
Acta Univ. Sapientiae, Mathematica, 10, 1 (2018) 32–45

DOI: 10.2478/ausm-2018-0003

On generalized Laguerre matrix

polynomials

Raed S. Batahan
Department of Mathematics,

Faculty of Science,
Hadhramout University, Yemen
email: rbatahan@hotmail.com

A. A. Bathanya
Department of Mathematics,

Faculty of Education, Shabwa,
Aden University, Yemen

email: abathanya@yahoo.com

Abstract. The main object of the present paper is to introduce and
study the generalized Laguerre matrix polynomials for a matrix that
satisfies an appropriate spectral property. We prove that these matrix
polynomials are characterized by the generalized hypergeometric matrix
function. An explicit representation, integral expression and some re-
currence relations in particular the three terms recurrence relation are
obtained here. Moreover, these matrix polynomials appear as solution of
a differential equation.

1 Introduction

Laguerre, Hermite, Gegenbauer and Chebyshev matrix polynomials sequences
have appeared in connection with the study of matrix differential equations
[8, 7, ?, 4]. In [13], the Laguerre and Hermite matrix polynomials were intro-
duced as examples of right orthogonal matrix polynomial sequences for appro-
priate right matrix moment functionals of integral type. The Laguerre matrix
polynomials were introduced and studied in [11, ?, ?, ?]. In [?], it is shown
that these matrix polynomials are orthogonal with respect to a non-diagonal
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Sobolev-Laguerre matrix polynomials matrix moment functional. Recently, the
numerical inversion of Laplace transforms using Laguerre matrix polynomials
has been given in [?]. A generalized form of the Gegenbauer matrix polyno-
mials is presented in [2]. Moreover, two generalizations of the Hermite matrix
polynomials have been given in [1, ?].

The main aim of this paper is to consider a new generalization of the La-
guerre matrix polynomials. The structure of this paper is the following. After
a section introducing the notation and preliminary results, we characterize, in
Section 3, the definition of the generalized Laguerre matrix polynomials and
an explicit representation and integral expression are given. Finally, Section
4 deals with some recurrence relations in particular the three terms recur-
rence relation for these matrix polynomials. Furthermore, we prove that the
generalized Laguerre matrix polynomials satisfy a matrix differential equation.

2 Preliminaries

Throughout this paper, for a matrix A in CN×N, its spectrum σ(A) denotes the
set of all eigenvalues of A. We say that a matrix A is a positive stable if Re(µ)>
0 for every eigenvalue µ ∈ σ(A). If f(z) and g(z) are holomorphic functions of
the complex variable z, which are defined in an open setΩ of the complex plane
and A is a matrix in CN×N with σ(A) ⊂ Ω, then from the properties of the
matrix functional calculus [5, p. 558], it follows that f(A)g(A) = g(A)f(A). The
reciprocal gamma function denoted by Γ−1(z) = 1/Γ(z) is an entire function of
the complex variable z. Then, for any matrix A in CN×N, the image of Γ−1(z)
acting on A, denoted by Γ−1(A) is a well-defined matrix. Furthermore, if

A+ nI is invertible for every integern ≥ 0, (1)

where I is the identity matrix in CN×N, then Γ(A) is invertible, its inverse
coincides with Γ−1(A) and it follows that [6, p. 253]

(A)n = A(A+ I)...(A+ (n− 1)I); n ≥ 1, (2)

with (A)0 = I.
For any non-negative integers m and n, from (2), one easily obtains

(A)n+m = (A)n(A+ nI)m, (3)

and

(A)mn = mmn
m∏
s=1

(
1

m

(
A+ (s− 1)I

))
n

. (4)
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Let P and Q be commuting matrices in CN×N such that for all integer n ≥ 0
one satisfies the condition

P + nI, Q+ nI, and P +Q+ nI are invertible. (5)

Then by [10, Theorem 2] one gets

B(P,Q) = Γ(P)Γ(Q)Γ−1(P +Q), (6)

where the gamma matrix function, Γ(A), and the beta matrix function, B(P,Q),
are defined respectively [9] by

Γ(A) =

∫∞
0

exp(−t)tA−Idt, (7)

and

B(P,Q) =

∫ 1
0

tP−I(1− t)Q−Idt. (8)

In view of (7), we have [10, p. 206]

(A)n = Γ(A+ nI)Γ−1(A); n ≥ 0. (9)

