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1 Introduction

For c ∈ C and k ∈ N, define the k× k tridiagonal matrix Mk(c) by

Mk(c) =



c 1 0 0 · · · 0 0 0

1 c 1 0 · · · 0 0 0

0 1 c 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · c 1 0

0 0 0 0 · · · 1 c 1

0 0 0 0 · · · 0 1 c


k×k

and denote the determinant |Mk(c)| of the k× k tridiagonal matrix Mk(c) by
Dk(c). In [7, Remark 4.4], the explicit expression

Dk(−6) =
1

6k

k∑
`=0

(−1)`62`
(

`

k− `

)
was derived from some results in [7, Theorem 1.2] for the Cauchy products
of central Delannoy numbers, where

(
p
q

)
= 0 for q > p ≥ 0. For information

on central Delannoy numbers, please refer to the papers [6, 7] and plenty of
references cited therein. In [7, Remar 4.4], the authors guessed that the explicit
formula

Dk(c) = (−1)k
k∑
`=0

(−1)`c2`−k
(

`

k− `

)
=

k∑
m=0

(−1)mck−2m
(
k−m

m

)
(1)

should be valid for all c ∈ C and k ∈ N and claimed that the equality (1) can
be verified by induction on k ∈ N straightforwardly.

In the paper [6], the authors discovered a generating function of the sequence
Dk(c), provided an analytic proof of the explicit formula (1), established a sim-
ple formula for computing the tridiagonal determinantDk(c), found a determi-
nantal expression for Dk(c), presented the inverse of the symmetric tridiagonal
matrix Mk(c), connected Dk(c) with the Chebyshev polynomials [6, 9, 11] and
the Fibonacci numbers and polynomials [1, 6, 8], reviewed computation of gen-
eral diagonal determinants, supplied two new formulas for computing general
diagonal determinants, generalized central Delannoy numbers [6, 7], and rep-
resented the Cauchy product of the generalized central Delannoy numbers [6]
in terms of Dk(c).

In this paper, we pay our attention on the following four conclusions.
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Theorem 1 ([6, Theorem 2.2]) For k ≥ 0 and c ∈ C, the formula (1) is
valid.

Theorem 2 ([6, Theorem 3.1]) For c ∈ C, α = 1
β = c+

√
c2−4
2 , and k ≥ 0,

the tridiagonal determinant Dk(c) can be computed by

Dk(c) =


αk+1 − βk+1

α− β
, c 6= ±2;

k+ 1, c = 2;

(−1)k(k+ 1), c = −2.

(2)

Theorem 3 ([6, Theorem 5.1]) For k ∈ N, the inverse of the symmetric
tridiagonal matrix Mk(c) can be computed by M−1

k (c) =
(
Rij
)
k×k, where

Rij =


−

(
λi − µi

)(
λk−j+1 − µk−j+1

)
(λ− µ)(λk+1 − µk+1)

, c 6= ±2

(−1)i+j
i(k− j+ 1)

k+ 1
, c = 2

−
i(k− j+ 1)

k+ 1
, c = −2

for i < j, Rij = Rji for i > j, and λ and µ are defined by

λ =
1

µ
=

2√
c2 − 4 − c

= −α = −
1

β
.

Theorem 4 ([6, Section 8]) For n ∈ N and a, b, c ∈ C, we have

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0

c a b · · · 0 0

0 c a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a b

0 0 0 · · · c a

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=


(
a+
√
a2 − 4bc

)n+1
−
(
a−
√
a2 − 4bc

)n+1
2n+1
√
a2 − 4bc

, a2 6= 4bc;

(n+ 1)

(
a

2

)n
, a2 = 4bc.

(3)
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In Section 2 of this paper, we will supply two alternative proofs of Theo-
rem 1. In Section 3, we will provide three alternative proofs of Theorem 2. In
Section 4, we will present a detailed proof of Theorem 3. In Section 5, we will
provide a proof of Theorem 4. In the last section of this paper, we will list
several remarks.

