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Scaling functions on the spectrum
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Abstract. A generalization of Mallat’s classic theory of multiresolution
analysis based on the theory of spectral pairs was considered by Gabardo
and Nashed [4] for which the translation set Λ = {0, r/N}+2Z is no longer
a discrete subgroup of R but a spectrum associated with a certain one-
dimensional spectral pair. In this short communication, we characterize
the scaling functions associated with such a nonuniform multiresolution
analysis by means of some fundamental equations in the Fourier domain.

1 Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it
provides a natural framework for understanding and constructing discrete
wavelet systems. The concept of an MRA structure has been extended in
various setups in recent years. More precisely, they have been generalized to
different dimensionalities, to lattices different from Zd, allowing the subspaces
of MRA to be generated by Riesz basis instead of orthonormal basis, admit-
ting a finite number of scaling functions, replacing the dilation factor 2 by an
integer M ≥ 2 or by an expansive matrix A ∈ GLd(R) as long as A ⊂ AZd
(see [1]). All these concepts were developed on regular lattices, that is the
translation set is always a group. Recently, Gabardo and Nashed [3, 4] con-
sidered a generalization of Mallat’s classical MRA [6] based on the theory of
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spectral pairs, in which the translation set Λ = {0, r/N}+ 2Z, where N ≥ 1 is
an integer, 1 ≤ r ≤ 2N−1, r is an odd integer relatively prime to N, acting on
the scaling function related with an MRA to generate the core subspace V0 is
no longer a group, but a union of two lattices, which is associated with a fa-
mous open conjecture of Fuglede on spectral pairs [2]. They call it nonuniform
multiresolution analysis (NUMRA). By an NUMRA, we mean a sequence of
embedded closed subspaces {Vj : j ∈ Z} of the Hilbert space L2(R) that satisfies
the following conditions:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
⋃
j∈Z Vj is dense in L2(R);

(c)
⋂
j∈Z Vj = {0};

(d) f(x) ∈ Vj if and only if f(2Nx) ∈ Vj+1 for all j ∈ Z;

(e) there exists a function φ ∈ V0 such that {φ(x− λ)}λ∈Λ is an orthonormal
basis for V0.

It is worth noticing that, when N = 1, one recovers the standard definition
of one dimensional MRA with dyadic dilation 2. When, N > 1, the dilation
factor of 2N ensures that 2NΛ ⊂ Z ⊂ Λ.

If φ is a scaling function of an NUMRA, then by condition (e) we can express
this function in terms of the orthonormal basis {φ(x− λ) : λ ∈ Λ} as

φ(x) =
∑
λ∈Λ

hλφ
(
2Nx− λ

)
. (1)

where the convergence is in L2(R) and {hλ}λ∈Λ ∈ l2. Refinement equation (1)
can be rewritten in the Fourier domain as

φ̂(ξ) = m0

(
ξ

2N

)
φ̂

(
ξ

2N

)
(2)

where m0 is the low pass filter associated with the scaling function φ and is
of the form

m0(ξ) = m
1
0(ξ) + e

−2πiξr/Nm2
0(ξ). (3)

One of the fundamental problems in the study of wavelet theory is to find
conditions on the scaling functions so that they can generate an MRA for
L2(R). Our main purpose in this short communication is to characterize those
functions that are scaling functions for an NUMRA of L2(R).

To achieve our goal, we need the following technical results obtained in
[4, 5, 7] that will be used in sequel.
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Theorem 1 [4] Let {Vj : j ∈ Z} be a sequence of closed subspaces of L2(R)
satisfying conditions (a), (d) and (e). Then,

⋂
j∈Z Vj = {0}.

Theorem 2 [5] Let {Vj : j ∈ Z} be a sequence of closed subspaces of L2(R)
satisfying conditions (a), (d) and (e). Assume that the function φ of condition
(e) is such that φ̂ is continuous at ξ = 0. Then the following two conditions
are equivalent:

(i) lim
j→∞

∣∣∣φ̂((2N)−jξ
)∣∣∣ = 1 a.e. ξ ∈ R;

(ii)
⋃
j∈Z Vj = L

2(R).

