

DOI: 10.2478/ausm-2018-0022

# Alternative proofs of some formulas for two tridiagonal determinants

#### Feng Qi

Institute of Mathematics,
Henan Polytechnic University, China
College of Mathematics, Inner Mongolia
University for Nationalities, China
Department of Mathematics,
College of Science, Tianjin Polytechnic
University, China
email: qifeng618@gmail.com,
qifeng618@hotmail.com,
qifeng618@qq.com
https://qifeng618.wordpress.com

Ai-Qi Liu

Department of Mathematics, Sanmenxia Polytechnic, China email: smxptliu@hotmail.com

**Abstract.** In the paper, the authors provide five alternative proofs of two formulas for a tridiagonal determinant, supply a detailed proof of the inverse of the corresponding tridiagonal matrix, and provide a proof for a formula of another tridiagonal determinant. This is a companion of the paper [F. Qi, V. Čerňanová, and Y. S. Semenov, *Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **81** (2019), in press.

**<sup>2010</sup> Mathematics Subject Classification:** Primary 47B36; Secondary 11B39, 11B83, 11C08, 11C20, 11Y55, 15B36, 26C99

Key words and phrases: alternative proof, tridiagonal determinant, tridiagonal matrix, inverse

#### 1 Introduction

For  $c \in \mathbb{C}$  and  $k \in \mathbb{N}$ , define the  $k \times k$  tridiagonal matrix  $M_k(c)$  by

and denote the determinant  $|M_k(c)|$  of the  $k \times k$  tridiagonal matrix  $M_k(c)$  by  $D_k(c)$ . In [7, Remark 4.4], the explicit expression

$$D_{k}(-6) = \frac{1}{6^{k}} \sum_{\ell=0}^{k} (-1)^{\ell} 6^{2\ell} \binom{\ell}{k-\ell}$$

was derived from some results in [7, Theorem 1.2] for the Cauchy products of central Delannoy numbers, where  $\binom{p}{q}=0$  for  $q>p\geq 0$ . For information on central Delannoy numbers, please refer to the papers [6, 7] and plenty of references cited therein. In [7, Remar 4.4], the authors guessed that the explicit formula

$$D_k(c) = (-1)^k \sum_{\ell=0}^k (-1)^\ell c^{2\ell-k} \binom{\ell}{k-\ell} = \sum_{m=0}^k (-1)^m c^{k-2m} \binom{k-m}{m} \tag{1}$$

should be valid for all  $c \in \mathbb{C}$  and  $k \in \mathbb{N}$  and claimed that the equality (1) can be verified by induction on  $k \in \mathbb{N}$  straightforwardly.

In the paper [6], the authors discovered a generating function of the sequence  $D_k(c)$ , provided an analytic proof of the explicit formula (1), established a simple formula for computing the tridiagonal determinant  $D_k(c)$ , found a determinantal expression for  $D_k(c)$ , presented the inverse of the symmetric tridiagonal matrix  $M_k(c)$ , connected  $D_k(c)$  with the Chebyshev polynomials [6, 9, 11] and the Fibonacci numbers and polynomials [1, 6, 8], reviewed computation of general diagonal determinants, supplied two new formulas for computing general diagonal determinants, generalized central Delannoy numbers [6, 7], and represented the Cauchy product of the generalized central Delannoy numbers [6] in terms of  $D_k(c)$ .

In this paper, we pay our attention on the following four conclusions.

**Theorem 1 ([6, Theorem 2.2])** For  $k \geq 0$  and  $c \in \mathbb{C}$ , the formula (1) is valid.

Theorem 2 ([6, Theorem 3.1]) For  $c\in\mathbb{C}$ ,  $\alpha=\frac{1}{\beta}=\frac{c+\sqrt{c^2-4}}{2},$  and  $k\geq 0$ , the tridiagonal determinant  $D_k(c)$  can be computed by

$$D_k(c) = \begin{cases} \frac{\alpha^{k+1} - \beta^{k+1}}{\alpha - \beta}, & c \neq \pm 2; \\ k+1, & c = 2; \\ (-1)^k (k+1), & c = -2. \end{cases}$$
 (2)

