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Abstract. In this paper, the nonlinear Thomas-Fermi equation for neu-
tral atoms by using the fractional order of rational Chebyshev functions
of the second kind (FRC2), FUαn(t, L), on an unbounded domain is solved,
where L is an arbitrary parameter. Boyd (Chebyshev and Fourier Spectral
Methods, 2ed, 2000 ) has presented a method for calculating the optimal
approximate amount of L and we have used the same method for cal-
culating the amount of L. With the aid of quasilinearization and FRC2
collocation methods, the equation is converted to a sequence of linear
algebraic equations. An excellent approximation solution of y(t), y ′(t),
and y ′(0) is obtained.

1 Introduction

In this section, the introduction of numerical methods used for solving equa-
tions in unbounded domains is expressed. Furthermore, the mathematical
model of Thomas-Fermi equation is introduced.
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1.1 The problems on unbounded domains

There are several numerical methods for solving differential equations on un-
bounded domains, such as:

1. Finite difference method (FDM): One of the oldest and the simplest
methods for solving differential equations is using the FDM approxi-
mations for derivatives. The FDMs are in a class of the discretization
methods [2].

2. Finite element method (FEM): One of the important methods used for
solving the boundary value problems for partial differential equations is
the finite element method [2].

3. Meshfree methods: Meshfree methods are those that do not require a
connection between nodes of the simulation domain, i.e. a mesh, but
are rather based on the interaction of each node with all its neighbors
[3]. The use of Radial Basis Functions (RBFs) in meshless methods is
very common in solving differential equations [4, 5]. This approach has
recently received a great deal of attention from researchers [6, 7].

4. Spectral methods: Several approaches in Spectral methods have been
proposed for solving the problems on unbounded domains:

(a) Using functions such as Hermite, Sinc, Laguerre, and Bessel func-
tions that are defined on the unbounded domains. This approach
investigated by Parand et al. [8, 9], Funaro & Kavian [10], and Guo
& Shen [11].

(b) Mapping an unbounded equation to a bounded equation. Authors
of [12, 13] have applied this approach in their works.

(c) Replacing unbounded domains with [−B,B] or [0, B] by choosing B
sufficiently large. This method is named domain truncation [14, 15].

(d) Mapping the bounded basic functions to the unbounded basic func-
tions. In this approach, the basic functions on a bounded domain
convert to the functions on an unbounded domain. For example,
Boyd [16] introduced a new spectral basis, called rational Cheby-
shev functions, on the unbounded domain by mapping on the Cheby-
shev polynomials, and also in Refs. [17, 18, 19]. There are three
important mappings for this approach:
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(A) Algebraic mapping: basic functions on a bounded domain t ∈
[a, b] by using the transformation of t = bx+aL

x+L convert to func-
tions on an unbounded domain x ∈ [0,∞), where L is an arbi-
trary parameter [21].

(B) Exponential mapping: basic functions on a bounded domain
t ∈ [a, b] by using the transformation of t = b + (a − b)e−

x
L

convert to functions on an unbounded domain x ∈ [0,∞) [20].

(C) Logarithmic mapping: basic functions on a bounded domain
t ∈ [a, b] by using the transformation of t = a+(b−a) tanh(2 xL)
convert to functions on an unbounded domain x ∈ [0,∞).

In this paper, a Spectral method is introduced to solve unbounded problems
by using the fractional order of rational Chebyshev orthogonal functions of the
second kind.

1.2 The Thomas-Fermi equation

The Thomas-Fermi equation is an important nonlinear singular differential
equation which is defined on semi-infinite domain [22, 23]:

d2y(t)

dt2
−
1√
t
y
3
2 (t) = 0, t ∈ [0,∞), (1)

y(0) = 1, y(∞) = 0.

The nonlinear Thomas-Fermi equation appears in the problem of determin-
ing the effective nuclear charge in heavy atoms, therefore, many great scholars
were considered it, such as Fermi [24], Feynman (physics) [25], and Slater
(chemistry) [26].

The initial slope y ′(0) is difficult for computing by any means and plays
an important role in determining many properties of the physical of Thomas-
Fermi atom [27]. It determines the energy of a neutral atom in Thomas-Fermi
approximation:

E =
6

7

(
4π

3

) 2
3

Z
7
3y ′(0), (2)

where Z is the nuclear charge.
For these reasons, the problem has been studied by many researchers and

has been solved by different techniques where a number of them are listed in
Table 1, in this table, the calculated value of y ′(0) by researchers is shown.
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The rest of the paper is constructed as follows: the FRC2s and their prop-
erties are expressed in section 2. The methodology is explained in section 3.
In section 4, results and discussions of the method are shown. Finally, a con-
clusion is provided.