2 Two alternative proofs of Theorem 1

Now we are in a position to supply two alternative proofs of Theorem 1.
Proof. [First alternative proof of Theorem 1] Let D0(c) = 1. Theorem 2.1
in [6] states that the sequence Dk(c) for k ≥ 0 can be generated by

Fc(t) =
1

t2 − ct+ 1
=

∞∑
k=0

Dk(c)t
k. (4)

By the formula for the sum of a geometric progression, the generating function
Fc(t) can be expanded as

Fc(t) =

∞∑
`=0

(−1)`
(
t2 − ct

)`
=

∞∑
`=0

∑̀
m=0

(−1)m
(
`

m

)
c`−mt`+m (5)

for
∣∣t2 − ct∣∣ < 1. Hence, it follows for k ≥ 0 that

[Fc(t)]
(k) =

∞∑
`=0

∑̀
m=0

(−1)m
(
`

m

)
c`−m

(
t`+m

)(k)
→ ∞∑

`=0

∑̀
m=0

(−1)m
(
`

m

)
c`−m lim

t→0
(
t`+m

)(k)
= (−1)kk!

k∑
`=0

(−1)`
(

`

k− `

)
c2`−k

for
∣∣t2 − ct∣∣ < 1 and as t→ 0. The formula (1) is thus proved. �

Proof. [Second alternative proof of Theorem 1] Taking k = `+m in (5) leads
to

Fc(t) =

∞∑
k=0

[
k∑
`=0

(−1)k−`
(

`

k− `

)
c2`−k

]
tk =

∞∑
k=0

Dk(c)t
k

for
∣∣t2 − ct∣∣ < 1. The formula (1) is proved again. The proof of Theorem 1 is

complete. �
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3 Three alternative proofs of Theorem 2

We now start out to provide three alternative proofs of Theorem 2.
Proof. [First alternative proof of Theorem 2] It is clear that the generating
function Fc(t) in (4) can be rewritten as Fc(t) = 1

t−α
1
t−β . By virtue of the

Leibniz theorem for the product of two functions, we have

[Fc(t)]
(k) =

(
1

t− α

1

t− β

)(k)

=

k∑
`=0

(
k

`

)(
1

t− α

)(`)(
1

t− β

)(k−`)

=

k∑
`=0

(
k

`

)
(−1)``!

(t− α)`+1
(−1)k−`(k− `)!

(t− β)k−`+1
→ k∑

`=0

(
k

`

)
(−1)``!

(−α)`+1
(−1)k−`(k− `)!

(−β)k−`+1

= k!

k∑
`=0

1

α`+1
1

βk−`+1
=
k!

βk

k∑
`=0

(
β

α

)`
=
k!

βk
1− (β/α)k+1

1− β/α
= k!

αk+1 − βk+1

α− β

as t→ 0. The formula (2) is thus proved. �

Proof. [Second alternative proof of Theorem 2] The generating function Fc(t)
can also be rewritten as

Fc(t) =
1

α− β

(
1

t− α
−

1

t− β

)
. (6)

Then a straightforward computation reveals

[Fc(t)]
(k) =

1

α− β

[
(−1)kk!

(t− α)k+1
−

(−1)kk!

(t− β)k+1

]
→ −k!

1

α− β

(
1

αk+1
−

1

βk+1

)
= k!

αk+1 − βk+1

α− β

as t→ 0. The proof of Theorem 2 is complete. �

Proof. [Third alternative proof of Theorem 2] The formula for the sum of a
geometric progression yields

1

t− α
= −

∞∑
k=0

tk

αk+1
and

1

t− β
= −

∞∑
k=0

tk

βk+1

for |t| < min{|α|, |β|}. Thus, in view of αβ = 1 and (6), we obtain

Fc(t) =
1

α− β

∞∑
k=0

(
1

βk+1
−

1

αk+1

)
tk =

∞∑
k=0

αk+1 − βk+1

α− β
tk =

∞∑
k=0

Dk(c)t
k

for |t| < min{|α|, |β|}. The formula (2) is thus proved. The proof of Theorem 2
is complete. �
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4 A detailed proof of Theorem 3

We now present a detailed proof of Theorem 3.
In the paper [2], the inverse of the symmetric tridiagonal matrix Mk(c) was

discussed. We denote the inverse matrix ofMk(c) byM−1
k (c) = (Rij)k×k. Then,

basing on discussions in [2, Eq. (9)], one can see without difficulty that the
elements Rij can be represented as

