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Abstract. Let A = (a
1
, a

2
, ..., a

n
) be a degree sequence of a simple

bipartite graph. We present an algorithm that takes A as input, and
outputs a simple bipartite realization of A, without stalling. The running
time of the algorithm is �(n

1
n

2
), where n

i
is the number of vertices in

the part i of the bipartite graph. Then we couple the generation algorithm
with a rejection sampling scheme to generate a simple realization of A
uniformly at random. The best algorithm we know is the implicit one due
to Bayati, Kim and Saberi (2010) that has a running time of O(ma

max
),

where m = 1
2

∑n

i=1
a

i
and a

max
is the maximum of the degrees, but does

not sample uniformly. Similarly, the algorithm presented by Chen et al.
(2005) does not sample uniformly, but nearly uniformly. The realization
of A output by our algorithm may be a start point for the edge-swapping
Markov Chains pioneered by Brualdi (1980) and Kannan et al.(1999).
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1 Introduction

A graph G(V(G), E(G)) is said to be bipartite if its vertex set V(G) can be par-
titioned into two different sets V

1
(G) and V

2
(G) with V(G) = V

1
(G) ∪ V

2
(G)

such that uv ∈ E if u ∈ V1 and v ∈ V2. The graphs considered can have possible
parallel edges and loops unless otherwise stated. The Degree Sequence Problem
is to find some or all graphs with a given degree sequence [30, 34]. More de-
tailed analysis of the Degree Sequence Problem and its relevance can be found
in [29]. It is much researched upon for its relevance in network modelling in
Ecology, Social Sciences, chemical compounds and biochemical networks in
the cell. Especially, ecological occurrence matrices, such as the Darwin finches
tables, are (0, 1) matrices whose rows are indexed by species of animals and
columns are islands, and the (i, j) entry is 1 if animal i lives in island j, and is
0 otherwise. Moreover the row sums and columns sums are fixed by field ob-
servation of these islands. These occurrence matrices are thus bipartite graphs
G with a fixed degree sequence in which V

1
(G) is the set of animals and V

2
(G)

is the set of islands. Researchers in Ecology [8, 9, 15, 31] are highly interested
in sampling easily and uniformly ecological occurrence tables, so that by using
Monte Carlo methods, they can approximate test statistics to prove or disprove
some null hypothesis about competitions amongst animals. Several algorithms
are known to sample random realizations of degree sequences, and each one of
them has its strengths and limitations. Most of these use Monte Carlo Markov
chain methods based on edge-swapping [6, 9, 10, 11, 12, 13, 18, 22, 21, 24].
Since to start a Markov chain still requires to have a realisation of the degree
sequence A, many algorithms are proposed that generate such a realisation
[1, 3, 5, 2, 36]. Most of these algorithms are based on random matching meth-
ods. In particular, algorithms proposed in [1, 3, 8] are based on inserting edges
sequentially according to some probability scheme. The basic ideas of the al-
gorithm presented in the present paper can be seen as implementing a ”dual
sequential method”, as it inserts sequentially vertices instead of edges.

In the theory of the Tutte polynomial, there are two operations, deletion
and contraction, that are dual to each other, see [7] for more details on this
topic. Let G be a graph having n vertices and m edges. In G, the operation
of deleting an edge e = (v

i
, v

j
) means removing the edge e and the graph thus

obtained, denoted by G\e, is a graph on n vertices and m−1 edges where both
the degrees of vertices v

i
and v

j
decrease by 1. The operation of contracting

the graph G by e = (v
i
, v

j
) consists of deleting the edge e and identifying the

vertices v
i

and v
j
. The graph thus obtained, denoted by G/e, is a graph on

n− 1 vertices and m− 1 edges where the new vertex obtained by identifying
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v
i

and v
j

has degree a
i
+a

j
− 2. Deletion is said to be the dual of contraction

as the incidence matrix of G\e is orthogonal to the incidence matrix of G∗/e,
where G∗ is the dual of G if G is planar.

IfA is a degree sequence having n entries, it can easily be shown that random
matching methods used in [1, 2, 3, 5, 36] are equivalent to starting from a
known realization G of A, delete all the edges one by one, and keeping track of
the degrees of vertices after each deletion, until one reaches the empty graph
having n vertices. Then, reconstructing a random realization of A consists of
taking the reverse of the deletion. That is, starting from the empty graph on n
vertices, re-insert edges one by one by choosing which edge to insert according
to the degrees of the vertices and some probability scheme depending on the
stage of the algorithm, and subject to not getting double edges if one would
like to get simple graphs or not linking two vertices on the same part if one
wants to get bipartite graphs. The algorithm presented in this paper is based
on the dual operation of contraction that has been slightly modified to suit
our purpose. It is equivalent to starting from a known realization G of A,
contract all the edges one by one, and keeping track of the vertices after
each contraction, until one reaches the graph with one vertex and 1

2

∑n

1
a

i

loops. Then, reconstructing a random realization of A consists of reversing
the process of contraction. That is, starting from a graph with one vertex
and 1

2

∑n

1
a

i
loops, the algorithm re-inserts vertices one by one by choosing

the vertices to be joined according to the degrees of the vertices and some
probability that depends on the stage of the algorithm. But, to construct a
bipartite realization, we force the algorithm to insert first all the vertices in
V

1
(G) and then all the vertices in V

2
(G).

While algorithms that are based on reversing the deletion operation [1, 3]
are easy to implement, our algorithm seems more complex as one has to satisfy
not only the degree conditions on the vertices, but also some added graphical
structures imposed by the contraction. But this is more of a bonus than an
inconvenience, as, apart from the fact that the running time is even better,
the extra structure allows an easier analysis of the algorithm. Moreover, the
internal structure imposed by the contraction operation allows the algorithm
to avoid most of the shortcomings of the previous algorithms. In fact, not
only the algorithm never restarts, but the algorithm also allows to sample
all bipartite realizations with equal probabilities, making their approximate
counting much easier than by the importance sampling used in [1, 3]. Better
still, this technique can be extended to construct k-partite realizations of a
k-partite degree sequence A, for k ≥ 3, where a k-partite degree sequence is
defined in a natural way extending the definition of a bipartite degree sequence.
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The present paper uses the following notations and terminology. Two edges
e and f in E(G) are said to be multiple edges if they have the same end vertices
(in Matroid Theory, multiple edges are said to be parallel). A simple bipartite
graph is without multiple edges and contains no loops. The degree ai of a
vertex v

i
is the number of edges incident to v

i
with a loop contributing twice

to the degree of v
i
. The degree sequence of a graph G is formed by listing the

degrees of vertices of G. If A = (a
1
, a

2
, ..., an) is a sequence of integers and

G is a bipartite graph that has A as its degree sequence, we say that G is
a realization of A, and such a sequence of integers is called a bipartite degree
sequence. Thus entries of A can be partitioned as A

1
and A

2
, where A

i
denotes

the degree sequence of the part V
i
(G). We write V

i
and |A

i
| to denote the set

of vertices with degrees in A
i

and the sum of entries in A
i

respectively . In
the sequel, we denote a bipartite degree sequence A as (A

1
: A

2
) and the pair

(A
1
: A

2
) is called a bipartition of A.