2 Fractional order of rational Chebyshev functions
of the second kind

In this section, the definition of the fractional order of rational Chebyshev
functions of the second kind (FRC2s) and some theorems for them is provided.

2.1 The FRC2s definition

Using some transformations, some researchers have generalized the Cheby-
shev polynomials to semi-infinite or infinite domains, for example the rational
Chebyshev functions on the semi-infinite domain [28], the rational Chebyshev
functions on an infinite domain [1], and the generalized fractional order of the
Chebyshev functions (GFCF) on finite interval [0, η] [29, 30, 31] are introduced
by using transformations x = t−L

t+L , x = t√
t2+L

, and x = 1− 2( tη)
α, respectively.

In the proposed work, by new transformation x = tα−L
tα+L , L > 0 on the Cheby-

shev polynomials of the second kind, the fractional order of rational Chebyshev
functions of the second kind on domain [0,∞) is introduced, which is denoted
by FUαn(t, L) = Un(

tα−L
tα+L) where L is a numerical parameter.

The FUαn(t, L) can be calculated by using the following relation:

FUα0 (t, L) = 1, FUα1 (t, L) = 2
tα − L

tα + L
,

FUαn+1(t, L) = 2
tα − L

tα + L
FUαn(t, L) − FUαn−1(t, L), n = 1, 2, · · · , (3)

and we can also calculate:

FUαn(t, L) =

n∑
k=0

βn,k(t
α + L)−k, (4)

where

βn,k = (−4L)k
(n+ k+ 1)!

(n− k)!(2k+ 1)!
and β0,k = 1.
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2.2 Approximation of functions

Any function of continuous and differentiable y(t), t ∈ [0,∞), can be expanded
as follows:

y(t) =

∞∑
n=0

an FU
α
n(t, L),

where the coefficients an can be obtained by:

an =
8αL

3
2

π

∫∞
0

FUαn(t, L) y(t) w(t)dt, n = 0, 1, 2, · · · .

In the numerical methods, we have to use first (m + 1)-terms FRC2s and
approximate y(t):

y(t) ≈ ym(t) =
m∑
n=0

an FU
α
n(t, L). (5)

Theorem 1 The FRC2, FUαn(t, L), has precisely n real simple zeros on the
interval (0,∞) in the form

tk =

(
L
1+ cos

(
kπ
n+1

)
1− cos

(
kπ
n+1

)) 1
α

, k = 1, 2, ..., n.

Proof. Chebyshev polynomial of the second kind Un(x) has n real simple
zeros [1]:

xk = cos

(
kπ

n+ 1

)
, k = 1, 2, ..., n.

Therefore Un(x) can be written as

Un(x) = (x− x1)(x− x2)...(x− xn).

Using transformation x = tα−L
tα+L yields to

FUαn(t, L) =

((tα − L
tα + L

)
− x1

)((tα − L
tα + L

)
− x2

)
...

((tα − L
tα + L

)
− xn

)
,

so, the real zeros of FUαn(t, L) are tk =
(
L 1+xk1−xk

) 1
α . �
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Theorem 2 The FRC2s are orthogonal on domain [0,∞) for all L > 0 with

positive weight function w(t) = t
3
2
α−1

(tα+L)3
as follows:∫∞

0

FUαn(t, L) FU
α
m(t, L) w(t) dt =

π

8αL
3
2

δmn, (6)

where δmn is the Kronecker delta.

Proof. The Chebyshev polynomials of the second kind Un(x) are orthogonal
as [1]: ∫ 1

−1
Un(x) Um(x)

√
1− x2 dx =

π

2
δmn.

Now, by using transformation x = tα−L
tα+L , L > 0 on the integral, the theorem

can be proved. �

3 The methodology

The quasi-linearization method (QLM) based on the Newton-Raphson method
has introduced by Bellman and Kalaba [32, 33]. Some researchers have used
this method in their works [34, 35, 36, 37].

Occasionally the linear ordinary differential equation that gets from the
QLM at each iteration does not solve analytically. Hence we can use the Spec-
tral methods to approximate the solution.

The QLM for Thomas-Fermi equation (1) is as follows:

d2yn+1
dt2

−
3

2
√
t
(yn(t))

1/2yn+1(t) = −
1

2
√
t
(yn(t))

3/2, (7)

yn+1(0) = 1, yn+1(∞) = 0, (8)

where n = 0, 1, 2, 3, · · · .
The QLM iteration requires an initialization or ”initial guess” y0(t). We

assume that y0(t) ≡ 1, i.e. the initial guess satisfies in the boundary condition
at zero. Mandelzweig and Tabakin in Ref. [38] have shown that if the initial
function is true in one of the conditions of (8) then the QLM is convergent.

