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Abstract. Let T(M; x, y) =
∑

ij
T
ij
xiyj denote the Tutte polynomial of

the matroid M. If T
ij

is a corner of T(M; x, y), then T
ij

counts the sets
of corank i and nullity j and each such set is a cyclic flat of M. The main
result of this article consists of extending the definition of cyclic flats to
a pair of matroids and proving that the corners of the linking polynomial
give the lower bound of the number of the cyclic flats of the matroid pair.

1 Introduction

Let A and B be two sets. We denote by A \ B the set difference between A
and B. We write A \ e for A \ {e}. Similarly, we write A ∪ f instead of A ∪ {f}.
A matroid M defined on a finite nonempty set E consists of the set E and a
collection I of subsets of E, satisfying the following axioms:

I1: ∅ ∈ I

I2: if I
1
∈ I and I

2
⊂ I

1
, then I

2
∈ I
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I3: if I
1

and I
2
∈ I and, |I

1
| < |I

2
|, then there exists e ∈ I

2
\ I1 such that

I
1
∪ e ∈ I.

Elements of I are the independent sets of the matroid M. A circuit of M is
a subset C that is not independent but X \ e is independent for every e ∈ X.
That is, a circuit is a minimal non-inependent set. A basis of M is a maximal
independent set. The dual matroid ofM, denoted byM

∗
, is the matroid whose

bases are the complements of bases of M.
Let 2E denotes the set of all the subsets of E and let N +

denotes the set of
non-negative integers. The rank function ofM, denoted by r, is a function from
2E to N +

, where, for X ⊆ E, r(X) is the cardinality of the largest independent
set I contained in X. The dual matroid of M, denoted by M

∗
, is the matroid

whose bases are the complements of the bases of M.
For a matroid M defined on E, the Tutte polynomial of M, denoted by

T(M; x, y), is a two-variable polynomial defined as follows.

T(M; x, y) =
∑
A⊆E

(x− 1)
r(E)−r(A)

(y− 1)
|A|−r(A)

,

where r is the rank function of M. This polynomial is much researched on
since it encodes much information about the matroidal properties of combina-
torial structures and is found useful in counting combinatorial invariants. For
instance, let G = (V, E) be a graph whose vertex set is V and edge set is E. Let
M

G
be the matroid defined on E, where the set of independent sets of M

G
is

the set of subsets X ⊆ E that do not contain a closed path. It can be proved
that for A ⊆ E, r(A) = |V | − c(A), where c(A) is the number of connected
components of the graph (V,A). Thus, T(M

G
; 1 − λ, 0) is proportional to the

number of coloring of G using λ colors. See [3, 5, 6, 4, 17] for an extensive
exposition to this topic.

Let M and N be two matroids defined on the set E with rank function r and
s respectively. We call the pair (M,N) a matroid pair. The dual matroid pair
is the pair (M

∗
, N
∗
) where M

∗
and N

∗
denote the dual matroids of M and N

respectively. The linking polynomial of (M,N), denoted Q(M,N; x, y, u, v) is
defined in [24] as follows.

Q(M,N; x, y, u, v) =
∑
X⊆E

x
r(E)−r(X)

y
|X|−r(X)

u
s(E)−s(X)

v
|X|−s(X)

.

The linking polynomial contains, as a specialisation the Tutte polynomial of
a matroid and it also partially contains the Tutte invariant of 2-polymatroids
defined by Oxley and Whittle in [14, 15].
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There is a weak map from a matroid M to another matroid N if every
independent set in N is also independent in M, whereas a weak map is a
strong map if every closed set of N is closed in M. A strong map is a matroid
perspective if M and N are defined on the same set.

