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Abstract. For a commutative ring R with 1 6= 0, a compressed zero-
divisor graph of a ring R is the undirected graph ΓE(R) with vertex set
Z(RE) \ {[0]} = RE \ {[0], [1]} defined by RE = {[x] : x ∈ R}, where [x] =
{y ∈ R : ann(x) = ann(y)} and the two distinct vertices [x] and [y] of
Z(RE) are adjacent if and only if [x][y] = [xy] = [0], that is, if and only if
xy = 0. In this paper, we study the metric dimension of the compressed
zero divisor graph ΓE(R), the relationship of metric dimension between
ΓE(R) and Γ(R), classify the rings with same or different metric dimension
and obtain the bounds for the metric dimension of ΓE(R). We provide
a formula for the number of vertices of the family of graphs given by
ΓE(R×F). Further, we discuss the relationship between metric dimension,
girth and diameter of ΓE(R).

1 Introduction

Beck [7] first introduced the notion of a zero divisor graph of a ring R and his
interest was mainly in coloring of zero divisor graphs. Anderson and Livingston
[3] studied zero divisor graph of non-zero zero divisors of a commutative ring
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R. For a commutative ring R with 1 6= 0, let Z∗(R) = Z(R) \ {0} be the set
of non-zero zero divisors of R. A zero divisor graph Γ(R) is the undirected
graph with vertex set Z∗(R) and the two vertices x and y are adjacent if and
only if xy = 0. This zero divisor graph has been studied extensively and even
more the idea has been extended to the ideal based zero divisor graphs in
[15, 23] and modules in [20]. Inspired by ideas from Mulay [16], we study the
zero divisor graph of equivalence classes of zero divisors of a ring R. Anderson
and LaGrange [4] studied this under the term compressed zero divisor graph
ΓE(R) with vertex set Z(RE) \ {[0]} = RE \ {[0], [1]}, constructed by taking the
vertices to be equivalence classes [x] = {y ∈ R | ann(x) = ann(y)}, for every
x ∈ R \ ([0] ∪ [1]) and each pair of distinct classes [x] and [y] is joined by an
edge if and only if [x][y] = 0, that is, if and only if xy = 0. If x and y are
distinct adjacent vertices in Γ(R), we note that [x] and [y] are adjacent in ΓE(R)
if and only if [x] 6= [y]. It is clear that [0] = {0} and [1] = R \ Z(R) and that
[x] ⊆ Z(R) \ {0}, for each x ∈ R \ ([0] ∪ [1]). Some results on the compressed
zero divisor graph can be seen in [5].

For example, consider R = Z12. Here, Z∗(R) = {2, 3, 4, 6, 8, 9, 10} is the vertex
set of Γ(R), see Fig 1(a). For the vertex set of ΓE(R), we have
ann(2) = {6}, ann(3) = {4, 8}, ann(4) = {3, 6, 9}, ann(6) = {2, 4, 6, 8, 10},
ann(8) = {3, 6, 9}, ann(9) = {4, 8}, ann(10) = {6}.

So, Z(RE) = {[2], [3], [4], [6]} is the vertex set of ΓE(R), see Fig 1(b).

Figure 1: Γ(Z12) and ΓE(Z12)

We note that the vertices of the graph ΓE(R) correspond to annihilator ideals
in the ring and hence prime ideals if R is a Noetherian ring in which case
Z(RE) is called as the spectrum of a ring. Clearly ΓE(R) is connected and
diam(ΓE(R)) ≤ 3. Also diam(ΓE(R)) ≤ diam(Γ(R)). Anderson and LaGrange
[5] showed that gr(ΓE(R)) ≤ 3 if ΓE(R) contains a cycle and determined the
structure of ΓE(R) when it is acyclic and the monoids RE when ΓE(R) is a star
graph. In [4], they also show that ΓE(R) ∼= ΓE(S) for a Noetherian or finite
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commutative ring S.
The compressed zero-divisor graph has some advantages over the earlier

studied zero divisor graph Γ(R) as seen in [1, 2, 3] or subsequent zero divisor
graph determined by ideal of R as seen in [15, 23]. For example, Spiroff and
Wickham [[27], Proposition 1.10] showed that there are no finite regular graphs
ΓE(R) for any ring R with more than two vertices. Further, they showed that
R is a local ring (a ring R is said to be a local ring if it has a unique maximal
ideal) if ΓE(R) is a star graph with at least four vertices.

Another important aspect of studying graphs of equivalence classes is the
connection to associated primes of the ring. In general, all the associated
primes of a ring R correspond to distinct vertices in ΓE(R). Through out, R
will denote a commutative ring with unity, U(R) its set of units. We will de-
note a finite field on q elements by Fq, ring of integers modulo n by Zn and
all graphs are simple graphs in the sense that there are no loops. For basic
definitions from graph theory we refer to [11, 17], and for commutative ring
theory we refer to [6, 13].

A graph G is connected if there exists a path between every pair of vertices
in G. The distance between two vertices u and v in G, denoted by d(u, v), is
the length of the shortest u − v path in G. If such a path does not exist, we
define d(u, v) to be infinite. The diameter of a graph is the maximum distance
between any two vertices of G. The diameter is 0 if the graph consists of a
single vertex. Also, the girth of a graph G, denoted by gr(G), is the length of
a smallest cycle in G. Slater [25] introduced the concept of a resolving set for
a connected graph G under the term locating set. He referred to a minimum
resolving set as a reference set for G and called the cardinality of a minimum
resolving set (reference set) the location number of G. Independently, Harary
and Melter [12] discovered these concepts as well but used the term metric
dimension, rather than location number. The concept of metric dimension has
appeared in various applications of graph theory, as diverse as, pharmaceutical
chemistry [8, 9], robot navigation [14], combinatorial optimization [24], sonar
and coast guard Loran [26]. We adopt the terminology of Harary and Melter.