**Theorem 3 ([6, Theorem 5.1])** For  $k \in \mathbb{N}$ , the inverse of the symmetric tridiagonal matrix  $M_k(c)$  can be computed by  $M_k^{-1}(c) = \left(R_{ij}\right)_{k \times k}$ , where

$$R_{ij} = \begin{cases} -\frac{\left(\lambda^i - \mu^i\right)\left(\lambda^{k-j+1} - \mu^{k-j+1}\right)}{(\lambda - \mu)(\lambda^{k+1} - \mu^{k+1})}, & c \neq \pm 2 \\ (-1)^{i+j}\frac{i(k-j+1)}{k+1}, & c = 2 \\ -\frac{i(k-j+1)}{k+1}, & c = -2 \end{cases}$$

for  $\mathfrak{i} < \mathfrak{j}, \; R_{\mathfrak{i}\mathfrak{j}} = R_{\mathfrak{j}\mathfrak{i}}$  for  $\mathfrak{i} > \mathfrak{j}, \; \text{and} \; \lambda \; \text{and} \; \mu \; \text{are defined by}$ 

$$\lambda = \frac{1}{\mu} = \frac{2}{\sqrt{c^2-4}-c} = -\alpha = -\frac{1}{\beta}.$$

Theorem 4 ([6, Section 8]) For  $n \in \mathbb{N}$  and  $a,b,c \in \mathbb{C}$ , we have

$$\begin{split} D_n &= \begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots & 0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end{vmatrix}_{n \times n} \\ &= \begin{cases} \frac{\left(\alpha + \sqrt{\alpha^2 - 4bc}\right)^{n+1} - \left(\alpha - \sqrt{\alpha^2 - 4bc}\right)^{n+1}}{2^{n+1}\sqrt{\alpha^2 - 4bc}}, & \alpha^2 \neq 4bc; \\ (n+1)\left(\frac{\alpha}{2}\right)^n, & \alpha^2 = 4bc. \end{cases} \end{split}$$

In Section 2 of this paper, we will supply two alternative proofs of Theorem 1. In Section 3, we will provide three alternative proofs of Theorem 2. In Section 4, we will present a detailed proof of Theorem 3. In Section 5, we will provide a proof of Theorem 4. In the last section of this paper, we will list several remarks.

## 2 Two alternative proofs of Theorem 1

Now we are in a position to supply two alternative proofs of Theorem 1. **Proof.** [First alternative proof of Theorem 1] Let  $D_0(c) = 1$ . Theorem 2.1 in [6] states that the sequence  $D_k(c)$  for  $k \ge 0$  can be generated by

$$F_c(t) = \frac{1}{t^2 - ct + 1} = \sum_{k=0}^{\infty} D_k(c)t^k. \tag{4}$$

П

By the formula for the sum of a geometric progression, the generating function  $F_c(t)$  can be expanded as

$$F_{c}(t) = \sum_{\ell=0}^{\infty} (-1)^{\ell} (t^{2} - ct)^{\ell} = \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} (-1)^{m} {\ell \choose m} c^{\ell-m} t^{\ell+m}$$
 (5)

for  $\left|t^2-ct\right|<1.$  Hence, it follows for  $k\geq 0$  that

$$\begin{split} [F_c(t)]^{(k)} &= \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} (-1)^m \binom{\ell}{m} c^{\ell-m} \big(t^{\ell+m}\big)^{(k)} \\ &\to \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} (-1)^m \binom{\ell}{m} c^{\ell-m} \lim_{t\to 0} \big(t^{\ell+m}\big)^{(k)} \\ &= (-1)^k k! \sum_{\ell=0}^k (-1)^\ell \binom{\ell}{k-\ell} c^{2\ell-k} \end{split}$$

for  $|t^2 - ct| < 1$  and as  $t \to 0$ . The formula (1) is thus proved.

**Proof.** [Second alternative proof of Theorem 1] Taking  $k = \ell + m$  in (5) leads to

$$F_c(t) = \sum_{k=0}^\infty \left[ \sum_{\ell=0}^k (-1)^{k-\ell} \binom{\ell}{k-\ell} c^{2\ell-k} \right] t^k = \sum_{k=0}^\infty D_k(c) t^k$$

for  $\left|t^{2}-ct\right|<1.$  The formula (1) is proved again. The proof of Theorem 1 is complete.

## 3 Three alternative proofs of Theorem 2

We now start out to provide three alternative proofs of Theorem 2.