Baker has shown that the solution of Eq. (1) is generated by the powers of

t
1
2 as follows [39]:

y(t) = 1+ Bt+
4

3
t
3
2 +

2

5
Bt

5
2 +

1

3
t3 +

3

70
B2t

7
2 +

2

15
Bt4

+
4

63

(2
3
−
1

16
B3
)
t
9
2 + · · · ,

(9)
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for this reason, in Eq. (3), we assume that α = 1
2 .

We apply the FRC2s collocation method to solve the linear ordinary differ-
ential equations at each iteration Eq. (7) with boundary conditions (8).

Approximation of functions yn+1(t) by using Eq. (5) is shown by ym,n+1(t).
Now, for applying the collocation method, we construct the residual function
for the Thomas-Fermi equation by substituting ym,n+1(t) for y(t) in Eq. (1):

RESmn (t) =
d2

dt2
(ym,n+1(t)) −

1√
t
(ym,n+1(t))

3
2 . (10)

In this study, the roots of the FRC2s in the semi-infinite domain [0,∞)
(Theorem 1) have been used as collocation points. Also, consider that all of
the computations have been done by Maple 2015.

Boyd in Ref. [1] has provided the method of the experimental trial-and-error
for calculating the approximation of the optimal value of L:

“The experimental trial-and-error method (Optimizing infinite Inter-
val Map Parameter) (Page 377 in Ref. [1]):
Plot the coefficients ai versus degree on a log-linear plot. If the graph abruptly
flattens at some m, then this implies that L is TOO SMALL for the given m,
and one should increase L until the flattening is postponed to i = m.”

It must be noted that the optimal value of L is dependent on m.
Fig. 1 presents the graph of the coefficients of log(|ai|) for different values of

L, m = 200 and n = 50, according to the above experimental trial-and-error
method, the approximation optimal amount of L is about 21.

Figure 1: Graph of logarithm of coefficients |ai| with m = 200, n = 50, and
different values of L, for calculating an approximation optimal value of L



Solving nonlinear Thomas-Fermi equation 141

Bellman & Kalaba [32] and Mandelzweig & Tabakin [38] proved the con-
vergence of the QLM. Let δyn+1(t) ≡ yn+1(t) − yn(t), then it can show that
‖ δyn+1 ‖≤ k ‖ δyn ‖2 where k is a positive real constant [38]. Therefore,
the convergence rate is of the order of 2, i.e. O(h2). We can also obtain for
(n+ 1)-th iteration:

‖ δyn+1 ‖≤ (k ‖ δy1 ‖)2
n

/k. (11)

Furthermore, it can be hoped that even if the initial guess is not appropriate,
then after a while the solution converges [32].

4 Results and discussion

Calculating the amount of y ′(0) of Thomas-Fermi potential is very important
for determining many physical properties of Thomas-Fermi atom.

Comparison of methods: Zaitsev et al. [40] showed that the Adams-Bashforth
and Runge-Kutta methods to solve this equation on unbounded domains are
ill-conditioned, hence, researchers have used the methods of numerical and
semi-analytical for solving the equation, and some researchers can calculate
very good solutions. For example, authors of [55, 57, 58, 59, 60, 61, 64, 68, 70]
used the analytical methods for solving the equation and Amore et al. [68] were
able to calculate the best solution using Pade-Hankel method, correct to 26
decimal places. Authors of [54, 56, 62, 63, 65, 66, 67] used the numerical meth-
ods for solving the equation and Parand & Delkhosh [73] were able to calculate
the best solution using the combination of the quasilinearization method and
the fractional order of rational Chebyshev collocation method, correct to 37
decimal places. In numerical methods, there is usually a numerical arbitrary
parameter which selected by authors. Such as, in [54] the parameter is chosen
0.258497 to accuracy 10−6, in [56] is chosen 0.93799968 to accuracy 10−8, in
[63] is chosen 0.62969503 to accuracy 10−6, in [65] is chosen 0.0958885 to ac-
curacy 10−7, and in [67] is chosen 1.588071 to accuracy 10−7. Here we choose
L = 21 to accuracy 10−37.

Table 1 presents some of the calculated values of y ′(0) of Thomas-Fermi
potential by some researchers. It is clear that some researchers were able to
calculate good solution and accuracy. The last three rows present the best
solution obtained by the present method for different values of m.
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Table 1: Comparison of the obtained values of y ′(0) by researchers, inaccurate
digits are bold.