In this paper, we study the notion of metric dimension of ΓE(R). We explore
the relationship between metric dimension of ΓE(R) and ΓE(R). We obtain the
metric dimension of ΓE(R) whenever it exists. We also classify the rings having
the same or different metric dimension and obtain bounds for the metric di-
mension of ΓE(R). We also provide relationship between the metric dimension,
girth and diameter of ΓE(R).
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2 Metric dimension of some graphs ΓE(R)

Let G be a connected graph with n ≥ 2 vertices. For an ordered subset W =
{w1, w2, . . . , wk} of V(G), we refer to the k-vector as the metric representation
(locating code) of v with respect to W as

r(v|W) = (d(v,w1), d(v,w2), . . . , d(v,wk))

The set W is a resolving set of G if distinct vertices have distinct metric
representations (codes) and a resolving set containing the minimum number
of vertices is called a metric basis for G and the metric dimension, denoted by
dim(G), of G is the cardinality of a metric basis. If W is a finite metric basis,
we say that r(v|W) are the metric coordinates of vertex v with respect to W.
The only vertex of G whose metric coordinate with respect to W has 0 in its
ith coordinate of r(v|W) is {wi}. So the vertices of W necessarily have distinct
metric representations. Since only those vertices of G that are not in W have
coordinates all of which are positive, it is only these vertices that need to be
examined to determine if their representations are distinct. This implies that
the metric dimension of G is at most n− 1. In fact for every connected graph
G of order n ≥ 2, we have 1 ≤ dim(G) ≤ n− 1.

For example, consider the graph G given in Figure 2. Take W1 = {v1, v3}.
So, r(v1|W1) = (0, 1), r(v2|W1) = (1, 1), r(v3|W1) = (1, 0), r(v4|W1) = (1, 1),
r(v5|W1) = (2, 1). Notice, r(v2|W1) = (1, 1) = r(v4|W1), therefore W1 is not
a resolving set. However, if we take W2 = {v1, v2}, then r(v1|W2) = (0, 1),
r(v2|W2) = (1, 0), r(v3|W2) = (1, 1), r(v4|W2) = (1, 2), r(v5|W2) = (2, 1). Since
distinct vertices have distinct metric representations, W2 is a minimum resolv-
ing set and thus this graph has metric dimension 2.

V1

v3

v2

v5
v4

Figure 2: dim(G) = 2

Now, we have the following observation.

Lemma 1 A connected graph G of order n has metric dimension 1 if and
only if G ∼= Pn, where Pn denotes a path on n vertices of length n− 1.
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Proof. Suppose G ∼= Pn. Let x1 − x2 − · · ·− xn be a path on n vertices of G.
Since d(xi, x1) = i− 1 for 1 ≤ i ≤ n, it follows {x1} is a minimum resolving set
and therefore metric basis for ΓE(R). So dim(Pn) = 1.

Conversely, let G be not a path. Then either G is a cycle or it contains a
vertex v whose degree is at least 3. But, G can not be a cycle as dim(G) =
2, see ([18], Lemma 2.3). Let u1, u2, . . . , uk be the vertices adjacent to v.
Since dim(G) = 1 and if W = {w} is a metric basis for G, then the metric
representation of every vertex has a single coordinate. If d is the length of the
shortest path from v to w, the coordinates of each ui with respect to W is
one of {d − 1, d, d + 1}, but d(ui, w) = d can not occur for all i (1 ≤ i ≤ k).
Therefore, it follows that at least two adjacent vertices of v have the same
metric coordinates, which is a contradiction. Hence G is a path. �

A graph G(V, E) in which each pair of distinct vertices is joined by an edge
is called a complete graph. A complete graph of n vertices is denoted by Kn.
A graph G is said to be bipartite if its vertex set V can be partitioned into two
sets V1 and V2 such that every edge of G has one end in V1 and another in V2.
A bipartite graph is complete if each vertex of one partite set is joined to every
vertex of the other partite set. We denote the complete bipartite graph with
partite sets of order m and n by Km,n. More generally, a graph is complete
r-partite if the vertices can be partitioned into r distinct subsets, but no two
elements of the same subset are adjacent. Based on the above definitions, we
have the following observations.

Proposition 1 The metric dimension of the compressed zero divisor graph
ΓE(R) is 0 if and only if the zero divisor graph Γ(R) of R (R � Z2 × Z2) is a
complete graph.

Proof. If Γ(R) ∼= Kn, then either R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z∗(R).
Let v1, v2, . . . , vn be the zero divisors of Γ(R), then [v1] = [v2], · · · = [vn] implies
that all the vertices of Γ(R) would collapse to a single vertex in ΓE(R) and we
know the metric dimension of a single vertex graph is 0.

Conversely, assume that Γ(R) is not isomorphic to Kn. Then Γ(R) contains
at least one vertex not adjacent to all the other vertices. Thus |ΓE(R)| ≥ 2, so
that dim(ΓE(R)) ≥ 1. �

We can also obtain the converse part by letting dim(ΓE(R)) = 0. Then
ΓE(R) = {[a]} for some a ∈ Z∗(R), that is, ΓE(R) is a graph on a single vertex,
which then implies Γ(R) is either isomorphic to a single vertex or a complete
graph Kn, for all n ≥ 1. If G is a connected graph of order n ≥ 2, we say
two distinct vertices u and v are distance similar, if d(u, a) = d(v, a) for all
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a ∈ V(G) − {u, v}. It can be seen that the distance similar relation (∼) is an
equivalence relation on V(G) and two distinct vertices are distance similar if
either uv /∈ E(G) and N(u) = N(v), or uv ∈ E(G) and N[u] = N[v]. Further
we can find several results on metric dimension for zero divisor graphs of rings
in [18, 19, 21].

