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Abstract. We introduce Prešić-Kannan nonexpansive mappings on the
product spaces and show that they have a unique fixed point in uniformly
convex metric spaces. Moreover, we approximate this fixed point by Mann
iterations. Our results are new in the literature and are valid in Hilbert
spaces, CAT(0) spaces and Banach spaces simultaneously.

1 Introduction and preliminaries

Let (X, d) be a metric space and F : X → X be a mapping. Then F is called
nonexpansive if

d(Fx, Fy) ≤ d(x, y) (1)
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for all x, y ∈ X.
F is said to be Kannan nonexpansive provided that

d(Fx, Fy) ≤ 1
2
[d(x, Fx) + d(y, Fy)] (2)

for all x, y ∈ X.
Nonexpansive mappings are always continuous but Kannan nonexpansive

mappings are discontinuous in general, see [10]. Therefore, conditions (1) and
(2) are independent, that is, there exists a nonexpansive mapping which is not
Kannan nonexpansive and a Kannan nonexpansive which is not nonexpansive.
So, we cannot compare both the mappings directly. It is well known that
nonexpansive and Kannan nonexpansive mappings on a nonempty, compact
and convex subset C of a Banach space X, have a fixed point [13]. For a
weakly compact and convex subset C of a Banach space X, the existence of
fixed points for nonexpansive and Kannan nonexpansive mappings cannot be
obtained. This fact was studied by Alspach[1] who showed that there is a
weakly compact and convex subset C of L1 [0, 1] such that F : C → C is a
nonexpansive mapping without a fixed point.

In 1973, Kannan [9] proved that if X is a reflexive Banach space and for
any convex F-invariant subset H of C – nonempty bounded, closed and convex
subset of X – which has more than one point and

sup
y∈H
‖y− Fy‖ < diam (H) ,

then the Kannan nonexpansive mapping F : C → C has a fixed point. After
that Soardi [24] proved the existence of a fixed point for the Kannan non-
expansive mapping F : C → C by using the notion of normal structure and
obtained a similar result to Kirk’s fixed point theorem for Kannan nonexpan-
sive mappings.

For two related but distinct concepts of nonexpansive bivariate mappings,
see [3].

A convex structure [25] in a metric space X is a mapping W : X2 × I → X

satisfying:

d (u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)

for all u, x, y ∈ X and α ∈ I = [0, 1]. In general, W is not continuous but in
this paper we shall assume that W is continuous. Hadamard manifolds [5] and
geodesic spaces [4] are the nonlinear examples of a convex metric space, while
Hilbert spaces and Banach spaces are the linear ones.
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A convex metric space X is uniformly convex [23] if for any ε > 0, there
exists δ (ε) > 0 such that d

(
z,W

(
x, y, 12

))
≤ r (1− δ (ε)) < r for all r > 0 and

x, y, z ∈ X with d (z, x) ≤ r, d (z, y) ≤ r and d (x, y) ≥ rε.
Uniformly convex Banach spaces and CAT(0) spaces are nice examples of a

uniformly convex metric space[11].
A convex metric space X satisfy Property(C) if

W (x, y, λ) =W (y, x, 1− λ)

and Property(H) if

d (W (x, y, λ) ,W (x, z, λ)) ≤ (1− λ)d(y, z)

for all x, y, z ∈ X and λ ∈ (0, 1).
It is shown in [19] that Property(C) and (H) together imply continuity of

W and Property(C) holds in uniformly convex metric spaces.
Recently, Fukhar et. al [7] has proved the following result:

Theorem 1 Let C be a nonempty, closed, convex and bounded subset of a
complete and uniformly convex metric space X satisfying Property (H). If F :
C→ C is a continuous mapping satisfying

d (Fx, Fy) ≤ a1d (x, y) + a2d(Fx, x) + a3d(Fy, y) + a4d(Fx, y) + a5d(Fy, x)

for all x, y ∈ C, where ai ≥ 0 and
5∑
i=1

ai ≤ 1, then F has a fixed point in C.