**Proof.** [First alternative proof of Theorem 2] It is clear that the generating function  $F_c(t)$  in (4) can be rewritten as  $F_c(t) = \frac{1}{t-\alpha} \frac{1}{t-\beta}$ . By virtue of the Leibniz theorem for the product of two functions, we have

$$\begin{split} & [F_c(t)]^{(k)} = \left(\frac{1}{t-\alpha}\frac{1}{t-\beta}\right)^{(k)} = \sum_{\ell=0}^k \binom{k}{\ell} \left(\frac{1}{t-\alpha}\right)^{(\ell)} \left(\frac{1}{t-\beta}\right)^{(k-\ell)} \\ & = \sum_{\ell=0}^k \binom{k}{\ell} \frac{(-1)^\ell \ell!}{(t-\alpha)^{\ell+1}} \frac{(-1)^{k-\ell} (k-\ell)!}{(t-\beta)^{k-\ell+1}} \to \sum_{\ell=0}^k \binom{k}{\ell} \frac{(-1)^\ell \ell!}{(-\alpha)^{\ell+1}} \frac{(-1)^{k-\ell} (k-\ell)!}{(-\beta)^{k-\ell+1}} \\ & = k! \sum_{\ell=0}^k \frac{1}{\alpha^{\ell+1}} \frac{1}{\beta^{k-\ell+1}} = \frac{k!}{\beta^k} \sum_{\ell=0}^k \left(\frac{\beta}{\alpha}\right)^\ell = \frac{k!}{\beta^k} \frac{1-(\beta/\alpha)^{k+1}}{1-\beta/\alpha} = k! \frac{\alpha^{k+1}-\beta^{k+1}}{\alpha-\beta} \end{split}$$

as  $t \to 0$ . The formula (2) is thus proved.

**Proof.** [Second alternative proof of Theorem 2] The generating function  $F_c(t)$  can also be rewritten as

$$F_c(t) = \frac{1}{\alpha - \beta} \left( \frac{1}{t - \alpha} - \frac{1}{t - \beta} \right). \tag{6}$$

Then a straightforward computation reveals

$$\begin{split} [F_c(t)]^{(k)} &= \frac{1}{\alpha-\beta} \left[ \frac{(-1)^k k!}{(t-\alpha)^{k+1}} - \frac{(-1)^k k!}{(t-\beta)^{k+1}} \right] \\ &\rightarrow -k! \frac{1}{\alpha-\beta} \left( \frac{1}{\alpha^{k+1}} - \frac{1}{\beta^{k+1}} \right) = k! \frac{\alpha^{k+1}-\beta^{k+1}}{\alpha-\beta} \end{split}$$

as  $t \to 0$ . The proof of Theorem 2 is complete.

**Proof.** [Third alternative proof of Theorem 2] The formula for the sum of a geometric progression yields

$$\frac{1}{t-\alpha} = -\sum_{k=0}^{\infty} \frac{t^k}{\alpha^{k+1}} \quad \text{and} \quad \frac{1}{t-\beta} = -\sum_{k=0}^{\infty} \frac{t^k}{\beta^{k+1}}$$

for  $|t| < \min\{|\alpha|, |\beta|\}$ . Thus, in view of  $\alpha\beta = 1$  and (6), we obtain

$$F_c(t) = \frac{1}{\alpha-\beta}\sum_{k=0}^{\infty} \left(\frac{1}{\beta^{k+1}} - \frac{1}{\alpha^{k+1}}\right)t^k = \sum_{k=0}^{\infty} \frac{\alpha^{k+1}-\beta^{k+1}}{\alpha-\beta}t^k = \sum_{k=0}^{\infty} D_k(c)t^k$$

for  $|t| < \min\{|\alpha|, |\beta|\}$ . The formula (2) is thus proved. The proof of Theorem 2 is complete.

## 4 A detailed proof of Theorem 3

We now present a detailed proof of Theorem 3.

In the paper [2], the inverse of the symmetric tridiagonal matrix  $M_k(c)$  was discussed. We denote the inverse matrix of  $M_k(c)$  by  $M_k^{-1}(c) = (R_{ij})_{k \times k}$ . Then, basing on discussions in [2, Eq. (9)], one can see without difficulty that the elements  $R_{ij}$  can be represented as

$$R_{ij} = (-1)^{i+j} \frac{D_{i-1}(c)D_{k-j}(c)}{D_{\nu}(c)}, \quad 1 \le i < j \le k$$

and  $R_{ij} = R_{ji}$  for  $1 \le j < i \le k$ . Making use of the formula (2) yields

