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Abstract. The (α,β)-metrics are the most studied Finsler metrics in
Finsler geometry with Randers, Kropina and Matsumoto metrics being
the most explored metrics in modern Finsler geometry. The L-dual of
Randers, Kropina and Matsumoto space have been introduced in [3, 4, 5],
also in recent the L-dual of a Finsler space with special (α,β)-metric and
generalized Matsumoto spaces have been introduced in [16, 17] . In this
paper, we find the L-dual of a Finsler space with an exponential metric
αeβ/α, where α is Riemannian metric and β is a non-zero one form.

1 Introduction

The concept of L-duality between Lagrange and Finsler spaces was introduced
by R. Miron [8] in 1987. Since then it has been studied intensively by many
Finsler geometers [3, 4, 5]. The L-duals of a Finsler spaces with some special
(α,β)-metrics have been obtained in [14, 15]. The concept of Finslerian and
Lagrangian structures were introduced in the papers [9, 13] and the theory
of higher order Lagrange and Hamilton spaces were discussed in [10, 11, 12].
Further, the geometry of higher order Finsler spaces have been studied in
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[1, 7, 11].
The importance of L-duality is not limited to computing only the dual of some
Finsler fundamental functions but many other geometrical problems have been
solved by taking the L-duals of Finsler spaces. In fact, duality has been used to
solve the complex Zermelo nevigation problem of classifying Randers metrics
of constant flag curvature [2] and it has been also used to study the geometry
of a Cartan space [4]. In general, duality can be used to solve the geometrical
problems of (α,β) metrics. Here, we study the L-dual of the Finsler space
associated with the exponential metric αeβ/α, where α is Riemannian metric
and β is a non-zero one form.

2 The Legendre transformation

A Finsler space Fn = (M,F(x, y)) is said to have an (α,β)-metric if F is
a positively homogeneous function of degree one in two variables α and β,
where α2 = a(y, y) = aijy

iyj, y = yi ∂
∂xi

|x ∈ TxM, α is Riemannian metric,

and β = bi(x)y
i is a 1-form on T̃M = TM \ {0}. A Finsler space with the

fundamental function:

F(x, y) = α(x, y) + β(x, y)

is called a Randers space [6].
A Finsler space having the fundamental function:

F(x, y) =
α2(x, y)

β(x, y)

is called a Kropina space and one with

F(x, y) =
α2(x, y)

α(x, y) − β(x, y)

is called a Matsumoto space.
A Finsler space with the fundamental function:

F(x, y) = αeβ/α (1)

is called a Finsler space with exponential metric.

Definition 1 A Cartan space Cn is a pair (M,H) which consists of a real n-
dimensional C∞-manifold M and a Hamiltonian function H : T∗M \ {0}→ <,
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where (T∗M,π∗,M) is the cotangent bundle of M such that H(x, p) has the
following properties:

1. It is two homogeneous with respect to pi (i = 1, 2, . . . , n).

2. The tensor field gij(x, p) = 1
2
∂2H
∂pi∂pj

is nondegenerate.

Let Cn = (M,K) be an n-dimensional Cartan space having the fundamen-
tal function K(x, p). We can also consider Cartan spaces having the metric
functions of the following forms

K(x, p) =
√
aij(x)pipj + b

i(x)pi

or

K(x, p) =
aijpipj

bi(x)pi

and we will again call these spaces Randers and Kropina spaces respectively
on the cotangent bundle T∗M.

Definition 2 A regular Lagrangian L(x, y) on a domain D ⊂ TM is a real
smooth function L : D → R and a regular Hamiltonian H(x, p) on a domain
D∗ ⊂ T∗M is a real smooth function H : D∗ → R such that the matrices with
entries

gab(x, y) = ∂̇a∂̇bL(x, y) and

g∗ab(x, p) = ∂̇a∂̇bH(x, p)

are everywhere nondegenerate on D and D∗ respectively.

Examples. (a) Every Finsler space Fn = (M,F(x, y)) is a Lagrange manifold
with L = 1

2F
2.

(b) Every Cartan space Cn = (M, F̄(x, p)) is a Hamilton manifold with
H = 1

2 F̄
2. (Here F̄ is positively 1-homogeneous in pi and the tensor

ḡab = 1
2 ∂̇a∂̇bF̄

2 is nondegenerate).
(c) (M,L) and (M,H) with

L(x, y) =
1

2
aij(x)y

iyj + bi(x)y
i + c(x)

and

H(x, p) =
1

2
āij(x)pipj + b̄

i(x)pi + c̄(x), where c = bib
i − c,
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are Lagrange and Hamilton manifolds respectively (Here aij(x), ā
ij are the

fundamental tensors of Riemannian manifold, bi are components of covector
field, b̄i are the components of a vector field, C and C̄ are the smooth functions
on M).