An interesting generalization of Banach contraction principle has been ob-
tained by Prešić [20]:

Theorem 2 Let (X, d) be a complete metric space, k a positive integer,
α1, α2, α3, ..., αk ∈ R+,

∑k
i=1 αi = α < 1 and f : Xk → X a mapping satisfying

d (f (x0, x1, ..., xk−1) , f (x1, x2, ..., xk)) ≤
k∑
i=1

αid (xi−1, xi)

for all x0, x1, ..., xk ∈ X. Then f has a unique fixed point x∗, that is, there exists
a unique x∗ ∈ X such that f (x∗, x∗, ..., x∗) = x∗ and the sequence defined by

xn+1 = f (xn−k+1, ..., xn) , n = k− 1, k, k+ 1, ...

converges to x∗ for any x0, x1, ..., xk−1 ∈ X.
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Some generalizations of Theorem 2 have been obtained in [6, 21] (see also
[15, 16, 17, 18]).

Recall the definition of a Prešić nonexpansive mapping, first introduced in
[2].

A mapping f : Xk → X is a Prešić nonexpansive if

d (f (x0, x1, ..., xk−1) , f (x1, x2, ..., xk)) ≤
k∑
i=1

αid (xi−1, xi)

for all x0, x1, ..., xk ∈ X, where k is a positive integer, and α1, α2, α3, ..., αk ∈
R+, α1 + α2 ≤ 1.

Since in the definition of Prešić nonexpansive mapping, the constant α ≤ 1,
therefore this class of mappings includes the class of Prešić contractions ap-
pearing in Theorem 2. In the case k = 1, the Prešić nonexpansiveness condition
reduces to Banach contractive condition if α < 1 and to the nonexpansiveness
condition if α = 1.

A fixed point result about Prešić nonexpansive mappings in a nonlinear
domain, namely, CAT(0) spaces has been obtained in [8] in the form of the
following result:

Theorem 3 Let C be a bounded, closed and convex subset of a complete
CAT(0) space X, k a positive integer, and let f : Xk → X be a Prešić non-
expansive mapping. Then f has a fixed point, that is, there exists x∗ ∈ X such
that f (x∗, x∗, ..., x∗) = x∗.

We note that for k = 1, Theorem 3 becomes Kirk fixed point theorem in
[12].

These and similar facts have motivated us to study the generalization of
Kannan nonexpansive mappings in product metric spaces and product convex
metric spaces.

A mapping f : Xk → X is a Prešić Kannan nonexpansive if

d (f (x0, x1, ..., xk−1) , f (x1, x2, ..., xk)) ≤
1

k (k+ 1)

k∑
i=0

d (xi, f (xi, xi, ..., xi))

for all x0, x1, ..., xk ∈ X.
For k = 1, it reduces to the classical Kannan nonexpansive mapping.

Example 1 Let I = [0, 1] be the unit interval with the usual Euclidean norm
and let f : I2 → I be given by
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f (x, y) =

{
1
6 if x < 3

4 , y ∈ I
1
15 if x ≥ 3

4 , y ∈ I.
Then f is a Prešić Kannan nonexpansive but not Prešić nonexpansive.
Proof. In this particular case, Prešić kannan nonexpansive condition becomes:

|f (x0, x1) − f (x1, x2)| ≤
1

6

(
|x0 − f (x0, x0)|+ |x1 − f (x1, x1)|

+ |x2 − f (x2, x2)|

)
(3)

for any x0, x1, x2 ∈ I.
The way of defining f, we write I2 = ∪4i=1Ii where

I1 =

{
(x, y) : 0 ≤ x, y ≤ 3

4

}
, I2 =

{
(x, y) :

3

4
≤ x ≤ 1, 0 ≤ y ≤ 3

4

}
I3 =

{
(x, y) :

3

4
≤ x, y ≤ 1

}
, I4 =

{
(x, y) : 0 ≤ x ≤ 3

4
,
3

4
≤ y ≤ 1

}
.