$$\begin{split} R_{ij} &= \begin{cases} (-1)^{i+j} \frac{\alpha^{i-1+1} - \beta^{i-1+1}}{\alpha - \beta} \frac{\alpha^{k-j+1} - \beta^{k-j+1}}{\alpha - \beta}, & c \neq \pm 2 \\ \frac{\alpha^{k+1} - \beta^{k+1}}{\alpha - \beta}, & c \neq \pm 2 \end{cases} \\ &= \begin{cases} (-1)^{i+j} \frac{(\pm 1)^{i-1} (i-1+1)(\pm 1)^{k-j} (k-j+1)}{(\pm 1)^k (k+1)}, & c = \pm 2 \end{cases} \\ &= \begin{cases} (-1)^{i+j} \frac{(\alpha^i - \beta^i) \left(\alpha^{k-j+1} - \beta^{k-j+1}\right)}{(\alpha - \beta) (\alpha^{k+1} - \beta^{k+1})}, & c \neq \pm 2 \\ (-1)^{i+j} (\pm 1)^{i-j-1} \frac{i(k-j+1)}{k+1}, & c = \pm 2 \end{cases} \\ &= \begin{cases} -\frac{\left[(-\alpha)^i - (-\beta)^i\right] \left[(-\alpha)^{k-j+1} - (-\beta)^{k-j+1}\right]}{\left[(-\alpha) - (-\beta)\right] \left[(-\alpha)^{k+1} - (-\beta)^{k+1}\right]}, & c \neq \pm 2 \\ (-1)^{i+j} \frac{i(k-j+1)}{k+1}, & c = 2 \end{cases} \\ &= \begin{cases} -\frac{(\lambda^i - \mu^i) \left(\lambda^{k-j+1} - \mu^{k-j+1}\right)}{(\lambda - \mu)(\lambda^{k+1} - \mu^{k+1})}, & c \neq \pm 2 \end{cases} \\ &= \begin{cases} -1 \frac{i(k-j+1)}{k+1}, & c = 2 \\ (-1)^{i+j} \frac{i(k-j+1)}{k+1}, & c = 2 \end{cases} \end{cases} \end{split}$$

for  $1 \le i < j \le k$ . The proof of Theorem 3 is complete.

## 5 A proof of Theorem 4

The determinant  $D_n$  satisfies the recurrence relation  $D_n=\alpha D_{n-1}-bcD_{n-2}$ . Solving the equation  $x^2-\alpha x+bc=0$  reaches to two roots  $\alpha=\frac{\alpha+\sqrt{\alpha^2-4bc}}{2}$  and  $\beta=\frac{\alpha-\sqrt{\alpha^2-4bc}}{2}$ . These two roots satisfy  $\alpha+\beta=\alpha$  and  $\alpha\beta=bc$ . Then by the above recurrence relation one can write

$$\begin{split} D_n - \alpha D_{n-1} &= \beta [D_{n-1} - \alpha D_{n-2}] = \beta^2 [D_{n-2} - \alpha D_{n-3}] = \cdots \\ &= \beta^{n-2} [D_2 - \alpha D_1] = \beta^{n-2} [(\alpha^2 - bc) - \alpha \alpha] = \beta^n. \end{split}$$

Similarly, one can deduce that  $D_n - \beta D_{n-1} = \alpha^n$ . Accordingly, when  $\alpha \neq \beta$ , that is,  $\alpha^2 \neq 4bc$ , one finds  $(\alpha - \beta)D_n = \alpha^{n+1} - \beta^{n+1}$ , that is,

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} = \frac{\left(\alpha + \sqrt{\alpha^2 - 4bc}\right)^{n+1} - \left(\alpha - \sqrt{\alpha^2 - 4bc}\right)^{n+1}}{2^{n+1}\sqrt{\alpha^2 - 4bc}}.$$

When  $\alpha = \beta$ , that is,  $\alpha^2 = 4bc$ , we have

$$\begin{split} D_n &= \alpha^n + \alpha D_{n-1} = \alpha^n + \alpha (\alpha^{n-1} + \alpha D_{n-2}) = \dots = (n-1)\alpha^n + \alpha^{n-1}D_1 \\ &= (n-1)\alpha^n + \alpha^{n-1}(2\alpha) = (n+1)\alpha^n = (n+1)\left(\frac{\alpha}{2}\right)^n. \end{split}$$

The formula (3) is thus proved. The proof of Theorem 4 is complete.