The linking polynomial is equivalent to the Tutte polynomial of a matroid
perspective, the polynomial T(P; x, y, z), defined and studied by the late Las
Vergnas [9, 19, 20, 21, 22, 23] and in [10]. One of its most interesting evalua-
tions is T(P; 0, 0, 1). An oriented matroid is a matroid where an orientation is
assigned to every element e. One of the simplest examples of oriented matroids
is the cycle matroid of a graph G whose edges are oriented. If P is a perspec-
tive from an oriented matroid M to the oriented matroid N, then T(P; 0, 0, 1)
counts the number of subsets A such that A is acyclic in M and totally cyclic
in N [22]. An obvious application is when there is a strong map from a cycle
matroid of a graph G to a cycle matroid of a graph G ′ and one defines an ori-
entation on the edges of G. This orientation is carried to the edges of G ′ in an
obvious way. Then, T(P; 0, 0, 1) counts the number of subsets A of edges, such
that A is acyclic in G and totally cyclic in G ′. This evaluation is paramount
as it generalizes results on bounded regions of real hyperplane arrangements
[25], non Radon partitions of real spaces [3]. More of such applications can be
found in [19].

Moreover, the bond matroid of a graph G is the matroid whose independent
sets are the subsets of edges of G that do not contain cutsets. Suppose that
G and G∗ are dually imbedded on a surface. Then there is a matroid per-
spective from the bond matroid of G∗ to the cycle matroid of G. For the case
of 4-valent graphs imbedded in the projective plane or a torus, Las Vergnas
in [23] relates the Tutte polynomial of matroid perspective to Eulerian tours
and cycles decompositions of G. This result sparks a renewed interest in the
Tutte polynomial of matroid perspective because of its connection with the
Bollobas-Riordan polynomial and Krushkal polynomial, which find many ap-
plications in the theory of graphs embedding on surfaces [8]. A generalization
of matroid perspectives to a sequence of perspectives in [1] finds applications
in electrical network theory. More applications of strong maps in engineering
and in the theory of rigidity matroids can be seen in [2, 18]. Thanks to these
many applications, the Tutte polynomial of matroid perspective deserves to be
more studied algebraically and the Linking polynomial seems one of the best
ways to investgate this algebraic structure. This paper looks at the corners of
the linking polynomial and gives the lower bound of the number of the cyclic
flats of the matroid pair.

For a matroid M defined on E, we write M|X to denote the matroid M
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restricted to the subset X ⊆ E. For a matroid M defined on E with rank
function r, a subset X is a flat if for all e ∈ E \X we have r(X∪ e) = r(X) + 1.

A cyclic flat of M is a subset X ⊆ E such that X is a flat of M and X is
a union of circuits of M. In other words, X is a cyclic flat of M if X is a flat
of M and there is no element f ∈ X such that f is a coloop in M|X. A third
equivalent definition is that X is a cyclic flat of a matroid M defined on E with
rank function r if X is a flat of M and r(X \ e) = r(X), for all e ∈ X.

2 Main results

We extend the above definitions to matroid pairs as follows. Let (M,N) be a
matroid pair defined on E with rank funtions r and s for M and N respectively.
We define a subset X ⊆ E to be a flat of (M,N) if for all f ∈ E \ X

r(X ∪ f) + s(X ∪ f) ≥ r(X) + s(X) + 1.

Further, a subset X ⊆ E to be a cyclic flat of (M,N) if X is a flat of (M,N)
and there is no element e ∈ X such that e is a coloop in both M|X and N|X. In
other words, we say that X is a cyclic flat of the matroid pair (M,N) defined
on E with rank functions r and s respectively if X is a flat of (M,N) and for
all e ∈ X,

r(X \ e) + s(X \ e) > r(X) + s(X) − 2.

A classic result in Matroid Theory is as follows. X is a cyclic flat of a matroid
M if and only if E \ X is a cyclic flat of M

∗
. See [16] for an introduction to

Matroid Theory. The next result extends this property to matroid pairs. If
P = (M,N) is a matroid pair, we denote by P

∗
the matroid pair (M

∗
, N
∗
).

Theorem 1 Let P be a matroid pair. Then X is a cyclic flat of P if and only
if E \ X is a cyclic flat of P

∗
.