Now we discuss five cases.
Case I: (x0, x1) ∈ I1or (x0, x1) ∈ I3 and x2 ∈ I.Then f (x0, x1) = f (x1, x2) .
Consequently, inequality(3) holds for any x0, x1, x2 in the specified domain

of f.
Case II: (x0, x1) ∈ I2, x2 < 3

4 . Then f (x0, x0) = 1
15 = f (x0, x1) , f (x1, x1) =

f (x1, x2) = f (x2, x2) =
1
6 .

Thus the condition(3) becomes:

1

10
≤ 1
6

(∣∣∣∣x0 − 1

15

∣∣∣∣+ ∣∣∣∣x1 − 1

6

∣∣∣∣+ ∣∣∣∣x2 − 1

6

∣∣∣∣) ,
but 3

4 ≤ x0 ≤ 1 implies 41
60 ≤ x0 −

1
15 ≤

14
15 implies

∣∣x0 − 1
15

∣∣ ≥ 41
60 ; 0 ≤ x1 ≤

3
4

implies − 1
6 ≤ x1 −

1
6 ≤

7
12 implies

∣∣x1 − 1
6

∣∣ ≥ 1
6 ; 0 ≤ x2 <

3
4 implies − 1

6 ≤
x1 −

1
6 <

7
12 implies

∣∣x1 − 1
6

∣∣ ≥ 1
6 .

It follows that 1
10 ≤

1
6

(
41
60 +

2
3

)
≤ 1

6

(∣∣x0 − 1
15

∣∣+ ∣∣x1 − 1
6

∣∣+ ∣∣x2 − 1
6

∣∣) holds.

Case III: (x0, x1) ∈ I2, x2 ≥ 3
4 . Then f (x0, x0) = f (x0, x1) = f (x2, x2) =

1
15 , f (x1, x1) = f (x1, x2) =

1
6 .

Thus the condition(3) becomes:

1

10
≤ 1
6

(∣∣∣∣x0 − 1

15

∣∣∣∣+ ∣∣∣∣x1 − 1

6

∣∣∣∣+ ∣∣∣∣x2 − 1

15

∣∣∣∣) .
But

∣∣x0 − 1
15

∣∣ ≥ 41
60 ;
∣∣x1 − 1

6

∣∣ ≥ 1
6 ;
3
4 ≤ x2 ≤ 1 implies 41

60 ≤ x1 −
1
15 <

14
15 implies∣∣x1 − 1

15

∣∣ ≥ 41
60 .
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It follows that 1
10 ≤

1
6

(
41
30 +

1
6

)
≤ 1

6

(∣∣x0 − 1
15

∣∣+ ∣∣x1 − 1
6

∣∣+ ∣∣x2 − 1
6

∣∣) holds.

Case IV: (x0, x1) ∈ I4, x2 < 3
4 and Case V: (x0, x1) ∈ I4, x2 ≥ 3

4 follow
similarly.

Now we show that f is not Prešić nonexpansive. For the above defined f,
the Prešić nonexpansive condition becomes:

|f (x0, x1) − f (x1, x2)| ≤ α1 |x0 − x1|+ α1 |x1 − x2| (4)

where α1, α2 ∈ R+, α1 + α2 ≤ 1.
Set x0 =

3
4 , x1 =

7
10 = x2, f (x0, x1) =

1
15 , f (x1, x2) =

1
6 in (4), we get

1

10
≤ α1

1

20
⇐⇒ 2 ≤ α1 ≤ 1,

a contradiction. �

2 Main results

Kannan [9] proved the following result:

Theorem 4 Let X be a compact metric space and let F : X → X be a con-
tinuous Kannan nonexpansive mapping satisfying the property that for every
closed subset C of X which contains more than one point in C and F maps
C into itself. If there exists x ∈ C such that d (x, F (x)) < supy∈C d (y, F (y)) ,
then F has a unique fixed point in X.