Proposition 2 The metric dimension of ΓE(R) is 1 if Γ(R) is isomorphic to
a complete bipartite graph Km,n, with m or n ≥ 2.

Proof. Let Γ(R) be isomorphic to a complete bipartite graph Km,n with two
distance similar classes V1 and V2. Let V1 = {u1, u2, · · · , um} and V2 =
{v1, v2, · · · , vn} such that uivj = 0 for all i 6= j. Clearly, each of V1 and V2
is an independent set. We see that [u1] = [u2] = · · · = [um] and [v1] = [v2] =
· · · = [vn], so that V1 and V2 each represents a single vertex in ΓE(R). Since
the graph is connected, ΓE(R) is isomorphic to K1,1, a path on two vertices.
Therefore by Lemma 1, we have dim(ΓE(R)) = 1. �

Remark 1 Note that the converse of this result need not be true, the graph
illustrated in Fig.1 being a counter example. However, if R ∼= Z2 × Z2, then
ΓE(R) ∼= K1,1 with metric dimension 1 and Γ(R) ∼= ΓE(R).

One of the important differences between Γ(R) and ΓE(R) is that the later
can not be complete with at least three vertices, as seen in ([27], Proposition
1.5). However, if ΓE(R) is complete r-partite, then r = 2 and ΓE(R) ∼= Kn,1,
for some n ≥ 1, see ([27], Proposition 1.7). A second look at the above result
allows us to deduce some facts about star graphs. A complete bipartite graph
of the form Kn,1, n ∈ N ∪ {∞} is called a star graph. If n = ∞, we say the
graph is an infinite star graph.

Corollary 1 If R is a ring such that ΓE(R) is a star graph Kn,1 with n ≥ 2,
then dim(ΓE(R)) = n− 1.

Proof. First we identify a centre vertex of Kn,1 adjacent to n vertices. Then
partition the vertex set V of order n+1 into two distance similar classes, with
centre vertex in one class V1 and the remaining n vertices in another class V2
which is clearly an independent set. Choose a subset of vertices W of V and
u ∼ v. Then r(u|W) = r(v|W) whenever both u, v /∈W. Hence the metric basis
contains all except at most two vertices one from each class Vi, 1 ≤ i ≤ 2.
Therefore, dim(Kn,1) = |V(ΓE(R))|− 2 = n+ 1− 2 = n− 1. �

For example the metric dimension of K1,3 is 2, see Figure 3.
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Figure 3: dim(K1,3 = 2)

Corollary 2 If R is a commutative ring such that ΓE(R) has at least n ≥ 3
vertices, then dim(ΓE(R)) 6= n− 1.

Proof. Suppose dim(ΓE(R)) = n−1, (n ≥ 3). Then, by [18, Lemma 2.2], ΓE(R)
is a complete graph on n vertices which is a contradiction to the argument
prior to Corollary 1. Therefore dim(ΓE(R)) 6= n− 1. �

Remark 2 It is not known whether for each positive integer n, the star graph
Kn,1 can be realized as ΓE(R) for some ring R. However, there is a ring R =
Z2[x, y, z]/(x2, y2) whose ΓE(R) is a star graph with infinitely many ends, that
is, ΓE(R) is an infinite star graph. This ring also shows that the Noetherian con-
dition is not enough to force ΓE(R) to be finite, see [27]. For n = 3, if the local
ring R is isomorphic to Z4[x]/(x2) or Z2[x, y]/(x2, y2) or Z4[x, y]/(x2, y2, xy−
2, 2x, 2y), then ΓE(R) ∼= K1,3 and therefore dim(ΓE(R)) = 2. For n = 4, if the
local ring R is isomorphic to Z8[x, y]/(x2, y2, 4x, 4y, 2xy), then ΓE(R) ∼= K1,4
and therefore dim(ΓE(R)) = 3. For n = 5, if R ∼= Z2[x, y, z]/(x2, y2, z2, xy),
then ΓE(R) ∼= K5,1 and therefore dim(ΓE(R)) = 4. This star graph K1,5 is the
smallest star graph that can be realized as ΓE(R), but not as a zero divisor
graph.

By definition of the compressed zero divisor graph ΓE(R) of a ring R, it is clear
that each vertex in ΓE(R) is a representative of a distinct class of zero divisor
activity in R. Thus, dim(ΓE(R)) ≤ dim(Γ(R)). However, the strict inequality
holds if ΓE(R) has at least 3 vertices.

Example 1 In the rings R = Z2[x,y]
(x2,xy,2x)

, R = Z4[x,]
(x2)

, R = Z16, R = Z8[x]
(2x,x2)

, it is

easy to find that dim(ΓE(R)) < dim(Γ(R)).

It will be interesting to see the family of rings in which the equality dim(ΓE(R) =
dim(Γ(R) occurs.
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A ring R is called a Boolean ring if a2 = a for every a ∈ R. Clearly a
Boolean ring R is commutative with char(R) = 2, where char(R) denotes the
characteristic of a ring R. More generally, a commutative ring is von Neu-
mann regular ring if for every a ∈ R, there exists b ∈ R such that a = a2b,
or equivalently, R is a reduced zero dimensional ring, see [13, Theorem 3.1].
A Boolean ring is clearly a von Neumann regular, but not conversely. For
example, let {Fi}i∈I be a family of fields, then

∏
i∈I
Fi is always von Neumann

regular, but it is Boolean if and only if Fi ∼= Z2 for all i ∈ I. Also the set
B(R) = {a ∈ R | a2 = a} of idempotents of a commutative ring R becomes
a Boolean ring with multiplication defined in the same way as in R, and ad-
dition defined by the mapping (a, b) 7→ a + b − 2ab. In [13, Lemma 3.1], if
r, s ∈ Γ(R), the conditions N(r) = N(s) and [r] = [s] are equivalent if R is a
reduced ring, and these are equivalent to the condition rR = sR if R is a von
Neumann regular ring. Furthermore, if R is a von Neumann regular ring and
B(R) is the set of idempotent elements of R, the mapping defined by e 7→ [e]
is isomorphism from the subgraph of Γ(R) induced by B(R)r {0, 1} onto ΓE(R)
[13, Proposition 4.5]. In particular, if R is a Boolean ring (i.e., R = B(R)), then
ΓE(R) ∼= Γ(R). From this discussion, we have the following characterization.