If λ is a complex number with Re(λ) > 0 and A is a matrix in CN×N with
A + nI invertible for every integer n ≥ 1, then the n-th Laguerre matrix

polynomials L
(A,λ)
n (x) is defined by [8, p. 58]

L
(A,λ)
n (x) =

n∑
k=0

(−1)kλk

k!(n− k)!
(A+ I)n[(A+ I)k]

−1xk, (10)

and the generating function of these matrix polynomials is given [8] by

G(x, t, λ,A) = (1− t)−(A+I)exp

(
−λxt

1− t

)
=

∑
n≥0

L
(A,λ)
n (x)tn. (11)

According to [8], Laguerre matrix polynomials satisfy the three-term recur-
rence relation

(n+ 1)L
(A,λ)
n+1 (x) +

[
λxI− (A+ (2n+ 1)I)

]
L
(A,λ)
n (x)

+ (A+ nI)L
(A,λ)
n−1 (x) = θ; n ≥ 0,

(12)

with L
(A,λ)
−1 (x) = θ and L

(A,λ)
0 (x) = I where θ is the zero matrix in CN×N.
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Definition 1 [2] Let p and q be two non-negative integers. The generalized
hypergeometric matrix function is defined in the form:

pFq(A1, . . . , Ap;B1 . . . , Bq; z)

=
∑
n≥0

(A1)n . . . (Ap)n[(B1)n]
−1 . . . [(Bq)n]

−1 z
n

n!
,

(13)

where Ai and Bj are matrices in CN×N such that the matrices Bj; 1 ≤ j ≤ q
satisfy the condition (1).

With p = 1 and q = 0 in (13), one gets the following relation due to [11, p.
213]

(1− z)−A =
∑
n≥0

1

n!
(A)nz

n, |z| < 1. (14)

The following lemma provides results about double matrix series. The proof
are analogous to the corresponding for the scalar case c.f [?, p. 56] and [?, p.
101].

Lemma 1 [2, 3, ?] If A(k, n) and B(k, n) are matrices in CN×N for n ≥ 0
and k ≥ 0, then it follows that:∑

n≥0

∑
k≥0

A(k, n) =
∑
n≥0

n∑
k=0

A(k, n− k), (15)

∑
n≥0

bn/mc∑
k=0

A(k, n) =
∑
n≥0

∑
k≥0

A(k, n+mk), (16)

and ∑
n≥0

∑
k≥0

B(k, n) =
∑
n≥0

bn/mc∑
k=0

B(k, n−mk) ;n > m, (17)

where bac is the standard floor function which maps a real number a to its
next smallest integer.

It is obviously desirable, by (2), to have the following:

1

(n−mk)!
I =

(−1)mk

n!
(−nI)mk

=
(−1)mk

n!
mmk

m∏
p=1

(
p− n− 1

m
I

)
k

; 0 ≤ mk ≤ n.
(18)
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3 Definition of generalized Laguerre matrix polyno-
mials

Let A be a matrix in CN×N satisfying the spectral condition (1) and let λ be
a complex number with Re(λ) > 0. For a positive integer m, we can define the
generalized Laguerre matrix polynomials [GLMPs] by

F(x, t, λ,A) = (1− t)−(A+I)exp

(
−λxmtm

(1− t)m

)
=

∞∑
n=0

L
(A,λ)
n,m (x)tn. (19)

By (14) one gets

∞∑
n=0

∞∑
k=0

(−1)kλk

k!n!
xmk(A+ I+mkI)nt

n+mk =

∞∑
n=0

L
(A,λ)
n,m (x)tn,

which by using (17) and (3) and equating the coefficients of tn, yields an
explicit representation for the GLMPs in the form:

L
(A,λ)
n,m (x) =

bn/mc∑
k=0

(−1)kλk

k!(n−mk)!
(A+ I)n[(A+ I)mk]

−1xmk. (20)

It should be observed that when m = n, the explicit representation (20)
becomes

L
(A,λ)
n,n (x) =

(A+ I)n
n!

− λxnI.

If m > n, then from (20) one gets

L
(A,λ)
n,m (x) =

(A+ I)n
n!

.

Moreover, it is evident that

L
(A,λ)
n,m (0) =

(A+ I)n
n!

and L
(A,λ)
n,m (x) = L

(A,1)
n,m (λ

1
mx).