Remark 1 If A = (A
1
: A

2
) is a bipartite degree sequence having n entries,

and A
1

and A
2

have respectively n
1

and n
2

entries, then the following are
true.

1. n
1
+ n

2
= n

2. |A
1
| = |A

2
|.

3. The maximal entry of A
1

is less or equal to n
2

and vice versa.

Conversely, any partition of entries of A into two sets B
1

and B
2

satisfying
Observation 1 is a bipartition of A.

In the sequel, we make use of Rejection Sampling to sample all realizations of
the degree sequence with equal probability. Indeed, let S = S

1
, ..., Sr be a set of

structures, where S
i

is obtained with probability π(S
i
) such that

∑
i
π(S

i
) = 1.

That is, the set of π(S
i
) is a probability distribution function. Let min(π) be

the minimal probability amongst all π(S
i
). The Rejection Sampling scheme

consists of generating S
i
, then accept it with probability min(π)

π(S
i
) or reject it

with probability 1 − min(π)
π(S

i
) . It is easy to see that every structure would then

be sample with the same probability min(π).
This paper is organized as follows. We first define what is called a recursion

chain of a degree sequence, then we present routines for constructing all bipar-
tite realizations. The next section presents criteria and routines to generate
simple bipartite realizations only. Then these basic routines are coupled with
a rejection sampling routine to get a uniform distribution on the set of all
simple bipartite realizations.
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2 Construction all bipartite realizations of given de-
grees

2.1 Recursion chain of degree sequences

Let G be a graph with n vertices and m edges. Throughout we assume that
the vertices and edges of G are labelled v

1
, v

2
, · · · , vn . Let A = (a

1
, · · · , an)

be the degree sequence of G, where a
i

is the degree of the vertex v
i
. Define an

arithmetic operation on A, called contraction, as follows. For an ordered pair
(a

i
, a

j
) of entries a

i
and a

j
of A with i 6= j, the operation of contraction by

(a
i
, a

j
) means changing a

i
to a

i
+a

j
and deleting the entry a

j
fromA. We write

A/(i, j) to denote the new sequence thus obtained. We call the sequenceA/(i, j)
the (i, j)-minor or simply a minor of A. The following example illustrates this
operation for a bipartite degree sequence.

Example 1 Let A = (4, 3, 3 : 3, 3, 2, 2), where a
1
= 4, a

2
= 3, a

3
= 3

and a
4
= 3, a

5
= 3, a

6
= 2, a

7
= 2. We have A/(1, 2) = (7, 3, 3, 3, 2, 2) and

A/(4, 2) = (4, 3, 6, 3, 2, 2).

Let A be the sequence of integers. A is said to be graphic if there is a
graph G, not necessarily bipartite, such that G has A as its degree sequence.
Moreover, it is trivial to observe that a sequence of integers is graphic if and
only if the sum of its entries is even.

Theorem 1 A sequence A is graphic if and only if all its minors are graphic.

Proof. Obviously, if A is graphic, then A/(a
i
, a

j
) is graphic, as the sum of

its entries is even, by definition of contraction. Now suppose that A/(a
i
, a

j
) is

graphic and G ′′ is a realization of A/(a
i
, a

j
). To prove that A is also graphic,

we present an algorithm, much used in the sequel, that constructs a realization
of A, denoted by G, from G ′′.

Algorithm AddVertex()
Step 1. To G ′′ add an isolated vertex labelled v

j
(as in Figure 1).

Step 2 If the degree of v
j

is a
j
, stop, output G. Else

Step 3. Amongst the a ′
i

edges incident to v
i
, counting loops twice, choose one

edge
e = (v

i
, v

k
) with probability π(e) and connect e to v

j
so that e becomes

(v
j
, v

k
). Go to Step 2.

Now, in G the degree of v
j

is a
j

by Step 2 of algorithm AddVertex(). More-
over, by the definition of contraction the degree of v

i
is equal to a

i
+ a

j
in
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G ′′. Since AddVertex() takes a
j

edges away from v
i
, the degree of v

i
is a

i
in

G. Moreover all other vertices are left unchanged by AddVertex(). Thus G is
a realization of A. �

vi vj
vi’

G’ G

Figure 1: Construction of a graph G from its contract-minor G ′′

To help the intuition, observe that if G ′′ is a realization of A/(a
i
, a

j
) and

G is a realization of A constructed by AddVertex(), then G ′′ is obtained from
G by contraction of the edge (v

i
, v

j
). Now, mimicking the process of recursive

contraction of matroid as used in the theory of the Tutte polynomial, we define
a process of recursive contraction for a degree sequence. A recursion chain of
a degree sequence A is a unary tree rooted at A where nodes are integer
sequences and every node, except for the root, is a minor of the preceding one.
The recursive procedure of contraction is carried on from the root A until a
node with a single entry is reached. See Figure 2 for an illustration.

As for the Tutte polynomial, the amazing fact, which is then used to con-
struct all the realizations of A is that the order of contraction is immaterial.
Despite this basic fact, we still impose a particular order to ease many proofs
in the sequel.
Notes on notations. For the sake of convenience, we denote by A(i) the

node of a recursion chain of a degree sequence A, where i is the number of
entries in the node. Thus we denote the root A by A(n), the next node by
A(n−1), and so on until the last node A(1). Similarly, we denote by G(i) the
realization of A(i). The n entries of A are labelled from 1 to n. To keep tract
of the vertices, we preserve the labelling of entries of A into its minors so
that when a contraction by the pair (a

i
, a

j
) is performed, the new vertex is

labelled a
i
, the label a

j
is deleted, and all other entries keep the labelling they

have before the contraction. In this paper, we consider the recursion chain,
called the accumulating recursion chain, constructed as follows. Let A = (A

1
:

A
2
). We order A = (a

1
, a

2
, ..., an) as (b

1
, b

2
, ..., bn

1
: c

1
, c

2
, ..., cn

2
), where

A
1
= (b

1
, b

2
, ..., bn

1
) and A

2
= (c

1
, c

2
, ..., cn

2
), such that b

1
≥ b

2
≥ ... ≥ bn

1

and c
1
≥ c

2
≥ ... ≥ cn

2
and n

1
+ n

2
= n. Below is the pseudocode for the
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recursive construction of the accumulating recursion chain of a bipartite degree
sequence.