Rij = (−1)i+j
Di−1(c)Dk−j(c)

Dk(c)
, 1 ≤ i < j ≤ k

and Rij = Rji for 1 ≤ j < i ≤ k. Making use of the formula (2) yields

Rij =


(−1)i+j

αi−1+1 − βi−1+1

α− β

αk−j+1 − βk−j+1

α− β

αk+1 − βk+1

α− β

, c 6= ±2

(−1)i+j
(±1)i−1(i− 1+ 1)(±1)k−j(k− j+ 1)

(±1)k(k+ 1)
, c = ±2

=


(−1)i+j

(
αi − βi

)(
αk−j+1 − βk−j+1

)
(α− β)(αk+1 − βk+1)

, c 6= ±2

(−1)i+j(±1)i−j−1 i(k− j+ 1)
k+ 1

, c = ±2

=


−

[
(−α)i − (−β)i

][
(−α)k−j+1 − (−β)k−j+1

]
[(−α) − (−β)][(−α)k+1 − (−β)k+1]

, c 6= ±2

(−1)i+j
i(k− j+ 1)

k+ 1
, c = 2

−
i(k− j+ 1)

k+ 1
, c = −2

=


−

(
λi − µi

)(
λk−j+1 − µk−j+1

)
(λ− µ)(λk+1 − µk+1)

, c 6= ±2

(−1)i+j
i(k− j+ 1)

k+ 1
, c = 2

−
i(k− j+ 1)

k+ 1
, c = −2

for 1 ≤ i < j ≤ k. The proof of Theorem 3 is complete.
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5 A proof of Theorem 4

The determinant Dn satisfies the recurrence relation Dn = aDn−1 − bcDn−2.

Solving the equation x2 − ax + bc = 0 reaches to two roots α = a+
√
a2−4bc
2

and β = a−
√
a2−4bc
2 . These two roots satisfy α+β = a and αβ = bc. Then by

the above recurrence relation one can write

Dn − αDn−1 = β[Dn−1 − αDn−2] = β
2[Dn−2 − αDn−3] = · · ·

= βn−2[D2 − αD1] = β
n−2[(a2 − bc) − αa] = βn.

Similarly, one can deduce that Dn − βDn−1 = α
n. Accordingly, when α 6= β,

that is, a2 6= 4bc, one finds (α− β)Dn = αn+1 − βn+1, that is,

Dn =
αn+1 − βn+1

α− β
=

(
a+
√
a2 − 4bc

)n+1
−
(
a−
√
a2 − 4bc

)n+1
2n+1
√
a2 − 4bc

.

When α = β, that is, a2 = 4bc, we have

Dn = αn + αDn−1 = α
n + α(αn−1 + αDn−2) = · · · = (n− 1)αn + αn−1D1

= (n− 1)αn + αn−1(2α) = (n+ 1)αn = (n+ 1)

(
a

2

)n
.

The formula (3) is thus proved. The proof of Theorem 4 is complete.

6 Several remarks

Finally, we list several remarks on tridiagonal determinants.

Remark 1 The identities

Dk(c) ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c 1 0 · · · 0 0 0

2 −2c 1 · · · 0 0 0

0 6 −3c · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −(k− 2)c 1 0

0 0 0 · · · (k− 1)(k− 2) −(k− 1)c 1

0 0 0 · · · 0 k(k− 1) −kc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)kk!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c 1 0 0 · · · 0 0 0

1 c 1 0 · · · 0 0 0

0 1 c 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · c 1 0

0 0 0 0 · · · 1 c 1

0 0 0 0 · · · 0 1 c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

=
k!

ck

k∑
`=0

(−1)`c2`
(

`

k− `

)
=


k!
λk+1 − µk+1

λ− µ
, c 6= ±2

(−1)k(k+ 1)!, c = 2

(k+ 1)!, c = −2

are neither trivial nor obvious, where λ = 1
µ = 2√

c2−4−c
= −α = − 1

β . The

determinant Dk(c) satisfies

D0(c) = 1, D1(c) = −c, D2(c) = 2(c2 − 1),

and
Dk(c) = −kcDk−1(c) − k(k− 1)Dk−2(c), k ≥ 2. (7)