Let L(x, y) be a regular Lagrangian on a domain D ⊂ TM and let H(x, p)
be a regular Hamiltonian on a domain D∗ ⊂ T∗M. If L ∈ F(D) is a differential
map, we can consider the fiber derivative of L, locally given by the diffeomor-
phism between the open set U ⊂ D and U∗ ⊂ D∗

ψ(x, y) = (xi, ∂̇aL(x, y)),

which will be called the Legendre transformation.
It is easily seen that L is a regular Lagrangian if and only if ψ is a local

diffeomorphism.
In the same manner if H ∈ F(D∗) the fiber derivative is given locally by

ϕ(x, y) = (xi, ∂̇aH(x, y)),

which is a local diffeomorphism if and only if H is regular.
Let us consider a regular Lagrangian L. Then ψ is a diffeomorphism between

the open sets U ⊂ D and U∗ ⊂ D∗. We can define in this case the function:

H : U∗ → R, H(x, p) = pay
a − L(x, y), (2)

where y = (ya) is the solution of the equations pa = ∂̇aL(x, y).
Also, if H is a regular Hamiltonian on M, φ is a diffeomorphism between

same open sets U∗ ⊂ D∗ and U ⊂ D, we can consider the function

L : U→ R, L(x, y) = pay
a −H(x, p), (3)

where y = (pa) is the solution of the equations

ya = ∂̇aH(x, p).

The Hamiltonian H(x, p) given by (2) is the Legendre transformation of the
Lagrangian L and the Lagrangian given by (3) is called the Legendre transfor-
mation of the Hamiltonian H.

If (M,K) is a Cartan space, then (M,H) is a Hamilton manifold [10, 13],
where H(x, p) = 1

2K
2(x, p) is 2-homogenous on a domain of T∗M. So we get

the following transformation of H on U:

L(x, y) = pay
a −H(x, p) = H(x, p). (4)
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Theorem 1 The scalar field L(x, y) given by (4) is a positively 2-homogeneous
regular Lagrangian on U.

Therefore, we get Finsler metric F of U, so that

L =
1

2
F2.

Thus for the Cartan space (M,K) we always can locally associate a Finsler
space (M,F) which will be called the L-dual of a Cartan space (M,C|U∗) vice
versa, we can associate, locally, a Cartan space to every Finsler space which
will be called the L -dual of a Finsler space (M,F|U).

3 The L-dual of a Finsler space with exponential
metric

In this case we put α2 = yiy
i, bi = aijbj, β = biy

i, β∗ = bipi, F
2 =

yip
i, pi = aijpj, α

∗2 = pip
i = aijpipj. we have F = αeβ/α and

pi =
1

2

∂

∂yi
F2 = F

∂

∂yi
F

= F

(
αiye

β/α + αeβ/α
αβiy − βα

i
y

α2

)

= F

yi
α
eβ/α + αeβ/α

αbi − β
yi
α

α2


= F

(
yi
α2
F+ F

α2bi − βyi
α3

)
=
F2

α2

{(
1−

β

α

)
yi + αbi

}
.

(5)

Contracting (5) with pi and bi respectively, we get

α∗2 =
F2

α2

{(
1−

β

α

)
yip

i + αbip
i

}
=
F2

α2

{(
1−

β

α

)
F2 + αβ∗

}
.

(6)
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and

β∗ =
F2

α2

{(
1−

β

α

)
yib

i + αbib
i

}
=
F2

α2

{(
1−

β

α

)
β+ αb2

}
.

(7)

In [18], for a Finsler (α,β)-metric F on a ManifoldM, one constructs a positive
function φ = φ(s) on (−b0;b0) with φ(0) = 1 and F = αφ(s), s = β

α , where

α =
√
aijyiyj and β = biy

i with ||β||x < b0, ∀x ∈M. The function φ satisfies
φ(s) − sφ

′
(s) + (b2 − s2)φ

′′
(s) > 0, (|s| ≤ b0).