( a  , a   )
51

( a  , a   )
21

( a  , a   )
71

( a  , a   )
61

( a  , a   )
41

( a  , a   )
31

(4,3,3: 3,3,2,2)

(6,3,3, 3,3,2)

(8,3,3, 3,3)

(11,3,3, 3)

(14,3,3)

(17,3)

(20)

Figure 2: The recursion chain of the bipartition (4, 3, 3 : 3, 3, 2, 2). Nodes of
the chain are labelled from A(7) = A to A(1). Notice that we only perform
contractions (v

1
, v

last
).

Algorithm ConstructBipartiteRecursionChain()
Given a bipartite degree sequence A = (a

1
, a

2
, ..., an) = (b

1
, b

2
, ..., bn

1
:

c
1
, c

2
, ..., cn

2
) with b

1
≥ b

2
≥ ... ≥ bn

1
and c

1
≥ c

2
≥ ... ≥ cn

2
. Let i = n.

Step 1 If i = 1, stop, return {A
(1)
, A

(2)
, ..., A

(n)
}. Else

Step 2 Let A
(i−1)

= A
(i)
/(1, i). That is, get the (i− 1)th recursive minor of A

by contracting the (i)th recursive minor by its first entry and the last entry.
Step 3 Decrement i by 1 and go back to Step 1.

The accumulation recursion chain ofA is denoted byW = (A(1), A(2), ..., A(n)).
The following algorithm generates all the bipartite realizations of A. The

graph constructed is not necessarily simple. Loosely speaking, this algorithm
consists of reversing the recursive process of contraction as implemented by
ConstructBipartiteRecursionChain(). This algorithm starts from G

(1)
the sole
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realization of A
(1)

, and by calling AddVertex() recursively it constructs G
(2)

,

then G
(3)

, and so on until G
(n)

that is a realization of A
(n)

= A. The only
conditions imposed on the choice of edges is that up to the nth

1
iteration, only

edges (v
1
, v

j
), with j ≤ n

1
, are constructed. That is, we insert vertices of V

1
.

After the nth
1

iteration, only edges (v
k
, v

j
), with k > n

1
and j ≤ n

1
, are con-

structed. That is, we insert vertices of V
2
. We call the graphs G

(1)
, G

(2)
,...,

G
(n)

the partial realizations of A.

Algorithm ConstructBipartiteRealization()
Given W = (A(1), A(2), ..., A(n)), the bipartite accumulating recursion chain

of A, do the following.
Step 1. Let i = 1 and build the realization of the node A(1), denoted by G(1),
which is the graph consisting of one vertex and m loops, where m = 1

2

∑n

i=1
a

i
.

Step 2. Let G = G(i). If G has n vertices, stop, return G. Else,
Step 3. Using G(i) and A(i+1) as input, Call Algorithm AddVertex() to con-
struct G(i+1) as a realization of A(i+1). If i ≤ n

1
, AddVertex() only concedes

loops. If i > n
1

Addvertex() concedes only edges (v
1
, v

j
) with 1 ≤ j ≤ n

1
.

Increment i by 1, go back to Step 2.

See Figure 3 for an illustration of Algorithm ConstructBipartiteRealiza-
tion().

The following definitions are needed in the sequel. In the process of con-
traction implemented by the accumulating recursion chain, we observe that
the degrees are accumulating on a

1
. If we think of recursive contractions of a

graph, this is equivalent to saying that the edges are accumulating on v
1

as
v
1

seems to swallow the other vertices one by one. Hence when reversing the
contraction operation in ConstructBipartiteRealization(), vertex v

1
plays the

role of the ’mother that spawns’ all the other vertices one by one and concedes
some edges to them according to their degrees. Thus AddVertex() can attach
an edge e to a new vertex vs only if e is incident to v

1
. This observation

prompts the following formal definitions. Let A = (A
1
: A

2
) be a bipartite

degree sequence, where A
1

and A
2

have respectively n
1

and n
2

entries such

that n
1
+n

2
= n. Up to the n

th

1
iteration of ConstructBipartiteRealization(),

an edge is available if it is a loop incident to v
1
. An edge e is lost otherwise.

From the (n
1
+ 1)

th
iteration of ConstructBipartiteRealization() onwards, an

edge is available if it is incident to v
1

and a vertex v
j

with 1 ≤ j ≤ n
1
. An edge

e is lost otherwise. In the obvious way, we say that a vertex is available if it is
incident to some available edge. Let Vav , Eav and Ev

j
respectively denote the
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set of all available vertices, the set of all available edges and the set of available
edges that are incident to the vertex v

j
, for j ≤ n

1
. An edge e = (v

1
, v

j
) is

conceded if AddVertex() disconnects it from v
1

so that e becomes e = (v
j
, v

k
)

for some vertex v
k
6= v

1
. We then say that v

1
(or sometimes Ev

j
or just v

j
)

concedes the edge e. A vertex vs having degree as is fully inserted if as edges
are conceded to it. A graph G is said to be (re)constructed if it is an output
of ConstructBipartiteRealization().

3V

1V
2V

3V

1V
2V

V5

3V

1V
2V

4V

V5

3V

1V
2V

4V

3V

1V
2V

4V
3V

1V
2V

4V

3V

1V
2V

4V

3V

1V
2V

3V

1V
2V

1V

1V
2V

A(1)

A(2)

A(6)

A(5)

A(4)

A(3)

G(5)

G(4)

G(6)

V5

3V

1V
2V

4V

G(3)

G(2)

G(1)

(3,1:2,1,1)

(4,1,2,1)

(7,1)

(8)

(5,2,1)

(6,1,1)

Figure 3: Random reconstruction tree of (3, 1 : 2, 1, 1). Graphs drawn on the same
height as the degree sequence A(i) corresponds to all the graphs having A(i) as their

degree sequence. Notice that only realizations of A
(6)

are bipartite.
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The next observation is an obvious consequence of the definition of the algo-
rithm ConstructBipartiteRealization(). We single it out for the sake of clarity
as it is used in the sequel.

Remark 2 From the (n
1
+ 1)th iteration of ConstructBipartiteRealization(),

the number of available edges is equal to the number of edges left to be inserted
until ConstructBipartiteRealization() terminates.

It is because the number of available edges at the end of (n
1
)th iteration is

equal to half the sum of degrees a
i
∈ A

1
, and by the definition of the bipartite

degree sequence, this number is equal to half the sum of degrees a
j
∈ A

2
.

Theorem 2 Let A = (a
i
, a

2
, · · · , an) = (A

1
: A

2
) be a bipartite degree se-

quence having n entries where A
1

and A
2

respectively have n
1

and n
2

en-
tries, such that n

1
+ n

2
= n. Let W be the bipartite recursion chain of A.