We extend Theorem 4 for Prešić-Kannan nonexpansive mappings on the
product of compact metric spaces.

Theorem 5 Let (X, d) be a compact metric space and let f : Xk → X be a
continuous Prešić Kannan nonexpansive mapping satisfying the property that
for every closed subset C of X which contains more than one point in C and
f
(
Ck
)
⊆ C, there exists x ∈ C such that d (x, f (x, x, ..., x)) < supy∈C d(y,

f (y, y, ..., y)) . Then f has a unique fixed point x∗ in X, that is, f (x∗, x∗, ..., x∗) =
x∗.

Proof. Define F : C→ C by

F (z) = f (z, z, ..., z) , z ∈ C.
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For any x, y ∈ C, we have

d (F (x) , F (y)) = d (f (x, x, ..., x) , f (y, y, ..., y))

≤ d (f (x, x, ..., x) , f (x, ..., x, y)) + d (f (x, ..., x, y) , f (x, ..., x, y, y))
+ ...+ d (f (x, y, ..., y) , f (y, y, ..., y))

≤ 1

k (k+ 1)

[
d (x, f (x, x, ..., x)) + ...+ d (x, f (x, x, ..., x))︸ ︷︷ ︸ (k times)

+d (y, f (y, y, ..., y))

]

+
1

k (k+ 1)

 d (x, f (x, x, ..., x)) + ...+ d (x, f (x, x, ..., x))︸ ︷︷ ︸ (k-1 times)

+d (y, f (y, y, ..., y)) + d (y, f (y, y, ..., y))︸ ︷︷ ︸ (2 times)


+ ...

+
1

k (k+ 1)

[
d (x, f (x, x, ..., x))

+d (y, f (y, y, ..., y)) + ...+ d (y, f (y, y, ..., y))︸ ︷︷ ︸ (k-1 times)

]

=
1

k (k+ 1)

[
d (x, F (x)) (k+ ...+ 2+ 1)
+d (y, F (y)) (1+ 2+ ...+ k)

]
=

1

k (k+ 1)
.
k (k+ 1)

2
[d (x, F (x)) + d (y, F (y))]

=
1

2
[d (x, F (x)) + d (y, F (y))] .

This shows that F is a Kannan nonexpansive mapping and the conclusion
follows immediately from Theorem 4. �

Theorem 6 If, in addition to the hypotheses of Theorem 5, we have

d (f (x1, x2, ..., xk) , x
∗) ≤

k∑
i=1

αid (xi, x
∗)

for all x1, x2, ..., xk ∈ X and α1, α2, α3, ..., αk ∈ R+ with xi 6= x∗(a unique fixed
point of f) and

∑k
i=1 αi < 1.Then, for every x ∈ X, fn (x, x, ..., x)→ x∗.

Proof. Define F : X→ X by

F (z) = f (z, z, ..., z) , z ∈ C.



Fixed point iterations for Prešić-Kannan nonexpansive mappings 63

For any x ∈ X such that x 6= x∗ = F (x∗) , we have

d (F (x) , x∗) = d (f (x, x, ..., x) , x∗)

≤ d (f (x, x, ..., x) , f (x, ..., x, x∗))

+d (f (x, ..., x, x∗) , f (x, ..., x, x∗, x∗))

+...+ d (f (x, x∗, ..., x∗) , x∗)

≤ αkd (x, x
∗) + αk−1d (x, x

∗) + ...+ α1d (x, x
∗)

=

k∑
i=1

αid (x, x
∗)

= αd (x, x∗)

< d (x, x∗) .

That is,
d (F (x) , x∗) < d (x, x∗) . (5)

Since X is compact, there exists a subsequence {Fni (x)} of {Fn (x)} such that
Fni (x)→ z ∈ X.