Proposition 3 Let R be a reduced commutative ring with unity. Then, metric
dimension of the zero divisor graph Γ(R) equals to metric dimension of its
corresponding compressed zero divisor graph if R is a Boolean ring.

Note that the converse of this result is not true in general. For example, the
graphs in Figure 4 being a counter example, where dim(Γ(Z6)) = dim(ΓE(Z6)),
but R is not a Boolean ring.

Figure 4: dim(Γ(Z6)) = dim(ΓE(Z6)) = 1

Corollary 3 Let R and S be commutative reduced rings with unity 1. If Γ(R) ∼=
Γ(S), then dim(ΓE(R)) = dim(ΓE(S)).

Remark 3 As seen in [21, Theorem 2], for the graph Γ(Πni=1Z2) of a finite
Boolean ring

dim(Γ(Πni=1Z2)) ≤ n, dim(Γ(Πni=1Z2)) ≤ n− 1

for n = 2, 3, 4 and dim(Γ(Πni=1Z2)) = n for n = 5. This is also true for ΓE(R),
follows by Proposition 3. The case n > 5 is still open.
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3 Bounds for the metric dimension of ΓE(R)

In this section, we investigate the role of metric dimension in the study of
the structure of the graph ΓE(R). We also obtain metric dimension of some
special type of rings that exhibit ΓE(R). Pirzada et al [18] characterized those
graphs Γ(R) for which the metric dimension is finite and for which the metric
dimension is undefined [18, Theorem 3.1]. The analogous of this result is as
follows.

Theorem 1 Let R be a commutative ring. Then
(i) dim(ΓE(R)) is finite if and only if R is finite.
(ii) dim(ΓE(R)) is undefined if and only if R is an integral domain.

However, dim(ΓE(R)) may be finite if R is infinite. For example,
R = Z[x, y]/(x3, xy) has ΓE(R)) ∼= K1,3 + e (or paw graph), see Figure 5, and
therefore has dim = 2.

Figure 5:

The following lemma will be used to find the metric dimension of finite local
rings.

Lemma 2 If R is a finite local ring, then |R| = pn, for some prime p and
some positive integer n.

Now, we have the following results.

Proposition 4 If R is a local ring with |R| = p2 and p = 2, 3, 5, then dim(ΓE(R))
is either 0 or undefined.

Proof. Consider all local rings of order p2 with p a prime. According to [10,

p. 687] local rings of order p2 are precisely Fp2 ,
Fp[x]
(x2)

, and Zp2 . If R is a

field of order p2, i.e., R ∼= Fp2 , then ΓE(R) is an empty graph, which implies

dim(ΓE(R)) is undefined. If R is not a field and |R| = p2, i.e., R ∼=
Fp[x]
(x2)

, or
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Zp2 then ΓE(R) is a single vertex, when p = 2, 3 or 5 which then immediately
gives that dim(ΓE(R)) = 0. �

From the above result, we also observe that dim(Γ(R)) = dim(ΓE(R)), if

R ∼= Z8,Z2[x]/(x3),Z4[x]/(2x, x2 − 2).

Proposition 5 If R is a local ring (not a field) of order

(i) p3 with p = 2 or 3, then dim(ΓE(R)) is 0, and dim(ΓE(R)) = 1 only
if R ∼= Z2[x]/(x3), Z8, Z4[x]/(2x, x2 − 2), Z3[x]/(x3), Z9[x]/(3x, x2 − 3),
Z9[x]/(3x, x2 − 6) or Z27

(ii) p4 with p = 2, then dim(ΓE(R)) is 0, 1 or 2.

Proof. (i) The following is the list of all the local rings of order p3.

Fp3 ,
Fp[x, y]
(x, y)2

,
Fp[x]
(x3)

,
Zp2[x]
(px, x2)

,
Zp2[x]

(px, x2 − p)

Case(a). When p = 2, the equivalence classes of the zero divisors in the lo-
cal rings Z2[x, y]/(x, y)2 and Z4[x]/(2x, x2) are same and is given by [a] =
{x, y, x + y} for any zero divisor a of the first ring and [b] = {2, x, x + 2} for
any zero divisor b of the second ring, that is, they get collapsed to a single
vertex. Therefore dim(ΓE(R)) = 0. However, ΓE(R) of the rings Z2[x]/(x3), Z8
and Z4[x]/(2x, x2 − 2) is isomorphic to the graph K1,1, which then, by Lemma
1, gives dimE(R) = 1.
Case(b). When p = 3 in the above list of local rings, we find that the com-
pressed zero divisor graph structure of the rings Z3[x]/(x3), Z9[x]/(3x, x2− 3),
Z9[x]/(3x, x2− 6) and Z27 is same and is isomorphic to K1,1. Then, by Lemma