Then Algorithm ConstructBipartiteRealization() constructs in time linear on

m =
a
i
+a

2
+···+an
2 a bipartite graph G having n vertices and m edges such

that G is a realization of A. Moreover, every bipartite realization of A can be
constructed in this way.

Proof. By Algorithm AddVertex(), the graph G(n) output by Algorithm Con-
structBipartiteRealization() is assured to be a realization of A. We need only
to prove that G(n) is bipartite. Now, since up to the nth

1
iteration of Construct-

BipartiteRealization(), the routine AddVertex() always chooses loops incident
to v

1
, vertices inserted from the second iteration up to the nth

1
iteration of

ConstructBipartiteRealization() (i.e., vertices in V
1
) can never be adjacent to

each other. Moreover, from the (n
1
+ 1)th to the nth iteration, AddVertex()

never chooses an edge (v
1
, v

j
) with j > n

1
. Thus all the vertices inserted from

the (n
1
+ 1)th iteration onwards (i.e., vertices in V

2
) are never adjacent to

each other. Thus, we only have to show that (in G
n
), v

1
is not adjacent to

any vertex inserted before the nth
1

iteration of AddVertex(). So, suppose that

G
n

contains an edge e = (v
1
, v

j
) with j ≤ n

1
. But, at the beginning of the

(n
1
+ 1)th iteration, the number of all edges incident to v

1
is equal to the sum

of the degrees of the vertices left to insert until the end of the Algorithm. Thus
one vertex v

j
with j > n

1
is not fully inserted. This is a contradiction.

It remains to prove that any bipartite realization G of A can be constructed
in this way. So, let G be a realization of A and let e = (v

i
, v

j
), where v

i
∈ V

1

and v
j
∈ V

2
, be any edge of G such that vertex v

i
has degree a

i
and vertex v

j

has degree a
j
. Also suppose that vertex v

i
and v

j
respectively were inserted at
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the ith and jth iteration of ConstructBipartiteRealization(), with i ≤ n
1

and
j > n

1
. We need to show that at the jth iteration, there is a positive probability

to have an edge e that is incident to v
i

and e is available. Assume to the
contrary, that is, at the jth iteration all the edges incident to v

i
must be lost.

Now all the edges incident to v
i

are lost before that jth iteration only if at some
stage of the running of Algorithm ConstructBipartiteRealization(), there are
only the edges that are available and these are exhausted before reaching the
jth iteration. Thus, at the jth iteration there are no more available edges. That
is, there is no edge incident to v

1
. But this means that a

n
1
+1
+a

n
1
+2
+...+a

j−1
≥

m, contradicting Observation 2.
As for the running time, Algorithm ConstructBipartiteRealization() calls

Algorithm AddVertex() once for every new vertex v
k

to be inserted. If v
k

has degree a
k
, Algorithm AddVertex() has to go through a

k
iterations to

insert the a
k

edges of v
k
. Hence the total number of iterations to terminate

ConstructBipartiteRealization() is a
1
+ a

2
+ ...+ an = 2m. �

3 Construction of simple bipartite graphs

Till now, ConstructBipartiteRealization() generates any bipartite realization
of the bipartite degree sequence A. But, it is easy to modify AddVertex() so
that the output of ConstructBipartiteRealization() is always a simple graph.
One obvious condition can be stated as follows.

(a) If the Algorithm is inserting the jth edge of vertex vs ( with j > 1 and
vs ∈ V2

) and v
k

(v
k
∈ V

1
) is already adjacent to vs , then no more available

edge incident to v
k

should be chosen. This would prevent ConstructBipartite-
Realization() from outputting graphs with multiple edges (vs , vk). Thus this
condition is necessary, but it is not sufficient. Indeed, it is easy to see that the
following must also apply.

(b) While inserting vertex vs and avoiding choosing edges incident to v
k

so as not to construct multiple edges (vs , vk), ConstructBipartiteRealization()
may fall into a stage where there are more edges incident to v

k
than there are

vertices left to insert, and G, the graph output by ConstructBipartiteRealiza-
tion() would then have a multiple edge (v

1
, v

k
).

(c) Let A
1

and A
2

be (separatly) ordered in non decreasing order, where a
1

is the largest entry of A
1

and a
n
1
+1

is the largest entry of A
2
. Let M

k
be the

set of the last k entries of A
1

and let max(k) = a
n
1
−k+1

. Let there be an entry

as in A
2

satisfying the following.
(f1). s − n

1
≥ max(k), (i.e., the number of entries of A

2
preceding as is
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greater or equal to the maximal entry in M
k
)

(f2). as > n
1
− k, (i.e., inserting vs would require more neighbours than

there are vertices in V
1
\M

k
) and,

f(3).
s−1∑

j=n
1
+1

a
j
≥

n
1∑

i=k

a
i
+

k−1∑
i=1

max(0, a
i
− n+ s).

(that is, the number of edges required to insert vertices of V
2

prior to vs
exceeds the number of edges available on vertices in M

k
plus the minimum

number of edges that a vertex v
i

(with v
i
∈ V

1
\M

k
) has to concede prior to

the s
th

iteration to prevent v
i

from having more edges than there are vertices

left to be inserted from the s
th

iteration onwards.)

If as ∈ A2
satisfies (f1), (f2) and (f3), then as is said to be k-fat. Let F

k

denote the set of all the entries that are k-fat. See an illustration in Figure 4.

13444456

11223467 5

F7

F6

66M
4M

Figure 4: A=(7,6,5,4,3,2,2,1,1 : 6,5,4,4,4,4,3,1), where A
1
= (7, 6, 5, 4, 3, 2, 2, 1, 1) and

A
2
= (6, 5, 4, 4, 4, 4, 3, 1). Entries are labelled so that the leftmost entry of A

1
is a

1

and the rightmost entry of A
2

is a
17

. The entries a
14

and a
15

are 6-fat while a
15

and
a

16
are 7-fat.

Now, if (a) is to be respected and ConstructBipartiteRealization() chose
every vertex in M

k
to concede an edge to every one of the s−n

1
vertices pre-

ceding vs , then ConstructBipartiteRealization() would get stuck at the stage
of inserting vertex vs . This is because by (f1) and (f3), no vertex in M

k
would

have any edge to concede to vs and so there would be a maximum of n
1
− k

available vertices. But by (f2), vertex vs needs more adjacent neighbors than
the only n

1
−k available vertices. Hence, ConstructBipartiteRealization() must

take some precautionary measures by not exhausting all the edges incident to
vertices in M

k
prior to the insertion of vs .
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Figure 5 illustrates how the Algorithm would get stuck at its s
th

iteration.

13444456

11223467 5

F7

F6

66M
4M

Figure 5: This is a choice of edges that may exhaust all the edges incident to vertices
inM

6
prior to the 14th iteration. In this choice, vertex v

1
, v

2
and v

3
must concede 3, 2

and 1 edges respectively lest they would have too many edges after the 13th iteration.
Still, vertex v

14
would not get inserted fully and the Algorithm would stall.