Note that the expression (20) coincides with (10) for the case m = 1.
In view of (4) and (18), we can rewrite the formula (20) in the form

L
(A,λ)
n,m (x) =

(A+ I)n
n!

bn/mc∑
k=0

(−1)(m+1)kλk

k!
xmk

m∏
p=1

(p− n− 1

m
I
)
k

(21)
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×
[ m∏
s=1

(
1

m
(A+ sI

)
k

]−1
.

Therefore, in view of (13), the hypergeometric matrix representation of GLMPs
is given in the form:

L
(A,λ)
n,m (x) =

(A+ I)n
n!

mFm

(
−n

m
I, · · · , (−n+m− 1)

m
I;
A+ I

m
, · · · , A+mI

m
; (−1)m+1λxm

)
.

(22)

We give a generating matrix function of GLMPs. This result is contained
in the following.

Theorem 1 Let A be a matrix in CN×N satisfying (1) and let λ be a complex
number with Re(λ) > 0. Then∑
n≥0

[(A+ I)n]
−1L

(A,λ)
n,m (x)tn = et 0Fm

(
−;
A+ I

m
, · · · , A+mI

m
; −λ

(xt
m

)m)
. (23)

Proof. By virtue of (20) and applying (16), we have

∑
n≥0

[(A+ I)n]
−1L

(A,λ)
n,m (x)tn =

(∑
n≥0

tn

n!

)(∑
k≥0

(−1)kλk

k!
[(A+ I)mk]

−1xmktmk

)
,

which, by using (4) and (13), reduces to (23). �

It is clear that

et 0Fm

(
−;
A+ I

m
, · · · , A+mI

m
; −λ

(
xyt

m

)m)
=

e(1−y)tety 0Fm

(
−;
A+ I

m
, · · · , A+mI

m
; −λ

(
xyt

m

)m)
.

Thus, by using (23) and applying (15), it follows that∑
n≥0

[(A+ I)n]
−1L

(A,λ)
n,m (xy)tn =

∑
n≥0

n∑
k=0

(1− y)n−kyk

(n− k)!
[(A+ I)k]

−1L
(A,λ)
k,m (x)tn.

By equating the coefficients of tn, in the last series, one gets

L
(A,λ)
n,m (xy) = (A+ I)n

n∑
k=0

(1− y)n−kyk

(n− k)!
[(A+ I)k]

−1L
(A,λ)
k,m (x).
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Let B be a matrix in CN×N satisfying (1). From (3), (4), (14) and (16) and
taking into account (20) we have

∑
n≥0

(B)n[(A+ I)n]
−1L

(A,λ)
n,m (x)tn

= (1− t)−B
∑
n≥0

(−λ)n

n!
(B)mn[(A+ I)mn]

−1

(
xt

1− t

)mn
.

(24)

By using (4) and (13), the equation (24) gives the following generating function
of GLMPs:∑

n≥0
(B)n[(A+ I)n]

−1L
(A,λ)
n,m (x)tn = (1− t)−B

mFm

(
B

m
, · · · , B+ (m− 1)I

m
;
A+ I

m
, · · · , A+mI

m
; −λ

(
xt

1− t

)m)
.

(25)

Clearly, (25) reduces to (19) when B = A+ I.
We now proceed to give an integral expression of GLMPs. For this purpose,

we state the following result.

Theorem 2 Let A and B be positive stable matrices in CN×N such that AB =
BA. Then

L
(A+B,λ)
n,m (x) = Γ(A+ B+ (n+ 1)I)Γ−1(B)Γ−1(A+ (n+ 1)I)

×
∫ 1
0

tA(1− t)B−IL
(A,λ)
n,m (xt)dt.

(26)

Proof. According to (8) and (20), we can write

Ψ =

∫ 1
0

tA(1− t)B−IL
(A,λ)
n,m (xt)dt

=

bn/mc∑
k=0

(−1)kλk

k!(n−mk)!
(A+ I)n[(A+ I)mk]

−1xmkB(A+ (mk+ 1)I, B),

(27)

and since the summation in the right-hand side of the above equality is finite,
then the series and the integral can be permuted. Hence by (6) and (9) it
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follows that

Ψ = Γ
(
A+ (n+ 1)I

)
Γ(B)

bn/mc∑
k=0

(−1)kλkxmk

k!(n−mk)!
Γ−1
(
A+ B+ (mk+ 1)I

)
= Γ
(
A+ (n+ 1)I

)
Γ(B)Γ−1

(
A+ B+ (n+ 1)I

)
bn/mc∑
k=0

(−1)kλkxmk

k!(n−mk)!
(A+ B+ I)n[(A+ B+ I)mk]

−1.