Proposition 1 [7] Let N be a positive integer, and r ∈ {1, 3, . . . , 2N− 1} be
an odd integer. Let φ ∈ L2(R) with

∥∥φ∥∥
2
= 1. Then,

(i) For each fixed odd r, the family
{
φ(x − λ) : λ ∈ Λ

}
is an orthonormal

system in L2(R) if and only if∑
p∈Z

∣∣∣φ̂(ξ+ p

2

)∣∣∣2 = 2, for a.e. ξ ∈ R and (4)

∑
p∈Z

e−iπrp/N
∣∣∣φ̂(ξ+ p

2

)∣∣∣2 = 0, for a.e. ξ ∈ R. (5)

(ii) The collection
{
φ(x − λ) : λ ∈ Λ

}
is an orthonormal system for every

odd integer r ∈ {1, 3, . . . , 2N− 1} if and only if∑
β∈ΓN

∣∣φ̂(ξ− β)∣∣2 = 1, for a.e. ξ ∈ R, (6)

where ΓN = {nN+ j/2 : n ∈ Z, j = 0, 1, 2, . . . , N− 1}.

2 Characterization of scaling functions on the spec-
trum

In this section we will characterize those functions that are scaling functions
for an NUMRA of L2(R) by means of some basic equations in the Fourier
domain.

Before formulating our main result, let us clarify what we mean when we
say that a function is a scaling function for an NUMRA. Given a function
φ ∈ L2(R), we define the closed subspaces {Vj : j ∈ Z} of L2(R) as follows:

V0 = span
{
φ(x− λ) : λ ∈ Λ

}
, and Vj =

{
f : f

(
(2N)−jx

)
∈ V0

}
, j ∈ Z\{0}.
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We say that φ ∈ L2(R) is a scaling function for an NUMRA of L2(R) if the
sequence of closed subspaces {Vj : j ∈ Z} as defined above forms an NUMRA
for L2(R).

Theorem 3 A function φ ∈ L2(R) is a scaling function for an NUMRA of
L2(R) if and only if ∑

β∈ΓN

∣∣φ̂(ξ− β)∣∣2 = 1, texta.e (7)

lim
j→∞

∣∣∣φ̂((2N)−jξ
)∣∣∣ = 1 a.e. ξ ∈ R (8)

and there exists a periodic function m0 of the form (3) such that

φ̂(ξ) = m0

(
ξ

2N

)
φ̂

(
ξ

2N

)
, a.e. ξ ∈ R. (9)

Proof. Suppose φ is a scaling function for an NUMRA. Then, {φ(x− λ) : λ ∈ Λ}
forms an orthonormal system in L2(R) which is equivalent to equation (7) by
Proposition 1. Equality (9) follows from equations (2) and (3). Since {Vj : j ∈ Z}
is an NUMRA for L2(R), we have

⋃
j∈Z Vj = L

2(R). Therefore, from Theorem
2, we infer that

lim
j→∞
∫
ΓN

∣∣∣φ̂((2N)−jξ
)∣∣∣2 dξ = 1.

Since m0(ξ) is of the form (3), so it is easy to compute the following two
conditions in terms of the 1/2-periodic functions m1

0,m
2
0 as

2N−1∑
p=0

{∣∣∣m1
0

(
ξ+

p

4N

)∣∣∣2 + ∣∣∣m2
0

(
ξ+

p

4N

)∣∣∣2} = 1, and (10)

2N−1∑
p=0

e−iπrp/N
{∣∣∣m1

0

(
ξ+

p

4N

)∣∣∣2 + ∣∣∣m2
0

(
ξ+

p

4N

)∣∣∣2} = 0. (11)

If we take M0(ξ) =
∣∣m1

0(ξ)
∣∣2 + ∣∣m2

0(ξ)
∣∣2, then clearly M0

(
ξ+ 1

4

)
= M0 (ξ)

and

M0(ξ) =
|m0 (ξ+N/2)|

2 + |m0 (ξ)|
2

2
. (12)
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Subsequently, Eqs. (10) and (11) takes the form

2N−1∑
p=0

M0

(
ξ+

p

4N

)
= 1, and

2N−1∑
p=0

e−iπrp/NM0

(
ξ+

p

4N

)
= 0.