1, we have dimE(R) = 1. Also, in the rings
Z32[x]
(3x, x2)

and
Z3[x, y]
(x, y)2

, the equiva-

lence classes of all the zero divisors is same and is given by [a] = {3, 6, x, 2x, x+
3, x + 6, 2x + 3, 2x + 6} for any non-zero zero divisor a of the first ring and
[b] = {x, 2x, y, 2y, x+y, 2x+y, x+ 2y, 2x+ 2y} for any non-zero zero divisor b
of the later ring. Thus, ΓE(R) for both rings is a graph on a single vertex and
follows that dim(ΓE(R) = 0.
(ii) Consider the local rings of order p4, when p = 2. Corbas and Williams
[10] conclude that there are 21 non-isomorphic commutative local rings with
identity of order 16. The rings with dim(ΓE(R)) = 0 are F4[x]/(x2), Z2[x, y, z]/
(x, y, z)2 and Z4[x]/(x2+x+1). The rings with dim(ΓE(R)) = 1 are Z2[x]/(x

4),
Z2[x, y]/(x

3, xy, y2), Z4[x]/(2x, x
3 − 2), Z4[x]/(x2 − 2), Z8[x]/(2x, x2), Z16, Z4[x]
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/(x2 − 2x− 2), Z8[x]/(2x, x2 − 2), Z4[x]/(x2 − 2x), Z2[x]/(x4) and Z2[x]/(x4).
Further the rings with dim(ΓE(R)) = 2 are Z4[x]/(x2), Z2[x, y]/(x2, y2)
and Z2[x, y]/(x2 − y2, xy). �

Now, we find the metric dimension of ΓE(Zn).

Proposition 6 Let p be a prime number.
(i) If n = 2p and p > 2, then dim(ΓE(Zn)) = 1.
(ii) If n = p2, then dim(ΓE(Zn)) = 0.

Proof. (i) If p = 2, since ΓE(Z4) is a graph with single vertex. So, dim(ΓE(Z4)
= 0.

If p > 2, the zero divisor set of Zn is {2, 2.2, 2.3, . . . , 2.(p − 1), p}. Since,
char(Zn) = 2p, it follows that p is adjacent to all other vertices. Thus the
equivalence classes of these zero divisors are given by
[p] = {2, 2.2, 2.3, . . . , 2.(p− 1)}, [2] = [2.2] = · · · = [2.(p− 1)] = {p}.

So, the vertex set of ΓE(Zn) is Z(RE) = {[p], [2x]} for any positive integer
x = 1, 2, . . . , p − 1. Thus ΓE(Zn) is a path P2 which then, by Lemma 1, gives
dim(ΓE(Zn) = 1.
(ii) If n = p2 and p > 2, the zero divisor set of Zn is {p, p.2, p.3, . . . , p(p− 1)}.
Since char(Zn) = p2, it follows that the equivalence class of all these zero
divisors is same and is {p, p.2, p.3, . . . , p.(p− 1)}. Thus, ΓE(R) in this case is a
graph on a single vertex and therefore dim(ΓE(R) = 0. �

From the above result, we have the following observations.

Corollary 4 Let p be a prime number
(i) If n = 2p and p > 2, then |ΓE(Zn)| = 2.
(ii) If n = p2, then |ΓE(Zn)| = 1.
(iii) If n = pk, k > 3 and p > 2, then |ΓE(Zn)| = k− 1.

Proof. (i) and (ii) follow from Proposition 6.
(iii) When n = pk, k > 3 and p ≥ 2, the zero divisors of Zn are
Z(Zn) = {upi|u ∈ U(Zn)}, for i = 1, 2, . . . , k − 1. Now the equivalence classes
of zero divisors are [up] = {upk−1}, [up2] = {upk−1, upk−2}, . . . , [upk−1] =
{upk−1, upk−2, . . . , up2, up}.
In this way, we get k−1 distinct equivalence classes. Thus, |ΓE(Zn)| = k−1. �

Corollary 5 dim(ΓE(Zn)) ≤ 2k− 2, where n = pk, for any prime p > 2 and
k > 3.
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Proof. By [18, Theorem 2.1]. If G is a connected graph with G partitioned
into m distance similar classes that consist of a single vertex, then dim(G) ≤
|V(G)|+m.

Using part (iii) of Corollary 4, the result follows. �

The following important lemma, which is used later in the proof of several
results, provides a combinatorial formula for the number of vertices of the
compressed zero divisor graph ΓE(R× Fq).

Lemma 3 Let R be a finite commutative local ring with unity 1 and |R| = pk

and let Fq be a finite prime field. Then |Z∗((R× Fq)E)| = 2k or 2(1+ |Z∗(RE)|.

Proof. Let R be a finite commutative local ring with unity and |R| = pk, k ≥ 1.
We consider the following three cases.
Case 1. R ∼= Fp, for some prime p. Then the zero divisor set of Z∗(Fp×Fq) =

{{(a, 0)}, {(0, x)}}, for every a ∈ U(R) and 0 6= x ∈ Fq. Now, to find the equiv-
alence classes of these zero divisors, the set {(a, 0)} and {(0, x)} respectively
correspond to vertices [(a, 0)] and [(0, x)] in ΓE(R× Fq), for any a ∈ U(R) and
for any x ∈ Fq. Therefore, |Z∗(R× Fq)E| = 2k, where k = 1.
Case 2. R ∼= Zkp, (k ≥ 2). The equivalence class of each element (a, 0), for
every a ∈ U(R) is same, since [(a, 0)] = {(0, x)}, for all x ∈ Fq. In this way,
we get one vertex of ΓE(R× Fq). Also, the equivalence classes of each element
(0, x), for every 0 6= x ∈ Fq is same, since [(0, x)] = {(a, 0)}. So, this gives
another vertex of ΓE(R × Fq). Moreover, for any unit u in R, we get two zero
divisor sets of equivalence classes given by

Z1 = {[(up, 0)], [(up2, 0)], . . . , [(upk−1, 0)]}
Z2 = {[(up, 1)], [(up2, 1)], . . . , [(upk−1, 1)]}.

We note that there is no other possible equivalence class. Claim [(upk−1, 1)] =
[(upk−1, xi], for all 1 ≤ i ≤ q − 2. If [(upk−1, 1)] 6= [(upk−1, xi], there exists
some zero divisor in R×Fq, say (a1, 0) adjacent to (upk−1, 1) but not adjacent
to (upk−1, xi), which is a contradiction.