Although (a), (b) and (c) seem to contradict each other, this section defines
all these conditions in a formal settings and proves that they can be satisfied
simultaneously. Although the analysis seems lengthy, this set of conditions are
just inequalities involving the number of edges and vertices already inserted
and the number of edges and vertices left to be inserted at each stage of the
Algorithm. Moreover, checking these conditions at each iteration of AddVer-
tex() requires checking O(n2) inequalities altogether. Thus it does not add to
the running time.

Let A = (A
1
: A

2
) be a bipartite degree sequence of a simple graph, where

A
1

and A
2

have respectively n
1

and n
2

entries such that n
1
+ n

2
= n. We

recall that Eav represents the set of available edges. That is, edges that are
incident to v

1
and vertices inserted before the nth

1
iteration of ConstructBi-

partiteRealization(), that is, the vertices of V
1
. For v

j
∈ V

1
, we recall that Ev

j

is the set of available edges incident to v
j
. That is, the set of parallel edges

connecting v
1

and v
j
. Obviously Ev

j
⊆ Eav for all j. In particular, Ev

1
is the

set of loops incident to v
1
.

Some of the Algorithms given in the literature, such as in [1], have the
disadvantage that it has to restart. The algorithm given here allows to choose
only edges such that it never has to restart. In order to be able to do that, the
choice of edges at every stage must be such that no vertex is incident to too
many edges of the ’wrong type’.

If at its sth iteration, Algorithm ConstructBipartiteRealization() is inserting
the vertex vs that has degree as , then ConstructBipartiteRealization() has to
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call the routine AddVertex() that has to go through as iterations. We recall
that the (s, t)th stage of ConstructBipartiteRealization() is the iteration where
AddVertex() inserts the tth edge of the sth vertex. Let Xs,t and |X|s,t denote
respectively a set and its cardinality at the (s, t)th stage of ConstructBipar-
titeRealization().

To help the reader, we first introduce the motivation for the definitions. At
each stage of constructing a simple graph, every vertex v

j
, where v

j
∈ V

1
, must

be connected by at most one edge to any other v
k
, where v

k
∈ V

2
. So, if some

vertex v
j

has more available edges than the vertices left to be inserted after its

sth iteration, ConstructBipartiteRealization() would never be able to get rid
of all these multiple edges, which would then appear in the final graph. This
prompts the following definitions. The vertex v

j
where j ≤ n

1
( i.e., v

j
∈ V

1
)

is due if

|Ev
j
|st = n− (s− 1), (1)

that is, Ev
j

has as many edges as there are vertices left to be inserted. The

vertex v
j

is overdue if

|Ev
j
|st > n− (s− 1), (2)

that is, there are too many available edges incident to v
j

and whatever are
the future choices, the Algorithm would never output a simple graph. The
vertex v

j
is undue if it is neither due nor overdue. Obviously, a stage is due,

undue, overdue if there is a vertex that is due, undue or overdue,respectively.
Let M

k
be the set of the last k entries of A

1
. An entry as in A

2
is k-fat

if conditions (f1), (f2) and (f3) are satisfied. We let F
k

to denote the set of
vertices that are k-fat. A bipartite degree sequence A is fat if it contains a
k-fat entry for some integer k > 0.

Let r
i
= a

i
−n

1
+k, where k is the largest integer such that a

i
is k-fat. The

(s, t)th stage is ruined if there is an entry a
i

with i > s (that is, the vertex
v
i

is not inserted yet) that is fat and the number of vertices in M
k

that are
available is less than r

i
. It is not ruined otherwise.

The next lemma indicates that once ConstructBipartiteRealization() has
taken a ‘wrong path’, it is impossible to mend the situation.

Lemma 1 Suppose ConstructBipartiteRealization() is inserting the vertex vs
such that s > n

1
, (i.e., inserting vs into V

2
). Then the following hold.

(a) If the vertex v
j

is due, it is due or overdue at the next stage. If it is
overdue, it is overdue at any future stage.
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(b) If the (s, t)th stage is overdue, then the previous stage (the stage inserting
the previous edge) is either due or overdue.

(c) If the (s, t)th stage is ruined, then the next stage is also ruined.

Proof.
(a) Suppose v

j
is due and Addvertex() does not choose an edge from Ev

j
.

Since no edge of Ev
j

is chosen, the left side of Equation 1 remains same while

the right hand side either goes down by one if ConstructBipartiteRealization()
moves to a new vertex v

s+1
or stays the same if ConstructBipartiteRealiza-

tion() moves to another edge t+1 of the same vertex vs . Hence the next stage
is due or overdue. On the other hand, if Addvertex() chooses an edge from
Ev

j
, the left hand side goes down by 1 and the right one stays the same. But

if Ev
j

concedes only one edge to vs (as we shall see shortly), Ev
j

is still due

at the insertion of vertex v
s+1

. Similar arithmetical arguments as above show
that if v

j
is overdue, it stays overdue.

(b) Suppose v
j

is overdue at the (s, t)th stage but is undue at the stage insert-
ing the previous edge. Then at the previous stage, we have

|Ev
j
| < n− (s− 1). (3)

Now, either the last edge inserted is chosen from Ev
j

or not. Moreover, in

either case, Algorithm ConstructBipartiteRealization() moves to a new vertex
or not. If it stays on the same vertex and the chosen edge is not from Ev

j
, the

right and the left hand sides of Equation 3 are both unchanged. Hence v
j

is

undue at the (s, t)th stage, which is a contradiction. If it stays on the same
vertex and the chosen edge is from Ev

j
, the left hand side of Equation 3 goes

down by 1 while the right hand side is unchanged. Hence v
j

is also undue at

the (s, t)th stage and this is again is a contradiction.
Suppose ConstructBipartiteRealization() moves to a new vertex. If the chosen
edge is not from Ev

j
, the right hand side of Equation 3 goes down by 1 while

the right hand side is unchanged. Hence v
j

is due at the (s, t)th stage, a
contradiction. If the chosen edge is from Ev

j
, both left hand and right hand

sides of Equation 3 go down by 1. Hence v
j

is normal at the (s, t)th stage, a
contradiction.
(c) Assume that the (s, t)th stage is ruined. That is, there is a fat vertex v

i

that is not inserted yet, but the number of vertices in M
k

which are available
is less than r

i
. But, at the next stage, this number can never increase. Thus

it would also be ruined. �
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While Lemma 1 says that once ConstructBipartiteRealization() takes a
wrong path, it is impossible to mend it, the next routine gives preventive
measures to avoid getting into that wrong path in the first place.