Hence, M0(ξ) ≤ 1, a.e. ξ ∈ R, which together with (12) implies |m0(ξ)| ≤ 1
a.e. ξ ∈ R. This inequality along with equality (9) shows that

∣∣φ̂((2N)−jξ)
∣∣ is

non-decreasing for a.e. ξ ∈ R as j→∞. Let

Φ(ξ) = lim
j→∞

∣∣∣φ̂((2N)−jξ)
∣∣∣ . (13)

Since
∣∣φ̂(ξ)∣∣ ≤ 1 a.e, therefore, Lebesgue’s dominated convergence theorem

implies that ∫
ΓN

Φ(ξ)dξ = 1.

We now prove the converse. Assume that (7), (8) and (9) are satisfied.
The orthonormality of the system {φ(x− λ) : λ ∈ Λ} follows immediately from
(7). This fact alongwith the definition of V0 gives us (e) of the definition of
an NUMRA. Moreover, the definition of the subspaces Vj also shows that
f(x) ∈ Vj holds if and only if f

(
2Nx

)
∈ Vj+1 which is (d) of the definition of

an NUMRA. Thus, we say that if (2N)−j/2f((2N)−jx) ∈ V0, then there exists
a sequence {hλ}λ∈Λ satisfying

∑
λ∈Λ hλ <∞ such that

f
(
(2N)−jx

)
= (2N)j/2

∑
λ∈Λ

hλφ(x− λ). (14)

Taking Fourier transform on both sides of (14), we obtain

f̂
(
(2N)jξ

)
= µj(ξ)φ̂(ξ) (15)

where µj(ξ) =
∑
λ∈Λ hλe

−2πiλξ. Since Λ = {0, r/N}+ 2Z, we can rewrite µj(ξ)
as

µj(ξ) = µ
1
j (ξ) + e

−2πiξr/Nµ2j (ξ) (16)

where µ1j and µ2j are locally L2, 1/2-periodic functions. Now, for each j ∈ Z,
we claim that

Vj =
{
f : f̂

(
(2N)jξ

)
= µj(ξ)φ̂(ξ) for some periodic function µj(ξ)

}
. (17)
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To prove the inclusion Vj ⊂ Vj+1, it is enough to show that V0 ⊂ V1.
Assume that f ∈ V0, then by equation (17), it follows that there exists a
locally L2 function say µ0 such that f̂(ξ) = µ0(ξ)φ̂(ξ), where µ0(ξ) = µ

1
0(ξ) +

e−2πiξr/Nµ20(ξ). Using (9), we obtain

f̂(2Nξ) = µ0(2Nξ)φ̂(2Nξ) = µ0(2Nξ)m0(ξ)φ̂(ξ).

Moreover, µ0(2Nξ)m0(ξ) can be further expressed in the form

η1(ξ) + e
−2πiξr/Nη2(ξ),

where

η1(ξ) =
{
µ10(2Nξ) + e

−4πiξrµ20(2Nξ)
}
m1
0(ξ)

η2(ξ) =
{
µ10(2Nξ) + e

−4πiξrµ20(2Nξ)
}
m2
0(ξ).

Using the fact that |m0(ξ)| ≤ 1 for a.e. ξ ∈ ΓN, we have∫
ΓN

∣∣µ0(2Nξ)∣∣2∣∣m0(ξ)
∣∣2dξ ≤ ∫

ΓN

∣∣µ0(2Nξ)∣∣2dξ <∞,
which implies that f ∈ V1. We have already seen that separation property (c)
of an NUMRA follows from (a), (d) and (e). Now it remains to prove density
property (b) of an NUMRA, that is; L2(R) = ∪j∈ZVj. To prove this, we assume
that Pj be the orthogonal projection onto the closed subspace Vj of L2(R), then
it suffices to show that∥∥Pjf− f∥∥22 = ‖f‖22 − 〈Pj(f), f〉2 → 0 as j→∞.
Since

{
(2N)j/2φ

(
(2N)jx− λ

)}
λ∈Λ is an orthonormal basis for Vj. Therefore,

for any compactly supported function f, we have

〈
Pjf, f

〉
2
=

∫
R

∣∣∣φ̂((2N)−jξ
)∣∣∣2 ∣∣f̂ (ξ)∣∣2 dξ. (18)

Implementing condition (8), it follows that the right hand side of (18) con-
verges to ‖f‖22 as j→∞. This completes the proof of Theorem 3. �
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