ;

- 〈a, b |a2m−2
= b8 = 1, ab = a−1, a2

m−3
= b4〉, where m ≥ 5;

- Z2 ×D2m−1 ;

- 〈a, b |a2m−2
= b2 = 1, ab = a−1+2

m−4
c, c2 = [c, b] = 1, ac = a1+2

m−3〉,
where m ≥ 5.
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All these groups have cyclic subgroups of order 8 for m ≥ 5 and thus they do
not satisfy (∗). Consequently, m = 4 and the unique group with the desired
property is Z2 ×D8.

Case 2. There exist i1, i2 ∈ {1, 2, . . . , k}, i1 6= i2, such that ni1(φ(di1)−1) =
ni2(φ(di2) − 1) = 1 and ni(φ(di) − 1) = 0,∀ i 6= i1, i2.

Then ni1 = ni2 = 1 and φ(di1) = φ(di2) = 2, i.e. di1 , di2 ∈ {3, 4, 6}. Assume
that di1 < di2 . If di2 = 4, then di1 = 3, that is G contains normal cyclic
subgroups of orders 3 and 4. We infer that G also contains a cyclic subgroup
of order 12, a contradiction. If di2 = 6, then we necessarily must have di1 = 3.
Since G has a unique subgroup of order 3, it follows that a Sylow 3-subgroup of
G must be cyclic and therefore of order 3. Let n = 3 ·2m, where m ≥ 1. Denote
by n2 the number of Sylow 2-subgroups of G and let H be such a subgroup.
Then H is elementary abelian because G does not have cyclic subgroups of
order 2i with i ≥ 2. By Sylow’s Theorems,

n2|3 and n2 ≡ 1 (mod 2),

implying that either n2 = 1 or n2 = 3. If n2 = 1, then G ∼= Zm2 × Z3, a
group that satisfies (∗) if and only if m = 1, i.e. G ∼= Z6. If n2 = 3, then
|CoreG(H)| = 2m−1 because G/CoreG(H) can be embedded in S3. It follows
that G contains a subgroup isomorphic with Zm−1

2 × Z3. If m ≥ 3 this has
more than one cyclic subgroup of order 6, contradicting our assumption. Hence
either m = 1 or m = 2. For m = 1 one obtains G ∼= S3, a group that does not
have cyclic subgroups of order 6, a contradiction, while for m = 2 one obtains
G ∼= D12, a group that satisfies (∗). This completes the proof. �
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