ChooseCorrectEdge()
Let A be not fat and ConstructBipartiteRealization() is at its (s, t)th stage

with s > n
1

(that is, inserting vertex vs into V
2
). Then,

(1) for each vertex v
j
∈ V

1
, do not choose an edge in Ev

j
if there is already

an edge (vs , vj).
(2) if the vertex v

j
is due, pick an edge from Ev

j
. If many vertices are due,

pick an edge uniformly at random from the vertices that are due.
Now assume that A is fat and for some integer k > 0, F

k
is not empty. Then,

for every entry a
i
∈ F

k
choose at random r

i
= a

i
− n

1
+ k different entries

in M
k
. The only condition imposed on the choice is that an entry a

j
can be

chosen at most once for each fat vertex and at most a
j

times for all the fat
vertices combined. If a

i
is k-fat, let R

i
, called the reserve pool of a

i
, be the

set of vertices in M
k

chosen for a
i
. Let R

ij
, the reserve matrix, be an n

1
by

n
2

matrix whose columns are indexed from 1 to n
1

(indices of entries of A
1
),

and rows are indexed from n
1
+ 1 to n (indices of entries of A

2
), and R

ij
= 1

if the entry a
j
∈ R

i
, and zero otherwise. Obviously, the sum of entries in row

i is equal to r
i

and the sum of entries of column j must be less or equal to
a

j
. At the (s, t)th stage, a vertex v

j
∈ V

1
is exhausted if the sum of row j plus

the number of vertices adjacent to v
j

equals a
j
. (that is, the number of edges

already conceded by v
j

and the number of edges of v
j

in the reserve pools
equals a

j
).

(3) If ConstructBipartiteRealization() is at its (s, t)th stage with s > n
1

and
as is not fat, then apply (1) and (2) subject to not choosing a vertex v

j
if v

j

is exhausted. If as is fat, first choose all the vertices in Rs , then apply (1) and
(2) if necessary.

Complexity Issues

Before proving that the conditions set in routine ChooseCorrectEdge() are nec-
essary and sufficient to sample a simple bipartite graph at random, we observe
that, if A = (a

1
, a

2
, ..., an) = (A

1
: A

2
) where A

1
and A

2
have respectively n

1

and n
2

entries such that n
1
+n

2
= n and

∑n

i=1
a

i
= 2m, ChooseCorrectEdge()

runs altogether in O(n
1
n

2
) steps. Indeed, at the sth iteration of ConstructBi-

partiteRealization(), ChooseCorrectEdge() has to check Equation 1 only once
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for every vertex v
j
∈ V

1
. But there are n

2
iterations and n

1
vertices v

j
with

j ≤ n
1
. This takes O(n

1
n

2
) steps. Constructing the Reserve Matrix R requires

O(n
1
n

2
) steps as one has to check Conditions (f1), (f2) and (f3) for each of

the n
2

entries of A
2

and writing the n
1
n

2
entries of the matrix R.

Theorem 3 Algorithm ConstructBipartiteRealization() reconstructs a simple
graph if and only if AddVertex() calls the routine ChooseCorrectEdge(). In
other words, ConstructBipartiteRealization() outputs a simple graph if and
only if the choice of edges satisfies Conditions (1), (2) and (3).

Proof. Assume to the contrary that Conditions (1) and (2) hold but Con-
structBipartiteRealization() outputs a bipartite graph G with multiple edges
or loops. By Condition (1) there can not be a multiple edge connecting two
vertices v

j
and v

k
such that j ≤ n

1
and k > n

1
. Moreover, by the definition of

the routine ConstructBipartiteRealization(), there can not be a double edge
(v

k
, v

l
) where k, l > n

1
. Hence if G fails to be a simple graph, it must have

either a loop or a multiple edge incident to v
1

and v
j

such that j ≤ n
1
.

So, in G, let the vertex v
1

is incident to either a loop e or a multiple edge
(v

1
, v

j
) such that j ≤ n

1
. But, by the definition of the bipartition, the number

of edges incident to v
1

at the end of the nth
1

iteration of ConstructBipartite-
Realization() equals the number of edges left to be inserted until Construct-
BipartiteRealization() terminates. Hence, some vertex v

k
such that k > n

1
is

not fully inserted. This is a contradiction.
Conversely, let the condition (1) or (2) be not satisfied and let G be the

realization output by ConstructBipartiteRealization(). If condition (1) is not
satisfied at the (s, t)th stage, this would create a double edge (v

j
, vs) with

j ≤ n
1

and s > n
1
. Now, since Algorithm Addvertex() can not concede the

double edge (v
j
, vs) anymore as they are lost, the double edge (v

j
, vs) would

appear in G. Hence G would not be simple. Assume that the condition (2)
is not satisfied. That is, there is a vertex v

j
with j ≤ n

1
that is due at the

(s, t)th stage, where s > n
1
, but Algorithm Addvertex() does not pick any

of the elements of Ev
j

for all the remaining edges conceded to vs . Then v
j

is

overdue at the insertion of vertex v
s+1

, and by Lemma 1(b) it remains overdue
until the end of Algorihm 2. Hence G is not simple as it must have a multiple
edge (v

i
, v

j
). If condition (3) is not satisfied, Algorithm ConstructBipartite-

Realization() may stall. �

Let a correct edge and vertex be an edge chosen by Algorithm ChooseCor-
rectEdge and a vertex incident to a correct edge, respectively. So if Construct-
BipartiteRealization() terminates, we have shown that it always outputs a
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simple graph. It remains to show that it always terminates by showing that
there is always a correct edge so that conditions (1) and (2) can be satisfied
at every stage of ConstructBipartiteRealization().

Theorem 4 Algorithm ConstructBipartiteRealization() always terminates.
That is, Conditions (1) and (2) are always satisfied at every stage of Con-
structBipartiteRealization().

Proof. Suppose A does not contain any fat entry. That is, as long as an edge
e = (v

1
, v

j
) is a correct vertex, it can be chosen. Obviously, Condition (1) can

always be forced on AddVertex(). But, while trying hard to satisfy Condition
(1), the algorithm may let a vertex v

j
of V

1
, to become overdue. If at the (s, t)th

stage the vertex v
j

is due, we prove that it is always possible to concede an
edge from Ev

j
to vs .

So assume to the contrary that v
j

is due but Addvertex() can not pick an
edge from Ev

j
. This is possible only if there are too many vertices that are due.

That is, as < n
′
1
≤ n

1
, where n ′

1
is the number of vertices that are due at the

(s, t)th stage. But we also have as ≥ as+1
≥ ... ≥ an . Moreover, as all these n ′

1

vertices are due, each of them is incident to n − s available edges. Hence we
have as + as+1

+ · · ·+ an < n
′
1
(n− s). That is, there are more available edges

than there are edges left to be inserted until ConstructBipartiteRealization()
terminates. This contradicts Observation 2.