Proof. First recall that if M is a matroid defined on E with rank function r,
and r

∗
denotes the rank function of the dual matroid M

∗
, then for all X ⊆ E,

we have

r
∗
(X) = |X|+ r(E \ X) − r(E). (1)

Suppose that X is a cyclic flat of P but E \X is not a cyclic flat of P
∗
. Then,

either E \X is not a flat of (M
∗
, N
∗
) or E \X contains an element f which is a

coloop in both M
∗
|(E \ X) and N

∗
|(E \ X).
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Assume that Y = E \ X is not a flat of (M
∗
, N
∗
). Then, for some element

g ∈ X, we have

r
∗
(Y ∪ g) + s∗(Y ∪ g) < r∗(Y) + s∗(Y) + 1.

Therefore, by equation (1), we get

r(X \ g) + s(X \ g) < r(X) + s(X) − 1.

Equivalently,
r(X \ g) + s(X \ g) = r(X) + s(X) − 2.

Thus the element g is a coloop in both M|X and N|X. Therefore X is not a
cyclic flat of P, a contradiction.

If Y = E \ X contains an element f which is coloop of Y in both M
∗

and N
∗

then r
∗
(Y \ f) = r

∗
(Y) − 1.

By equation (1), we get

|Y \ f|+ r(E \ (Y \ f)) − r(E) = |Y|+ r(E \ Y) − r(E) − 1.

Thus r(X ∪ f) = r(X). Similarly s(X ∪ f) = s(X).
Hence

r(X ∪ f) + s(X ∪ f) = r(X) + s(X) < r(X) + s(X) + 1.

Therefore, X is not a flat of P, a contradiction. To prove the converse one
only needs to swap the roles of X and E \ X. �

In the sequel, we write (ijkl) ≤ (i′j′k′l′) if i ≤ i′ and j ≤ j′ and k ≤ k′ and
l ≤ l′, and we write (ijkl) = (i′j′k′l′) if i = i′ and j = j′ and k = k′ and l = l′.
We say that (ijkl) and (i′j′k′l′) are incomparable if some indices in (ijkl) are
strictly superior to the corresponding indices in (i′j′k′l′) and some other indices
in (ijkl) are strictly inferior to the corresponding indices in (i′j′k′l′). For all
X ⊆ E let cor

M
(X) denote the integer r(E) − r(X), nul

M
(X) denote |X|− r(X),

cor
N
(X) denote the integer s(E) − s(X) and nul

N
(X) denote |X| − s(X). Let

E
ijkl

denote the family of subsets X ⊆ E such that cor
M
(X) = i, nul

M
(X) = j,

cor
N
(X) = k, nul

N
(X) = l.

The next result, proved in [11], is instrumental in the proof of Theorem 2.4.

Lemma 1 Let (M,N) be a matroid pair defined on E. If E
ijkl

is not empty
then q

ijkl
is positive and

q
ijkl

= |E
ijkl

|+
∑

Y 6∈E
ijkl

(
cor

M
(Y)

i

)(
nul

M
(Y)

j

)(
cor

N
(Y)

k

)(
nul

N
(Y)

l

)
where the sum is only over the subsets Y such that (i′j′k′l′) > (ijkl).
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A corner of T(M; x, y) is a coefficient T
ij

such that T
ij
> 0 and there is no

other positive coefficient T
i′j′ with (i′j′) > (ij). Corners of a Tutte polynomial

T(M; x, y) convey much information about the matroid M. In [5], Brylawski
proved that if T

ij
is a corner of T(M; x, y), then T

ij
counts the sets of corank i

and nullity j and each such set is a cyclic flat of M. This result is strengthened
in [13] as follows.

Theorem 2 [13, Theorem 4.11] Suppose that T
ij
> 0 for a matroid M. Then

the following are equivalent.
(i) T

ij
is a corner of T(M; x, y).

(ii) Every set of corank i and nullity j is a cyclic flat.
(iii) T

ij
counts the sets of corank i and nullity j.