#### 6 Several remarks

Finally, we list several remarks on tridiagonal determinants.

Remark 1 The identities

$$\mathcal{D}_k(c) \triangleq \begin{vmatrix} -c & 1 & 0 & \cdots & 0 & 0 & 0 \\ 2 & -2c & 1 & \cdots & 0 & 0 & 0 \\ 0 & 6 & -3c & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -(k-2)c & 1 & 0 \\ 0 & 0 & 0 & \cdots & (k-1)(k-2) & -(k-1)c & 1 \\ 0 & 0 & 0 & \cdots & 0 & k(k-1) & -kc \end{vmatrix}$$

$$= (-1)^{k} k! \begin{vmatrix} c & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & c & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & c & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & c & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & c & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & c \end{vmatrix}_{k \times k}$$

$$= \frac{k!}{c^{k}} \sum_{\ell=0}^{k} (-1)^{\ell} c^{2\ell} \binom{\ell}{k-\ell} = \begin{cases} k! \frac{\lambda^{k+1} - \mu^{k+1}}{\lambda - \mu}, & c \neq \pm 2 \\ (-1)^{k} (k+1)!, & c = 2 \\ (k+1)!, & c = -2 \end{cases}$$

are neither trivial nor obvious, where  $\lambda=\frac{1}{\mu}=\frac{2}{\sqrt{c^2-4}-c}=-\alpha=-\frac{1}{\beta}.$  The determinant  $\mathcal{D}_k(c)$  satisfies

$$\mathcal{D}_0(c) = 1$$
,  $\mathcal{D}_1(c) = -c$ ,  $\mathcal{D}_2(c) = 2(c^2 - 1)$ ,

and

$$\mathcal{D}_{k}(c) = -kc\mathcal{D}_{k-1}(c) - k(k-1)\mathcal{D}_{k-2}(c), \quad k \ge 2.$$
 (7)

Then, if letting  $\mathcal{F}_c(t) = \sum_{k=0}^{\infty} \mathcal{D}_k(c) t^k$ , we have

$$\begin{split} \sum_{k=2}^{\infty} \mathcal{D}_k(c) t^k &= -ct \sum_{k=2}^{\infty} k \mathcal{D}_{k-1}(c) t^{k-1} - t^2 \sum_{k=2}^{\infty} k(k-1) \mathcal{D}_{k-2}(c) t^{k-2}, \\ \sum_{k=0}^{\infty} \mathcal{D}_k(c) t^k - \mathcal{D}_0(c) - \mathcal{D}_1(c) t &= -ct \sum_{k=1}^{\infty} (k+1) \mathcal{D}_k(c) t^k \\ &- t^2 \sum_{k=0}^{\infty} (k+2)(k+1) \mathcal{D}_k(c) t^k, \end{split}$$

$$\begin{split} \mathcal{F}_c(t) - 1 + ct &= -ct \frac{\mathrm{d}}{\mathrm{d}\,t} \left[ \sum_{k=1}^\infty \mathcal{D}_k(c) t^{k+1} \right] - t^2 \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[ \sum_{k=0}^\infty \mathcal{D}_k(c) t^{k+2} \right], \\ \mathcal{F}_c(t) - 1 + ct &= -ct \frac{\mathrm{d}}{\mathrm{d}\,t} \left[ t \sum_{k=1}^\infty \mathcal{D}_k(c) t^k \right] - t^2 \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[ t^2 \sum_{k=0}^\infty \mathcal{D}_k(c) t^k \right], \\ \mathcal{F}_c(t) - 1 + ct &= -ct \frac{\mathrm{d}}{\mathrm{d}\,t} [t (\mathcal{F}_c(t) - 1)] - t^2 \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \big[ t^2 \mathcal{F}_c(t) \big], \\ t^4 \mathcal{F}_c''(t) + t^2 (4t + c) \mathcal{F}_c'(t) + \big( 2t^2 + ct + 1 \big) \mathcal{F}_c(t) - 1 = 0. \end{split}$$

This means that the generating function of the sequence  $\mathcal{D}_k(c)=(-1)^k k! D_k(c)$  is the solution of the second order linear ordinary differential equation

$$t^4f''(t) + t^2(4t+c)f'(t) + (2t^2 + ct + 1)f(t) - 1 = 0$$

with initial values f(0) = 1 and f'(0) = -c. This differential equation is solvable, but its solution is not elementary.