Let the entry a
i

be k-fat. If all the correct edges e = (v
1
, v

j
) such that

v
j
∈M

k
are conceded prior to the insertion of the vertex v

i
, then by definition

of fat entry, Algorithm ConstructBipartiteRealization() would stall as there
would not be enough edges to connect to v

i
. But, we assume that the Algorithm

reserved r
i

edges to concede to v
i
. Hence v

i
can always be inserted. So, we

only need to check (c1), whether putting some edges in reserve would prevent
some non-fat vertex vs from being inserted for lack of correct edges and, (c2),
whether it is always possible to construct the reserve matrix R

ij
.

(c1) Assume that s < i. That is, vs precedes v
i
. Let all vertices preceding vs

have been inserted but there are not enough correct edges to insert vs . This
is possible if reserving edges for vertices in F

k
and inserting vertices preceding

vs exhausts q vertices of V
1

and as > n1
− q. Without loss of generality, we

may assume that the last q vertices of V
1

are exhausted. So, let the available
vertices be vertices v

1
, . . . , v

n
1
−q+1

. If the number of available edges is less than

as , then A
1
< A

2
. This is a contradiction. So, let the number of available edges

be greater or equal to as . Thus the number of available vertices is less than
as , so that Condition (1) prevents as edges from being connected to vs . Let H
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be the graph obtained after the insertion of v
s−1

by ’fully’ connecting all the
vertices in V

2
\vs , making sure to connect vertices in F

k
with edges that are

reserved for them in R
ij

. Then, by the definition of r
i
, it is easy to check that

every vertex in F
k

is adjacent to every vertex in V
1
\M

k
. Also, since all the

vertices in Mq are exhausted after the insertion of v
s−1

, one can check that
none of the vertices in Mq\Mk

is adjacent to a vertex in V
2
\(F

k
∪V≤s

), where
V≤s

denotes the set of vertices from v
n
1
+1

up to vs . ( i.e., V
2
\(F

k
∪V≤s

) is the set

of vertices between vs and F
k
). Thus, only the vertices in V

1
\Mq are adjacent

to vertices in V
2
\(F

k
∪ V≤s

). Since all the vertices, except for vs are properly
connected and |A

1
| = |A

2
|, the number of available edges is as but the number

of available vertices is less than as . Therefore, by the pigeonhole principle,
there is an available vertex having at least two available edges. Without loss
of generality, we may consider v

1
to be the culprit.

Now, since only the vertices in V
1
\Mq are adjacent to the vertices in V

2
\(F

k
∪

V≤s
), either v

1
is adjacent to all the vertices in V

2
\(F

k
∪V≤s

) or it is not. If it
is, then v

1
was due during an iteration prior to or during the insertion of v

s−1

and the algorithm did not select it to concede an edge. This is a contradiction.
Suppose that it is not adjacent to some vertex vt ∈ V2

\(F
k
∪V≤s

). Then at <

n
1
−q, since vt is fully connected. But, by the non decreasing ordering of A

2
,

we also have at ≥ ai
. Moreover, since a

i
∈ F

k
, we have a

i
≥ n

1
−k. Hence we

have a
i
≥ n

1
−k > n

1
−q > at . This is also a contradiction. Therefore vertex

vs can be fully inserted. See Figure 6 which helps to understand notations in
part (c1).

Fk

qM
kM

V1

V2

v
1

v
s

......... ......... ......... .........

......... ......... ......... .........

Figure 6:

Finally, let a
i

be k-fat, as be not k-fat and s > i. (that is, vs is to be
inserted after v

i
). If there are not enough correct edges to connect to vs , then

|A
1
| < |A

2
|. This is a contradiction.

(c2) Suppose that it is not possible to built the reserve matrix. But, since
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a
i
≤ n

1
for all entries in F

k
, this would imply either

∑
F
k

a
i
>

∑
V
1
\M

k

a
i
+∑

M
k

a
i
= |A

1
|, or a

i
> n

1
for some entry a

i
∈ F

k
. This is a contradiction. �

It still remains to show that the algorithm constructs all the simple realiza-
tions of A.

Lemma 2 Let Gn
1
,n

2
be the n

1
, n

2
- complete bipartite graph. That is, the bi-

partite graph where one part contains n
1

vertices each having degree n
2

and
the second part contains n

2
vertices each of degree n

1
. Then ConstructBipar-

titeRealization() satisfying Conditions (1) and (2) can reconstruct Gn
1
,n

2
as a

realization of A = (A
1
: A

2
) where A

1
has n

1
entries a

i
= n

2
and A

2
has n

2

entries a
j
= n

1
.

Proof. At the beginning of the (n
1
+ 1)th iteration, Ev

j
= n

1
for each of the

n
1

vertices already inserted. Hence each such vertex is due. Now, the vertex
v
n
1
+1

has degree a
n
1
+1

= n
1

by the definition of A. Hence, by Condition (2),

AddVertex() chooses one edge from each of the n
1

vertices v
j

with j ≤ n
1

and

inserts v
n
1
+1

completely. By Lemma 1, each v
j

is still due at the (n
1
+ 2)th

iteration. Again, by Condition (2), AddVertex() chooses one edge from each of
the n

1
vertices v

j
with j ≤ n

1
and inserts v

n
1
+2

completely. And so on, until the

insertion of vertex vn , and Algorithm ConstructBipartiteRealization() outputs
the graph Gn

1
,n

2
. �

Let G be a graph, a delete-minor of G ′ = G\e is the graph obtained from
G by deleting the edge e. If A = (A

1
: A

2
) is a bipartite degree sequence, let

A ′ be the degree sequence obtained from A by subtracting 1 from two of its
entries a

i
and a

j
, where a

i
∈ A

1
and a

j
∈ A

2
. Thus, if A is the degree sequence

of a bipartite graph G, then A ′ is the degree sequence of some delete-minor
of G.

Lemma 3 If ConstructBipartiteRealization() satisfying Conditions (1) and
(2) can reconstruct G as a realization of A, then it can reconstruct all the
delete-minors of G that are realizations of A ′.

Proof. Let G be a bipartite graph output by Algorithm ConstructBipartite-
Realization() and let G\e be a delete-minor of G. In the graph G, let the edge
e be incident to vertices v

j
and v

k
having respectively degrees a

j
and a

k
, where

j ≤ n
1

and k > n
1
. Thus in G\e, vertices v

j
and v

k
have degrees a

j
− 1 and

a
k
− 1. Let f be any edge of G\e. Since G is output by ConstructBipartite-

Realization(), there is a series of choices of correct edges such that f can be
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inserted. In that series of choices either e is inserted before or after f. If e is
inserted after f, the same series of choices would insert f in G\e. If e is inserted
before f, the same series of choices, minus the insertion of e, would also lead
to the insertion of f in G\e, since Algorithm ConstructBipartiteRealization()
does not need to insert any edge incident to v

j
and v

k
as their degrees are

down by 1. �

Corollary 1 Let G be a simple bipartite realization of a degree sequence A =
(A

1
: A

2
) where A

1
and A

2
have n

1
and n

2
entries respectively. Then there

is a positive probability that G is output by Algorithm ConstructBipartiteReal-
ization() if Conditions (1) and (2) are satisfied.