The total number of zero divisors is |Z∗((R × F)E)| = 2 + |Z1| + |Z2| =
2+ k− 1+ k− 1 = 2k or 2+ 2|Z∗(RE)| = 2(1+ |Z∗(RE)|).
Case 3. R is a local ring other than Fp and Zpk . So, we consider all local rings

R with |R| = pk, especially k = 2, 3 or 5 and the rings of order p2, p3 or p4

are mentioned in proof of Proposition 4 and 5. Then the set of zero divisors
of equivalence classes include

[(a, 0)], a ∈ U(R)
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[(0, xi)], for any i, 1 ≤ i ≤ q− 2
Z1 = {[(a1, 0)], [(a2, 0)], . . . , [(ar, 0)]}
Z2 = {[(a1, 1)], [(a2, 1)], . . . , [(ar, 1)]}.

where a1, a2, . . . , ar are the non-zero zero divisors of the set Z(RE).

There is no other possible equivalence class as a zero divisor. Claim [(ai, 1)] =
[(ai, xj)], 1 ≤ i ≤ r and 1 ≤ j ≤ q − 2. For if, [(ai, 1)] 6= [(ai, xj)], there exists
some zero divisor (ak, 0) adjacent to one of [(ai, 1)] or [(ai, xj)], but not to the
other, which is a contradiction.

Thus, |Z∗((R× Fq)E)| = 2+ 2|Z∗(RE)| = 2(1+ |Z∗(RE)|. �

Example 2 Consider the ring Z8 × Z3, Here, R = Z23, k = 3, and U(R) =
{1, 3, 5, 7}. For the zero divisors of equivalence classes, we have
[(1, 0)] = {(0, 1), (0, 2)}, [(3, 0)] = {(0, 1), (0, 2)}, [(5, 0)] = {(0, 1), (0, 2)},
[(7, 0)] = {(0, 1), (0, 2)}.
Also, [(2, 0)] = {(0, 1), (0, 2), (4, 0), (4, 1), (4, 2)},
[(4, 0)] = {(0, 1), (0, 2), (2, 0), (2, 1), (2, 2), (4, 0), (4, 1), (4, 2), (6, 0), (6, 1), (6, 2)},
[(6, 0)] = {(0, 1), (0, 2), (4, 0), (4, 1), (4, 2)}.
Moreover, [(0, 1)] = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)},
[(0, 2)] = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)}, [(2, 1)] = {(4, 0)},
[(4, 2)] = {(2, 0), (4, 0), (6, 0)}, [(4, 1)] = {(2, 0), (4, 0), (6, 0)}, [(2, 2)] = {(4, 0)},
[(6, 1)] = {(4, 0)}, [(6, 2)] = {(4, 0)}
Thus, |ΓE(Z8 × Z3)| = {[(0, 1)], [(1, 0)], [(2, 0)], [(4, 0)], [(2, 1)], [(4, 1)]}.
Using Lemma 3, we can directly have, |ΓE(Z8 × Z3)| = 2× 3 = 6.

Remark 4 Lemma 3 holds if we replace Fq by any finite field F. More gener-
ally, let R be any finite commutative ring with unity 1. We know R ∼= R1× R2,
where each Ri, 1 ≤ i ≤ 2, is a local ring. If either R1 or R2 is a field, the num-
ber of vertices is always given by the formula 2(1+ |Z∗(R1E)| or 2(1+ |Z∗(R2E)|,
since the equivalence classes of zero divisors of ΓE(R1 × R2) are always of the
form {[(0, 1)], [(1, 0)], [(a, 0)], [(0, b)], [(a, 1)], [(1, b)], [(a, b)], where a and b are
the non-zero zero divisors and Z∗(R1E), Z

∗(R2E) denote the number of zero di-
visor equivalence classes of R1 and R2 respectively. The result holds trivially if
both R1 and R2 are fields.

Theorem 2 Let R be a finite commutative local ring with unity 1 and finite
field Fq. Then, dim(ΓE(R × Fq)) = 1 or at most 4k or 4t where k ≥ 2 and t
are integers, t = 1+ |Z∗(RE)|.

Proof. Let R be a finite commutative local ring with unity 1. We consider the
following three cases.
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Case 1. R is a field. Then, by Case 1 of Lemma 3, ΓE(R×Fq) is a path on two
vertices. Therefore, by Lemma 2.1, dim(ΓE(R× Fq)) = 1.
Case 2. R ∼= Zpk , k ≥ 2. In this case, we partition the vertices into distance
similar classes in ΓE(R) given by

V1 = {[(a, 0)]}, for any a ∈ U(R)
V2 = {[(0, x)]}, for any x ∈ Fq
Z1 = {[(up, 0)]}, Z2 = {[(up2, 0)]}, . . . , Zk−1 = {[(upk−1, 0)]}

W1 = {[(up, 1)]},W2 = {[(up2, 1)]}, . . . ,Wk−1 = {[(upk−1, 1)]}

Then, dim(ΓE(R×Fq) ≤ |Z∗((R×Fq)E)+m where m is the number of distance
similar classes that consist of a single vertex. Hence by case 2 of Lemma 3, we
have

dim(ΓE(R× Fq) ≤ 2k+ 2(k− 1) + 2 = 4k.

Case 3. R is a local ring other than Zkp and Fkp(k ≥ 1). Then, by Case 3 of
Lemma 3, dim(ΓE(R×Fq)) ≤ 2(1+|Z∗(RE)|+2|Z

∗(RE)|+2 = 4(1+|Z∗(RE)|) = 4t
where t is any integer given by t = 1+ |Z∗(RE)|. �

We say that a graph G has a bounded degree if there exists a positive integer
M such that the degree of every vertex is at most M. In the next theorems, we
obtain an upper bound for the number of zero divisors in a finite commutative
ring R with unity 1 with finite metric dimension. The analogous of these results
holds in case of ΓE(R).