This mertic is a (α,β)-metric with φ = es.
Using Shen’s notation [18], put s = β

α and φ(s) = F
α = es in (6) and (7), we

get

α∗2 =
F2

α

{(
1−

β

α

)
F2

α
+ β∗

}
= Fes {(1− s)Fes + β}

(8)

and

β∗ = Fes
{
(1− s)s+ b2

}
(9)

Now, we have the following two theorems under two different cases:

Theorem 2 Let (M,F) be a special Finsler space, where F is given by the
equation (1). If b2 = aijb

ibj = 1, then the L-dual of (M,F) is the space on
T∗M having the fundamental function H(x, p) given by the equations (16).

Proof. From the equation (9), we get

F =
β∗

es {(1− s)s+ 1}
(10)

and substituting F from the equation (10) in (8), we get

α∗2 =
β∗

{(1− s)s+ 1}
[(1− s)

β∗

{(1− s)s+ 1}
+ β]

(11)

which implies that

(1+ s− s2)2 − δ(2− s2) = 0

or s4 − 2s3 + (−1+ δ)s2 + 2s+ 1− 2δ = 0, (12)
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where

δ =
β∗2

α∗2 .

Using Mathematica for solving the above equation (12), we get

s = (1± γi)/2, i = 1, 2 (13)

where

m1 = (1− δ)/3,

m2 = 25− 26δ+ δ
2,

m3 = 125− 195δ+ 69δ
2 + δ3,

m4 = δ
√
25− 48δ+ 21δ2 + 2δ3,

m5 = m3 + 3
√
3m4

1/3
,

m6 =
m2

3m5
,

m7 =

√
2− δ−m1 +m7 +

m5

3
,

m8 =

√
3− δ+m1 −m5 +m6 +

8δ

m7
,

γ1 = m7 +m8,

and γ2 = m7 −m8.

From (10) and (13), we get

F =
β∗

e(1±γi)/2
{
1+

1± γi
2

− (
1± γi
2

)2
} . (14)

As we know that H(x, p) = 1
2F
2 , therefore, by using the equation (14), we get

H(x, p) =
β∗2

e(1±γi)
{
1+

1± γi
2

− (
1± γi
2

)2
}2 , (15)
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putting β∗ = bjpj, in equation (15), we get

H(x, p) =
(bjpj)

2

e(1±γi)
{
1+

1± γi
2

− (
1± γi
2

)2
}2 . (16)

�

Theorem 3 Let (M,F) be a special Finsler space, where F is given by the
equation (1). If b2 = aijb

ibj 6= 1, then the L-dual of (M,F) is the space on
T∗M having the fundamental function H(x, p) given by the equations (23).

Proof. From (9), we get

F =
β∗

es {(1− s)s+ b2}
. (17)

Substituting F from the equation (17) in (8), we get

α∗2 =
β∗

{(1− s)s+ b2}
[(1− s)

β∗

{(1− s)s+ b2}
+ β]

(18)

which implies that

(b2 + s− s2)2 − δ(1+ b2 − s2) = 0

or s4 − 2s3 + (1− 2b2 + δ)s2 + 2b2s+ b4 − (1+ b2)δ = 0, (19)

where

δ =
β∗2

α∗2 .

Using Mathematica for solving the above equation (19), we get

s = (1± γi)/2, i = 1, 2 (20)
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where

n1 = (1− 2b2 + δ)/3,

n2 = 1− 10δ+ δ
2 + 8(1− 2δ)b2 + 16b4,

n3 = 2(1− 15δ+ 39δ
2 + δ3) + (24− 168δ+ 60δ2)b2

+ (96− 192δ)b2 + 128b6,

n4 = 432δ
3(−1+ 7δ+ δ2) + 432(1− 19δ+ δ2 + δ3)δ2b2

+ 432(8− 28δ− δ2)δ2b4 + 6912δ2b6,

n5 = 8(1− 2b
2 − 3n1),

n6 = n1 +
21/3n2

3(n3 +
√
n4)

,

n7 =
√
2b2 − δ+ n7,

n8 = 1+ 2b
2 − δ− n7,

n9 =
n5
4n7

,

γ1 = n7 +
√
n8 − n9

and γ2 = n7 −
√
n8 − n9.

From (17) and (20), we get

F =
β∗

e(1±γi)/2
{
b2 +

1± γi
2

− (
1± γi
2

)2
} . (21)

As we know that H(x, p) = 1
2F
2 , therefore by using (21), we get

H(x, p) =
β∗2

e(1±γi)
{
1+

1± γi
2

− (
1± γi
2

)2
}2 , (22)

putting β∗ = bjpj, in equation (22), we get

H(x, p) =
(bjpj)

2

e(1±γi)
{
1+

1± γi
2

− (
1± γi
2

)2
}2 . (23)

�
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