(28)

From (20), (27) and (28), the expression (26) holds. �

We conclude this section giving an integral form of GLMPs.

Theorem 3 For GLMPs the following holds∫∞
0

xAL
(A,λ)
n,m (x)e−xdx =

Γ(A+ (n+ 1)I)

n!

mF0

(
−n

m
, · · · , −n+m− 1

m
; −; (−1)m+1λmm

)
.

(29)

Proof. From (7), (9) and (20), it follows that

∫∞
0

xAL
(A,λ)
n,m (x)e−xdx =

bn/mc∑
k=0

(−1)kλk

k!(n−mk)!

(A+ I)n[(A+ I)mk]
−1Γ(A+ (mk+ 1)I)

= Γ(A+ (n+ 1)I)

bn/mc∑
k=0

(−1)kλk

k!(n−mk)!
.

Using (18) and taking into account (13) we arrive at (29). �

4 Recurrence relations

In addition to the three terms recurrence relation, some differential recurrence
relations of GLMPs are obtained here.
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Theorem 4 The generalized Laguerre matrix polynomials satisfy the follow-
ing relations:

2m∑
r=0

(2m
r

)
(−1)r(n+ 1− r)L

(A,λ)
n+1−r,m(x) = (A+ I)

2m−1∑
r=0

(2m−1

r

)
(−1)rL

(A,λ)
n−r,m(x)

−mλxm
m∑
r=0

(m
r

)
(−1)rL

(A,λ)
n−r−m+1,m(x) −mλx

m
m−1∑
r=0

(m−1

r

)
(−1)rL

(A,λ)
n−r−m,m(x),

(30)

and
m∑
r=0

(m
r

)
(−1)rDL

(A,λ)
n−r,m(x) = −λmxm−1L

(A,λ)
n−m,m(x). (31)

Proof. Differentiating (19) with respect to t yields

(1− t)2m
∑
n≥1

nL
(A,λ)
n,m (x)tn−1 = (A+ I)(1− t)2m−1

∑
n≥0

L
(A,λ)
n,m (x)tn

−λmxmtm−1(1− t)m
∑
n≥0

L
(A,λ)
n,m (x)tn − λxmtm(1− t)m−1

∑
n≥0

L
(A,λ)
n,m (x)tn.

With the help of the binomial theorem, it follows that

∑
n≥0

2m∑
r=0

(2m
r

)
(−1)r(n+ 1)L

(A,λ)
n+1,m(x)t

n+r

= (A+ I)
∑
n≥0

2m−1∑
r=0

(2m−1

r

)
(−1)rL

(A,λ)
n,m (x)tn+r

− λxm

[
m

∑
n≥m−1

m∑
r=0

(m
r

)
(−1)rL

(A,λ)
n−m+1,m(x)t

n+r

+
∑
n≥m

m−1∑
r=0

(m−1

r

)
(−1)rL

(A,λ)
n−m,m(x)t

n+r

]
.

Hence, by equating the coefficients of tn, equation (30) holds.
Now, by differentiating (19) with respect to x one gets

∑
n≥0

DL
(A,λ)
n,m (x)tn =

−λmxm−1tm

(1− t)m
(1− t)−(A+I)exp

(
−λxmtm

(1− t)m

)
.
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Thus, it follows that∑
n≥m

m∑
r=0

(m
r

)
(−1)rDL

(A,λ)
n−r,m(x)t

n = −λmxm−1
∑
n≥m

L
(A,λ)
n−m,m(x)t

n,

which, by equating the coefficients of tn, gives (31). �

It is worthy to mention that (30) reduces to (12) for m = 1. Also, for
the case m = 1, the expression (31) gives the result for the Laguerre matrix
polynomials in the form

DL
(A,λ)
n (x) = DL

(A,λ)
n−1 (x) − λL

(A,λ)
n−1 (x).

Differentiating (19) with respect to x again we obtains∑
n≥0

DL
(A,λ)
n,m (x)tn = −λmxm−1tm(1− t)−(A+(m+1)I)exp

(
−λxmtm

(1− t)m

)
= −λmxm−1

∑
n≥m

L
(A+mI,λ)
n−m,m (x)tn.