Proposition 7 If Γ(R) is a zero divisor graph with finite metric dimension k,
then |Z∗(R)| ≤ 3k + k.

Proof. Let Γ(R) be a zero divisor graph with metric dimension k. We choose
two vertices, say w1 and w2, from the metric basis W. Since the diameter
of Γ(R) is at most 3, each coordinate of metric representation is an integer
between 0 and 3 and only the vertices of a metric basis have one coordinate 0.
The remaining vertices must get a unique code from one of the 3k possibilities.
Therefore, |Z∗(R)| ≤ 3k + k. �

Proposition 8 Let R be a commutative ring and ΓE(R) be a corresponding
compressed zero divisor graph with |Z∗(R)| ≥ 2. Then dim(ΓE(R)) ≤ |Z∗(RE)|−
d, where d is the diameter of ΓE(R).
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Proof. By [21, Theorem 5.2], if R is a commutative ring and Γ(R) is the
corresponding zero divisor graph of R such that |Z∗(R)| ≥ 2, then dim(Γ(R)) ≤
|Z∗(R)|− d′ where d′ is the diameter of Γ(R). Since

dim(ΓE(R)) ≤ dim(Γ(R)) and |Z∗(RE)| ≤ |Z∗(R)|,

therefore
dim(ΓE(R)) ≤ |Z∗(RE)|− d,

where d is the diameter of ΓE(R). �

Proposition 9 If Γ(R) is a finite graph with metric dimension k, then every
vertex of this graph has degree at most 3k − 1.

Proof. Let W = {w1, w2, . . . , wk} be a metric basis of Γ(R) with cardinality
k. Consider a vertex v with metric representation

(d(v,w1), d(v,w2), . . . , d(v,wk)).

If u is adjacent to v, then r(v|W) 6= r(u|W) and |d(v,wi) − d(u,wi)| ≤ 1 for
all wi ∈ W, 1 ≤ i ≤ k. If d is distance from v to wi, then the distance of u
from wi is one of the numbers {d, d− 1, d+ 1}. Thus, there are three possible
numbers for each of the k coordinates of r(u|W), but d(u,wi) 6= d(v,wi) for
all 1 ≤ i ≤ k. This implies that there are at most 3k − 1 different possibilities
for r(u|W). Since all vertices must have distinct metric coordinates, the degree
of v is at most 3k − 1. �

A graph G is realizable as ΓE(R) if G ∼= ΓE(R) for some ring R. There are
many results which imply that most graphs are not realizable as ΓE(R), like
ΓE(R) is not a cycle graph, nor a complete graph with at least three vertices.

Proposition 10 The metric dimension of realizable graphs ΓE(R) with 3 ver-
tices is 1.

Proof. Spiroff et al. proved that the only one realizable graph ΓE(R) with
exactly three vertices as a graph of equivalence classes of zero divisors for
some ring R is P3, see Figure 6. Clearly, its metric dimension is 1. �

[2] [4] [8]

Figure 6: Z16
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Proposition 11 The metric dimension of realizable graphs ΓE(R) with 4 ver-
tices is either 1 or 2.

Proof. All the realizable graphs ΓE(R) on 4 vertices are shown in Figure 7. It
is easy to see their metric dimension is either 1 or 2. �

Figure 7: (Z4 × F4) Z4[x]/(x2) Z[x,y]
(x3,xy)

Proposition 12 The metric dimension of realizable graphs ΓE(R) with 5 ver-
tices is either 2 or 3.

Proof. The only realizable graphs of equivalence classes of zero divisors of a
ring R with 5 vertices are shown in Figure 8. It is easy to see the metric dimen-
sion of the first three graphs is 2 and for the star graph is 3 (by Corollary 1).
�

Figure 8: (Z9[x]/(x2), Z64, Z3[x, y]/(xy, x
3, y3, x2 − y2), Z8[x, y]/(x2, y2,

4x, 4y, 2xy)

4 Relationship between metric dimension, girth and
diameter of ΓE(R)

In this section, we examine the relationship between girth, diameter and met-
ric dimension of ΓE(R). Since gr(ΓE(R)) ∈ {3,∞}, it is worth to mention that,
for a reduced commutative ring R with 1 6= 0, gr(ΓE(R)) = 3 if and only
if gr(Γ(R)) = 3 and that gr(ΓE(R)) = ∞ if and only if gr(Γ(R)) ∈ {4,∞}.
However, if R is not reduced, then we may have gr(Γ(R)) = 3 and either
gr(ΓE(R)) = 3 or ∞. The following result gives the metric dimension of ΓE(R)
in terms of the girth of ΓE(R) of a ring R.
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Theorem 3 Let R be a finite commutative ring with gr(ΓE(R)) = ∞.

(i) If R is a reduced ring, then dim(ΓE(R)) = 1.

(ii) If R ∼= Z6,Z8, Z2[x]/(x3) or Z4[x]/(2x, x2−2), then dim(ΓE(R)) = |Z∗(RE)|−
1.

(iii) If R ∼= Z4, Z9, Z2[x]/(x2), then dim(ΓE(R)) = 0.

(iv) dim(ΓE(R)) = 0 or 1 if and only if gr(Γ(R)) ∈ {4,∞}.