Note that

d (Fn (x) , x∗) = d (Fn (x) , F (x∗))

≤ 1

2

{
d
(
Fn−1 (x) , Fn (x)

)
+ d (x∗, F (x∗))

}
=

1

2
d
(
Fn−1 (x) , Fn (x)

)
≤ 1

2

{
d
(
Fn−1 (x) , x∗

)
+ d (Fn (x) , x∗)

}
.

That is,

d (Fn (x) , x∗) ≤ d
(
Fn−1 (x) , x∗

)
.

Thus {d (Fn (x) , x∗)} is a nonincreasing sequence and is therefore convergent.
Since Fni (x)→ z, we have {d (Fni (x) , x∗)}→ d (z, x∗) and

d
(
Fni+1 (x) , x∗

)
≤ d

(
Fni+1 (x) , F (z)

)
+ d (F (z) , x∗) .

We claim that z = x∗. If not, then by the continuity of F and Fni (x)→ z, we
have

d (z, x∗) = lim
i→∞d (Fni (x) , x∗) = lim

n→∞d (Fn (x) , x∗)
= lim

i→∞d
(
Fni+1 (x) , x∗

)
≤ d (F (z) , x∗) ,
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a contradiction to (5).
Hence

lim
n→∞d (Fn (x) , x∗) = lim

i→∞d (Fni (x) , x∗) = lim
i→∞d (Fni (x) , z) = 0.

This completes the proof. �

Next we give our convergence result for a Prešić-Kannan nonexpansive map-
ping on the product of convex metric spaces.

Theorem 7 Let X be a convex metric space with continuous convex structure
W and C be a nonempty bounded closed and convex subset of X. Let f : Ck →
C be a continuous Prešić Kannan nonexpansive mapping with a fixed point
x∗, that is, f (x∗, x∗, ..., x∗) = x∗. Set Fλ (x) = W (x, f (x, x, ..., x) , λ) for some
λ ∈ (0, 1) and let d (Fλ (x) , x

∗) < d (x, x∗) for x 6= x∗. Generate {xn} by:
x1 ∈ C, xn+1 = Fλ (xn) ⊃ Fλ (xni

) = xni+1 → z. Then z = x∗ and xn → x∗.

Proof. Note that x∗ is a fixed point of Fλ as Fλ (x
∗) =W (x∗, f (x∗, x∗, ..., x∗) , λ) =

W (x∗, x∗, λ) = x∗.
Define F : C→ C by

F (z) = f (z, z, ..., z) for all z ∈ C.

As calculated in Theorem 5, F is a Kannan nonexpansive mapping.
Since

d (F (xn) , x
∗) = d (F (xn) , F (x

∗))

≤ 1

2
{d (xn, F (xn)) + d (x

∗, F (x∗))}

=
1

2
d (xn, F (xn))

≤ 1

2
{d (xn, x

∗) + d (F (xn) , x
∗)} ,

we get
d (F (xn) , x

∗) ≤ d (xn, x∗) .
Therefore

d (xn+1, x
∗) = d (Fλ (xn) , x

∗)

= d (W (xn, F (xn) , λ) , x
∗)

≤ λd (xn, x
∗) + (1− λ)d (F (xn) , x

∗)

≤ λd (xn, x
∗) + (1− λ)d (xn, x

∗)

= d (xn, x
∗) .
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This gives that {d (xn, x
∗)} is a nonincreasing sequence and is therefore con-

vergent.
Also

d (xni+1, x
∗) ≤ d (xni+1, Fλ (z)) + d (Fλ (z) , x

∗) .

Since Fλ is continuous and xni+1 → z,

lim
i→∞d (xni+1, x

∗) ≤ d (Fλ (z) , x∗) .

Hence
d (z, x∗) = lim

i→∞d (xni+1, x
∗) ≤ d (Fλ (z) , x∗) .

By the given fact that d (Fλ (x) , x
∗) < d (x, x∗) for x 6= x∗, we conclude that

z = x∗. This completes the proof. �

Next, we approximate fixed point of a Prešić-Kannan nonexpansive mapping
by using Mann iterations [14] in the product of uniformly convex metric spaces.
The following lemma is crucial to prove our next theorem.