Then, if letting Fc(t) =
∑∞
k=0Dk(c)tk, we have

∞∑
k=2

Dk(c)tk = −ct

∞∑
k=2

kDk−1(c)tk−1 − t2
∞∑
k=2

k(k− 1)Dk−2(c)tk−2,

∞∑
k=0

Dk(c)tk −D0(c) −D1(c)t = −ct

∞∑
k=1

(k+ 1)Dk(c)tk

− t2
∞∑
k=0

(k+ 2)(k+ 1)Dk(c)tk,

Fc(t) − 1+ ct = −ct
d

d t

[ ∞∑
k=1

Dk(c)tk+1
]
− t2

d2

d t2

[ ∞∑
k=0

Dk(c)tk+2
]
,

Fc(t) − 1+ ct = −ct
d

d t

[
t

∞∑
k=1

Dk(c)tk
]
− t2

d2

d t2

[
t2

∞∑
k=0

Dk(c)tk
]
,

Fc(t) − 1+ ct = −ct
d

d t
[t(Fc(t) − 1)] − t2

d2

d t2
[
t2Fc(t)

]
,

t4F ′′c (t) + t2(4t+ c)F ′c(t) +
(
2t2 + ct+ 1

)
Fc(t) − 1 = 0.
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This means that the generating function of the sequence Dk(c) = (−1)kk!Dk(c)
is the solution of the second order linear ordinary differential equation

t4f ′′(t) + t2(4t+ c)f ′(t) +
(
2t2 + ct+ 1

)
f(t) − 1 = 0

with initial values f(0) = 1 and f ′(0) = −c. This differential equation is solv-
able, but its solution is not elementary.

Remark 2 The method used in the proof of [6, Theorem 3.1] can not be applied
to the sequence Dk(c), since its recurrence relation (7) is not a homogeneous
linear recurrence relation with constant coefficients.

Remark 3 The central Delannoy numbers D(k) were generalized in [10] as

Da,b(k) =
1

π

∫b
a

1√
(t− a)(b− t)

1

tk+1
d t, k ≥ 0, b > a > 0

and, by [7, Lemma 2.4], we find that Da,b(k) can be generated by

1√
(x+ a)(x+ b)

=

∞∑
k=0

Da,b(k)x
k.

By virtue of conclusions in [4, Section 2.4] and [3, Remark 4.1], the generalized
central Delannoy numbers Da,b(k) for k ≥ 0 can be computed by

Da,b(k) =
1

ak+1
2F1

(
k+ 1,

1

2
; 1; 1−

b

a

)
, 2a > b > a > 0, k ≥ 0,

where 2F1 is the classical hypergeometric function which is a special case of the
generalized hypergeometric series

pFq(a1, . . . , ap;b1, . . . , bq; z) =

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!

for complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, for positive integers
p, q ∈ N, and for

(x)` =


`−1∏
k=0

(x+ k), ` ≥ 1

1, ` = 0

which is called the rising factorial of x ∈ R.

Remark 4 This paper and [6] are extracted from different parts of the preprint
[5].
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[7] F. Qi, V. Čerňanová, X.-T. Shi, and B.-N. Guo, Some properties of cen-
tral Delannoy numbers, J. Comput. Appl. Math. 328 (2018), 101–115;
Available online at https://doi.org/10.1016/j.cam.2017.07.013.

[8] F. Qi and B.-N. Guo, Expressing the generalized Fibonacci polynomials in
terms of a tridiagonal determinant, Matematiche (Catania) 72 (1) (2017),
167–175; Available online at https://doi.org/10.4418/2017.72.1.13.

[9] F. Qi, D.-W. Niu, and D. Lim, Notes on the Rodrigues formulas for two
kinds of the Chebyshev polynomials, HAL archives (2018), available online
at https://hal.archives-ouvertes.fr/hal-01705040.

[10] F. Qi, X.-T. Shi, and B.-N. Guo, Some properties of the Schröder numbers,
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