Proof. If R is a reduced ring and R � Z2 × Z2, then we know R ∼= Z2 ×A for
some finite field A. Therefore, by Remark 4, R has two equivalence classes of
zero divisors [(0, 1)] and [(1, 0)], adjacent to each other. Hence, dim(ΓE(R)) = 1.
Also, if R ∼= Z2 × Z2, then R being a Boolean ring, implies Γ(R) ∼= ΓE(R).
Therefore, by Case 1 of Lemma 3, the result follows. In part (ii), these rings
are non reduced and ΓE(R) are isomorphic to K1,1. Rings listed in part (iii)
represents ΓE(R) on a single vertex, part (iv) follows from the above comments.
�

We can also prove the Part (i) by using the fact that if R is reduced and
R � Z2×Z2, then R ∼= Z2×A for some finite field A. Thus Γ(R) is a complete
bipartite and the result follows from Proposition 2. Now, if R ∼= Z2 ×Z2, then
Γ(R) ∼= K1,1, whose metric dimension is 1. Since, Z2 × Z2 is a Boolean ring,
therefore by Proposition 3, we have dim(ΓE(R)) = 1.

If R is a reduced ring with non-trivial zero divisor graph, then R ∼= F1×F2×
· · · × Fk for some integer k ≥ 2 and for finite fields F1,F2, . . . ,Fk. If R is not a
reduced ring, then either R is local or R ∼= R1 × R2 × · · · × Rt, for some integer
t ≥ 2 and local rings R1, R2, . . . , Rt, where at least one Ri is not a field. Now,
we have the following observations for the finite commutative rings whose zero
divisor graphs can be seen in [22].

Corollary 6 If R is a finite commutative ring with unity 1 and gr(ΓE(R)) =∞, then the compressed zero divisor graph of the reduced rings R × F where
F is a finite field, is isomorphic to the compressed zero divisor graph of the
following local rings with metric dimension 1, R being any local ring.
Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z2[x, y]/(x3, xy, y2), Z8[x]/(2x, x2),
Z4[x]/(x3, 2x2, 2x), Z9[x]/(3x, x2 − 6), Z9[x]/(3x, x2 − 3), Z3[x]/(x3), Z27.

Proof. The reduced rings R × F with gr(ΓE(R)) = ∞, all have compressed
zero divisor graph isomorphic to K1,1, by Case 2 of Lemma 3. Also, the local
rings listed above have the same compressed zero divisor graph isomorphic to
K1,1. �
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Proposition 13 Let R be a finite commutative ring with 1 and gr(ΓE(R)) =∞. The following are the non reduced rings with dim(ΓE(R)) = 1
Z2 × Z4, Z3 × Z4, Z4 × F4, Z2 × Z9, Z5 × Z4, Z3 × Z9, Z2[x]/(x2)× F4,
Z2×Z2[x]/(x2), Z3×Z2[x]/(x2), Z2×Z3[x]/(x2), Z3×Z3[x]/(x2), Z5×Z2[x]/(x2),
Z2 × Z2[x, y]/(x, y)2, Z2 × Z4[x]/(2, x)2.

Proof. If R is not a local ring, we can write R ∼= R1×R2×· · ·×Rk, where k ≥ 2
and each Ri is a local ring. In case of above rings R ∼= R1×R2, where either R1
or R2 is a field. Therefore, using Remark 4, we have |ΓE(R)| = 4 and it is easy
to see that ΓE(R) isomorphic to a path on 3 vertices. Thus, gr(ΓE(R)) = ∞ and
dim(ΓE(R)) = 1. �

If R ∼= F1 × F2 × F3, then it is easy to see that the three vertices [(1, 0, 0)],
[(0, 1, 0)] and [(0, 0, 1)] are adjacent with ends [(0, 1, 1)], [(1, 0, 1)], and [(1, 1, 0)]
respectively and thus |ΓE(R)| = 6.

Proposition 14 Let R be a reduced commutative ring and R ∼= F1 × F2 × F3.
Then, gr(ΓE(R)) = 3 and dim(ΓE(R)) = 2.

We now proceed to study the relationship between diameter and metric
dimension of compressed zero divisor graphs. Since diam(ΓE(R)) ≤ 3, if ΓE(R)
contains a cycle. We have the following results.

Theorem 4 Let R be commutative ring and ΓE(R) be its corresponding com-
pressed zero divisor graph.

(i) dim(ΓE(R)) = 0 if and only if diam(ΓE(R)) = 0.

(ii) dim(ΓE(R)) = 0 if and only if diam(Γ(R)) = 0 or 1, R � Z2 × Z2.

(iii) dim(ΓE(R)) = diam(ΓE(R)) = 1 if R ∼= F1 × F2, where F1 and F2 are
fields.

(iv) dim(ΓE(R)) = 1 and diam(ΓE(R)) = 3, if R is non reduced ring isomor-
phic to the rings given in Proposition 13.

(v) dim(ΓE(R)) = 0 if Z(R)2 = 0 and |Z(R)| ≥ 2.

Proof.

(i) dim(ΓE(R)) = 0 if and only if ΓE(R) is a single vertex graph if and only
if diam(ΓE(R)) = 0.
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(ii) Let dim(ΓE(R)) = 0. Then Γ(R) is complete and thus diam(Γ(R)) = 0

or 1. Conversely, let diam(Γ(R)) = 0 or 1, then Γ(R) is complete, thus
dim(ΓE(R)) = 0 unless R � Z2 × Z2.

(iii) Let R ∼= F1 × F2, then by Case 1 of Lemma 3, |ΓE(R)| = 2, since the only
equivalence classes of zero divisors are [(0, 1)] and [(1, 0)]. So, ΓE(R) ∼=
K1,1. Thus, dim(ΓE(R)) = diam(ΓE(R)) = 1.

(iv) Rings listed in this case correspond to a path of length 3.

(v) Let |Z(R)| ≥ 2 and (Z(R))2 = 0. Hence ann(a) = ann(b), for each a, b ∈
Z(R)∗, which implies that diam(ΓE(R)) = 0. Therefore, dim(ΓE(R)) = 0.

�
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