Proof. Every simple bipartite graph having one part of n
1

vertices and another
of n

2
vertices can be obtained from Gn

1
,n

2
by a series of deletions. �

3.1 Sampling all bipartite realizations uniformly

Although Theorem 2 shows that the routine ConstructBipartiteRealization()
can construct a realization of A in time linear on the number of edges of its
realizations, we need the next result to show that it can construct any bipartite
realization of A with equal probability, provided we define the probability
π(e) with which AddVertex() has to insert the edge e. If at its kth iteration
ConstructBipartiteRealization() is to insert the vertex v

k
that has degree a

k
,

then ConstructBipartiteRealization() has to call AddVertex() that has to go
through a

k
iterations. Let the (s, t)th stage of ConstructBipartiteRealization()

be the iteration where AddVertex() inserts the tth edge of the sth vertex and let

G
(s,t)

denote the graph obtained at that (s, t)th stage. With this notation, let

G
(s)

be the graph G
(s,as ) . The random reconstruction tree, denoted by T , is a

directed rooted tree where the root is the sole realization of the degree sequence
A(1), and the (s, t)th level contains all those possible graphs obtainable after
inserting the tth edge of the sth vertex, and there is an arc from a graph H at
level i to the graph G at level i + 1 if it is possible to move from H to G by
the concession of a single available edge. Realizations of A are thus the leaves
of the tree T . With this formalism, sampling a random bipartite realization
of the degree sequence A is equivalent to performing a random walk from the
root until a leaf is reached, and every step of the random walk consists of
walking along a random arc of T . See Figure 7 for an illustration.
Rejection sampling
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Let G be a realization of A. That is, G is a leaf of the tree T . Obviously,
there are many paths of T leading to G. Let p be such a path and let πp(G)
denote the probability to reach G along the path p. Now πp(G) can easily be
computed on the fly since πp(G) =

∏
e∈E(G) π(e), where E(G) denotes the set of

edges of G and π(e) is the probability to choose the edge e. Now π(e) = 1
|Vcor

|,
where Vcor is the set of all correct vertices at the insertion of e. The only
problem is that G can be reached from many paths. The next result proves
that all these paths have equal probability.

Lemma 4 Let G be a realization of A that can be reached through the paths
p and q of T . Then πp(G) = πq(G).

Proof. Let E(G) denote the set of edges of G. Then, p can be seen as a re-
ordering of a subset of edges chosen along q. Now, since the vertices are added
in the same order along q as along p, we may only consider the case where p
and q differ on a single vertex and edges e and f are interchanged in p and q.
Let Vcor(e) and Vcor(f) denote the sets of correct vertices at the insertion of
e and f, respectively. If the Algorithm can choose either the edge e or f, then
Vcor(e) = Vcor(f) and the probability to choose either must be the same. �

Lemma 4 allows to compute π(G) on the fly. For any path p leading to G,
we have

π(G) =
∏
e∈G

π(e) =
∏
e∈G

1

|Vcorr(e)|
,

where Vcorr(e) is the set of vertices in V
1

that are incident to some correct

edge. Hence, to get π(G) on the fly, one set π(G) = π(G
n
1 ) = 1. For every

partial realization G
(i)

from (G
n
1 ) to G multiply π(G) by 1

|Vcorr (e)|
. Finally

output π(G) with G. Now let min(π) be a lower bound of the probabilities to
reach of the realizations of A. This lower bound can be calculated using only
parameters of A. Indeed, if |Vav(e)| stands for the number of vertices in V

1

that are adjacent to v
1

at the insertion of edge e, then we have the inequality
1

|Vav (e)|
≤ 1

|Vcorr (e)|
≤ π(e) and, for any realization G, we have∏

e∈G

1

|Vav(e)|
≤

∏
e∈G

π(e) ≤ π(G).

Finally, since |Vv
1
(e)| ≤ n

1
and every realization of A has m edges, we get

1

nm
1

≤
∏
e∈G

1

|Vav(e)|
≤

∏
e∈G

π(e) ≤ π(G).
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Figure 7: Random reconstruction tree of (4, 3, 3 : 3, 3, 2, 2). The level of T on the same
height as the degree sequence A(i) corresponds to all the graphs having A(i) as their degree
sequence. The arrows that are crossed denote the edges that would not lead to a simple
realization.
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Algorithm RejectionSampling()
Input: Bipartite degree sequence A = (A

1
: A

2
), where A

1
and A

2
have n

1

and n
2

entries respectively such that n
1
+ n

2
= n and an integers r

1
.

Output: A sequence of r
1

bipartite simple realizations of A where every
realization has equal probability.
Step 1 Put A

1
and A

2
in non decreasing order.

Step 2 Construct the recursion chain of A by calling the routine ConstructBi-
partiteRecursionChain().
Step 3 Call ConstructBipartiteRealization() to construct the realization G.
Let π(G) be the probability computed on the fly and get u, a random number

in (0, 1). If u < min(π)
π(G) , accept G and go back to Step 3 until one gets r

1

realizations. Else, reject G and go back to Step 3 until one gets r
1

realizations.
Obviously, Algorithm RejectionSampling() samples every realization of A

with the same probability equal to min(π). Now, it is known that Step 1
takes log(n

1
) + log(n

2
) iterations and, as shown earlier, Step 2 takes n

1
+n

2

iterations. In Step 3, ChooseCorrectEdge() does O(n
1
n

2
) inequality checks

altogether while AddVertex() needs 2m iterations to insert all the vertices.
Thus, the overall running time to get the minimum probability is given by

log(n
1
)+ log(n

2
)+ r

1
(n

1
n

2
+ 2m) = O(r

1
(n

1
n

2
+ 2m)) � O(3r

1
m) � O(m).

Finally, T , the running time of generating a realization of A uniformly, is a
geometric random variable with expected running time given by 1

(π(acc) where

π(acc) is the acceptance probability for the realization G with the highest
probability of being output by ConstructBipartiteRealization(). So

π(acc) =
min(π)

π(G)
=

min(π)∏
e∈G

|Vcorr(e)|
.

Now if n
2
→ ∞, then |Vcorr(e)| → n

1
2 on average. Therefore,

π(acc) → min(π)

( 2n
1
)m

=

1
nm
1

( 2n
1
)m

=
1

2m
.

Hence T → 2m. For the typical Darwin tables m is about 40 edges. Thus 2m

is a manageable running time.
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