We extend Theorem 2 to matroid pairs as follows. A coefficient q
ijkl

is called
a corner in Q(M,N; x, y, u, v) if

(i) q
ijkl
6= 0

(ii) q
i′j′k′l′ = 0 for all (i′j′k′l′) such that (i′j′k ′l′) > (ijkl).

Theorem 3 Let (M,N) be a matroid pair defined on E. If q
ijkl

is a corner of
Q(M,N; x, y, u, v) then every X ∈ E

ijkl
is a cyclic flat of (M,N).

Proof. Suppose that q
ijkl

is a corner of Q(M,N) and X ∈ E
ijkl

. Suppose that
X is not a cyclic flat of (M,N). Then, either X is not a flat of (M,N) or X
contains an element e which is a coloop of X in both M and N.

Suppose that X is not a flat of (M,N). Then there is an element e ∈ E \ X

such that

r(X ∪ e) + r(X ∪ e) < r(X) + s(X) + 1.

Equivalently

r(X ∪ e) + r(X ∪ e) = r(X) + s(X).

Thus r(X ∪ e) = r(X) and s(X ∪ e) = s(X). Now, consider X ∪ e.

cor
M
(X ∪ e) = cor

M
(X), cor

N
(X ∪ e) = cor

N
(X)

nul
M
(X ∪ e) = nul

M
(X) + 1, nul

N
(X ∪ e) = nul

N
(X) + 1.

Thus, if X ∈ E
ijkl

, then E
ij′kl′ where j′ = j + 1, l′ = l + 1 is not empty. Hence

by Lemma 1, q
i,j′,k,l′ 6= 0. Thus q

ijkl
is not a corner as (ij′kl′) > (ijkl).

Contradiction.
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Suppose that X has an element e which is a coloop in both M and N.
Consider the subset X \ e. Then,

cor
M
(X \ e) = cor

M
(X) + 1, cor

N
(X \ e) = cor

N
(X) + 1

nul
M
(X \ e) = nul

M
(X), nul

N
(X \ e) = nul

N
(X).

Thus, if X ∈ E
ijkl

, then E
i′jk′l where i′ = i + 1, k′ = k + 1 is not empty. Hence

by Lemma 1, q
i′,j,k′,l 6= 0. Hence q

ijkl
not a corner. �

Theorem 2, which is a strengthening of the result of Brylawski can not be
generalised to matroid pairs. Indeed, Theorem 2 says, among other things,
that if X is a cyclic flat of M of corank i and nullity j, then T

ij
is not a corner

if and only if there exists a subset Y such that cor(Y) = i and nul(Y) = j but
Y is not a cyclic flat. But we have an example of a matroid pair (M,N) where
all X ∈ E

ijkl
are cyclic flats of (M,N) but q

ijkl
is not a corner of Q(M,N).

Indeed, consider the matroid pair given in Figure 1.

b

e f

c d

a b

e f

c d

M N

a

Figure 1: Example where X ∈ E
ijkl

are cyclic flats of (M,N) but q
ijkl

is not a
corner of Q(M,N).

The subset {a, b} ∈ E
1011

is a cyclic flat of (M,N). The subset {c, d} ∈ E
2111

,
thus E

2111
is not empty. The subset {c, d} is also a cyclic flat of (M,N). Since

(2111) > (1011), then q
1011

is not a corner of Q(M,N; x, y, u, v).
Suppose there is a subset X ∈ E

1011
such that X is not a cyclic flat of (M,N).

Since cor
M
(X) = cor

N
(X) = nul

N
(X) = 1 and nul

M
(X) = 0, such an X can
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be only {a, b} or {e, f}. But they are both cyclic flats of N. Hence they are
cyclic flats of (M,N). Contradiction. Therefore (M,N) does not contain such
a subset X.

References

[1] D. Benard, A. Bouchet and A. Duchamp, On the Martin and Tutte poly-
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