**Remark 2** The method used in the proof of [6, Theorem 3.1] can not be applied to the sequence  $\mathcal{D}_k(c)$ , since its recurrence relation (7) is not a homogeneous linear recurrence relation with constant coefficients.

Remark 3 The central Delannoy numbers D(k) were generalized in [10] as

$$D_{a,b}(k) = \frac{1}{\pi} \int_a^b \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{t^{k+1}} dt, \quad k \ge 0, \quad b > a > 0$$

and, by [7, Lemma 2.4], we find that  $D_{a,b}(k)$  can be generated by

$$\frac{1}{\sqrt{(x+a)(x+b)}} = \sum_{k=0}^{\infty} D_{a,b}(k)x^{k}.$$

By virtue of conclusions in [4, Section 2.4] and [3, Remark 4.1], the generalized central Delannoy numbers  $D_{a,b}(k)$  for  $k \geq 0$  can be computed by

$$D_{\alpha,b}(k) = \frac{1}{\alpha^{k+1}} \, {}_2F_1\bigg(k+1,\frac{1}{2};1;1-\frac{b}{\alpha}\bigg), \quad 2\alpha > b > \alpha > 0, \quad k \geq 0,$$

where  ${}_2F_1$  is the classical hypergeometric function which is a special case of the generalized hypergeometric series

$$_{p}F_{q}(a_{1},...,a_{p};b_{1},...,b_{q};z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}...(a_{p})_{n}}{(b_{1})_{n}...(b_{q})_{n}} \frac{z^{n}}{n!}$$

for complex numbers  $a_i \in \mathbb{C}$  and  $b_i \in \mathbb{C} \setminus \{0, -1, -2, \dots\}$ , for positive integers  $p, q \in \mathbb{N}$ , and for

$$(x)_{\ell} = \begin{cases} \prod_{k=0}^{\ell-1} (x+k), & \ell \ge 1 \\ 1, & \ell = 0 \end{cases}$$

which is called the rising factorial of  $x \in \mathbb{R}$ .

**Remark 4** This paper and [6] are extracted from different parts of the preprint [5].

#### References

- [1] C.-P. Chen, A.-Q. Liu, and F. Qi, *Proofs for the limit of ratios of consecutive terms in Fibonacci sequence*, Cubo Mat. Educ. **5** (3) (2003), 23–30.
- [2] G. Y. Hu and R. F. O'Connell, Analytical inversion of symmetric tridiagonal matrices, J. Phys. A **29** (7) (1996), 1511–1513; Available online at http://dx.doi.org/10.1088/0305-4470/29/7/020.
- [3] F. Qi and B.-N. Guo, The reciprocal of the weighted geometric mean is a Stieltjes function, Bol. Soc. Mat. Mex. (3) 24 (1) (2018), 181–202; Available online at http://dx.doi.org/10.1007/s40590-016-0151-5.
- [4] F. Qi and V. Čerňanová, Some discussions on a kind of improper integrals, Int. J. Anal. Appl. 11 (2) (2016), 101–109.
- [5] F. Qi, V. Čerňanová, and Y. S. Semenov, On tridiagonal determinants and the Cauchy product of central Delannoy numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.3772.6967.
- [6] F. Qi, V. Čerňanová, and Y. S. Semenov, Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), in press.
- [7] F. Qi, V. Čerňanová, X.-T. Shi, and B.-N. Guo, Some properties of central Delannoy numbers, J. Comput. Appl. Math. **328** (2018), 101–115; Available online at https://doi.org/10.1016/j.cam.2017.07.013.
- [8] F. Qi and B.-N. Guo, Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant, Matematiche (Catania) 72 (1) (2017), 167–175; Available online at https://doi.org/10.4418/2017.72.1.13.
- [9] F. Qi, D.-W. Niu, and D. Lim, *Notes on the Rodrigues formulas for two kinds of the Chebyshev polynomials*, HAL archives (2018), available online at https://hal.archives-ouvertes.fr/hal-01705040.
- [10] F. Qi, X.-T. Shi, and B.-N. Guo, Some properties of the Schröder numbers, Indian J. Pure Appl. Math. 47 (4) (2016), 717–732; Available online at http://dx.doi.org/10.1007/s13226-016-0211-6.

[11] F. Qi, Q. Zou, and B.-N. Guo, Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers, Preprints 2017, 2017030209, 25 pages; Available online at https://doi.org/10.20944/preprints201703.0209.v2.

Received: June 19, 2018