Hence, by equating the coefficients of tn, we readily obtain

DL
(A,λ)
n,m (x) = −λmxm−1L

(A+mI,λ)
n−m,m (x). (32)

It may be noted that the formula (32) reduces to the result of [12, p. 16] for
Laguerre matrix polynomials, when m = 1, in the form

DL
(A,λ)
n (x) = −λL

(A+I,λ)
n−1 (x).

Using the fact that

(1− t)−(A+I)exp

(
−λxmtm

(1− t)m

)
= (1− t)m(1− t)−(A+(m+1)I)exp

(
−λxmtm

(1− t)m

)
,

and (19), one gets

∑
n≥0

L
(A,λ)
n,m (x)tn =

∑
n≥r

m∑
r=0

(m
r

)
(−1)rL

(A+mI,λ)
n−r,m (x)tn.

Hence, we obtain that

L
(A,λ)
n,m (x) =

m∑
r=0

(m
r

)
(−1)rL

(A+mI,λ)
n−r,m (x).
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Let B be a matrix in CN×N satisfying (1) with AB = BA. Note that

(1− t)−(A+I)exp

(
−λxmtm

(1− t)m

)
= (1− t)−(A−B)(1− t)−(B+I)exp

(
−λxmtm

(1− t)m

)
.

Using (14), (15) and (19) , it follows that

∑
n≥0

L
(A,λ)
n,m (x)tn =

∑
n≥0

n∑
k=0

(A− B)k
k!

L
(B,λ)
n−k,m(x)t

n.

Identifying the coefficients of tn, in the last series, gives

L
(A,λ)
n,m (x) =

n∑
k=0

(A− B)k
k!

L
(B,λ)
n−k,m(x). (33)

By reversing the order of summation in (33), we obtain that

L
(A,λ)
n,m (x) =

n∑
k=0

(A− B)n−k
(n− k)!

L
(B,λ)
k,m (x). (34)

And finally, we prove the following result.

Theorem 5 The GLMPs is a solution of the following differential equation[
Θ

m∏
s=1

(
1

m
(Θ− 1)I+

1

m
(A+ sI)

)
+ (−1)mλmxm

×
m∏
p=1

(
1

m
Θ+

p− n− 1

m

)
I

]
L
(A,λ)
n,m (x) = θ,

(35)

where Θ = x ddx .

Proof. It is clear that 1
mΘx

mk = kxmk. According to (22) we can write

W = mFm

(
−
n

m
I, . . . ,−

n−m+ 1

m
I;
A+ I

m
, . . . ,

A+mI

m
; (−1)m+1λ xm

)

=

bn/mc∑
k=0

m∏
p=1

(
p− n− 1

m

)
k

[
m∏
s=1

( 1
m

(A+ sI
)
k

]−1
(−1)(m+1)kλk

xmk

k!
.
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It follows after replacing k by k+ 1 and using (3) that

1

m
Θ

m∏
s=1

(
1

m
(Θ− 1)I+

1

m
(A+ sI)

)
W

=

bn/mc∑
k=0

m∏
p=1

(
p− n− 1

m

)
k+1

[
m∏
s=1

(
1

m
(A+ sI

)
k

]−1
(−1)(m+1)(k+1)λk+1

xm(k+1)

k!

= (−1)m+1λ xm
bn/mc∑
k=0

m∏
p=1

(
p− n− 1

m

)
k+1

[
m∏
s=1

(
1

m
(A+ sI

)
k

]−1
(−1)(m+1)kλk

xmk

k!

= (−1)m+1λ xm
m∏
p=1

(
1

m
Θ+

p− n− 1

m

)
W.

Therefore, W is a solution of the following differential equation[
1

m
Θ

m∏
s=1

(
1

m
(Θ−1)I+

1

m
(A+sI)

)
+(−1)mλ xm

m∏
p=1

(
1

m
Θ+

p− n− 1

m

)]
W = θ.

Since W = n![(A+ I)n]
−1L

(A,λ)
n,m (x), then (35) follows immediately. �

It is worth noticing that taking m = 1 in (35) gives the following [8][
xI
d2

dx2
+ (A+ (1− λx)I)

d

dx
+ λnI

]
L
(A,λ)
n (x) = θ.
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