Lemma 1 [22] Let X be a uniformly convex metric space satisfying Property(H).
Then for ε > 0 and r > 0, there exists α (ε) > 0 such that

d (W (x, y, c) , z) ≤ r (1− 2min {c, 1− c}α (ε))

for all x, y, z ∈ X, d (x, z) ≤ r, d (y, z) ≤ r, d (x, y) ≥ rε and c ∈ [0, 1] .

Theorem 8 Let C be a nonempty, bounded, closed and convex subset of a
complete uniformly convex metric space X satisfying Property(H). If {cn} is
a sequence in (0, 1) such that lim infn→∞ cn (1− cn) > 0 and f is a continu-
ous Prešić Kannan nonexpansive mapping from Ck onto a compact subset of
C, then the sequence {xn} defined by:

x1 ∈ C, xn+1 =W (xn, f (xn, xn, ..., xn) , cn) ,

converges to a unique fixed point x∗ of f.

Proof. As shown in Theorem 5, the mapping F : C→ C defined by

F (z) = f (z, z, ..., z) for all z ∈ C

is Kannan nonexpansive. Further choosing α1 = α4 = α5 = 0, α2 =
1
2 = α3 in

Theorem 1, we see that F has a unique fixed point x∗ ∈ C. As calculated in
Theorem 7, T satisfy the inequality

d(Fxn, x
∗) ≤ d(xn, x∗).
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Therefore

d(xn+1, x
∗) = d (W (xn, F (xn) , cn) , x

∗)

≤ cnd(xn, x
∗) + cnd(F (xn) , x

∗)

= cnd(xn, x
∗) + cnd(F (xn) , x

∗)

≤ d(xn, x
∗).

This gives that {d (xn, x
∗)} is a nonincreasing sequence and is therefore conver-

gent. Let limn→∞ d(xn, x∗) = c (say). Since {d (xn, Fxn)} is bounded, therefore
infn≥1 d (xn, Fxn) exists. We claim that infn≥1 d (xn, Fxn) = 0.Assume that
infn≥1 d (xn, Txn) = σ > 0. Then

d (xn, Txn) = d(xn, x
∗).

σ

d(xn, x∗)
≥ d(xn, x∗).

σ

d(x1, x∗)
.

Hence by Lemma 1, there exists α
(

σ
d(x1,x∗)

)
> 0 such that

d(xn+1, x
∗) = d (W (xn, T (xn) , cn) , x

∗)

≤ d(xn, x
∗)

(
1− 2min {cn, 1− cn}α

(
σ

d(x1, x∗)

))
.

That is

2cn (1− cn)α

(
σ

d(x1, x∗)

)
≤ d(xn+1, x∗) − d(xn, x∗). (6)

By lim infn→∞ on both sides in (6), we get that

α

(
σ

d(x1, x∗)

)
lim inf
n→∞ cn (1− cn) = 0.

But lim infn→∞ cn (1− cn) > 0 implies that α
(

σ
d(x1,x∗)

)
= 0, a contradiction.

Therefore infn≥1 d (xn, Txn) = 0. Then there exists a subsequence {xni
} such

that limi→∞ d (xni, F (xni
)) = 0. Since F maps C into a compact subset of C,

this implies that there exists a subsequence
{
xnij

}
of {xni

} such that
{
F
(
xnij

)}
converges to a point u in C as j → ∞. Since limj→∞ d(xnij

, F
(
xnij

))
= 0

we obtain that limj→∞ xnij
= u = limj→∞ F(xnij

)
. But F is continuous, so

u = F
(
u
)
. Since

d (u, x∗) = d (F (u) , F (x∗)) ≤ 1
2
{d (u, F (u)) + d (x∗, F (x∗))} = 0,

limj→∞ xnij
= u, limn→∞ d(xn, x∗) exists, therefore xn → x∗. �
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