Author/Authors Obtained value of y ′(0)

Fermi (1928) [24] -1.58
Baker (1930) [39] -1.588558
Bush and Caldwell (1931) [41] -1.589
Miranda (1934) [42] -1.5880464
Slater and Krutter (1935) [26] -1.58808
Feynman et al. (1949) [25] -1.58875
Kobayashi et al. (1955) [43] -1.588070972
Mason (1964) [44] -1.5880710
Laurenzi (1990) [45] -1.588588
MacLeod (1992) [46] -1.5880710226
Wazwaz (1999) [47] -1.588076779
Epele et al. (1999) [48] -1.588102
Esposito (2002) [49] -1.588
Liao (2003) [50] -1.58712
Khan and Xu (2007) [51] -1.586494973
El-Nahhas (2008) [52] -1.55167
Yao (2008) [53] -1.588004950
Parand and Shahini (2009) [54] -1.5880702966
Marinca and Herianu (2011) [55] -1.5880659888
Oulne (2011) [56] -1.588071034
Abbasbandy and Bervillier (2011) [57] -1.5880710226113753127189
Fernandez (2011) [58] -1.588071022611375313
Zhu et al. (2012) [59] -1.58807411
Turkylmazoglu (2012) [60] -1.58801
Zhao et al. (2012) [61] -1.5880710226
Boyd (2013) [62] -1.5880710226113753127186845
Parand et al. (2013) [63] -1.588070339
Marinca and Ene (2014) [64] -1.5880719992
Kilicman et al. (2014) [65] -1.588071347
Jovanovic et al. (2014) [66] -1.588071022811
Bayatbabolghani & Parand(2014)[67] -1.588071
Amore et al. (2014) [68] -1.588071022611375312718684508
Fatoorehchi & Abolghasemi(2014)[69] -1.588076818
Liu and Zhu (2015) [70] -1.588072
Parand et al. (2016) [71] -1.588071022611375312718684509
Parand et al. (2016) [72] -1.588071022611375312718684509423
Parand and Delkhosh (2017) [73] -1.5880710226113753127186845094239501095
Parand and Delkhosh (2017) [74] -1.588071022611375312718684509

This paper [m=200] -1.5880710226113753127186845094239501093
” ” [m=100] -1.5880710226113753127186845094239
” ” [m=50] -1.588071022611375312728

Table 2 presents the absolute errors in the calculation of y ′(0) for different
values of m and the obtained results are compared with the best solution
calculated in Ref. [73].
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Table 2: Absolute errors of y ′(0) for different values of m and iterations

m Lopt 10th Iter. 20th Iter. 30th Iter. 40th Iter. 50th Iter.

25 0.5 3.970e-08 3.939e-08 3.939e-08 3.939e-08 3.939e-08
75 5 6.667e-13 3.926e-18 5.878e-24 4.065e-30 4.646e-30
100 7 6.524e-13 5.656e-20 4.026e-24 8.314e-31 1.976e-33
175 19 6.524e-13 1.065e-25 1.349e-27 4.240e-31 1.908e-34
200 21 6.524e-13 3.477e-25 6.072e-29 9.237e-32 1.974e-37

Table 3: Obtained values of y(t) by the present method for different values t

t y(t) t y(t) t y(t)

0.25 0.7552014653133312 5 7.880777925136990e-2 125 5.423519678389911e-5
0.50 0.6069863833559799 6 5.942294925042258e-2 150 3.263396444625690e-5
0.75 0.5023468464123686 7 4.609781860449858e-2 175 2.115958647941346e-5
1.00 0.4240080520807056 8 3.658725526467680e-2 200 1.450180349694576e-5
1.25 0.3632014144595141 9 2.959093527054687e-2 300 4.548571953616680e-5
1.50 0.3147774637004581 10 2.431429298868086e-2 400 1.979732628112504e-5
1.75 0.2754513279960917 15 1.080535875582389e-2 500 1.034077168199939e-5
2.00 0.2430085071611195 20 5.784941191566940e-3 1000 1.351274773541057e-7
2.25 0.2158946265761301 25 3.473754416765632e-3 2000 1.733984751613821e-8
2.50 0.1929841234580007 50 6.322547829849047e-4 3000 5.189408334513832e-9
3.00 0.1566326732164958 75 2.182104320497469e-4 5000 1.130926706343084e-9
4.00 0.1084042569189077 100 1.002425681394073e-4 10000 1.42450045099559e-10

Tables 3 and 4 present the obtained results of y(t) and y ′(t) by the present
method for different values of t.

Table 4: Obtained values of y ′(t) by the present method for different values t

t y ′(t) t y ′(t) t y ′(t)

0.25 -0.7223069849102349 5 -2.356007495470051e-2 125 -1.202665391336449e-6
0.50 -0.4894116125745380 6 -1.586754953340707e-2 150 -6.091399478608917e-7
0.75 -0.3583068801675136 7 -1.114253181486708e-2 175 -3.410947673774533e-7
1.00 -0.2739890515933062 8 -8.088602969645474e-3 200 -2.057532316475268e-7
1.25 -0.2157941303007336 9 -6.033074714457392e-3 300 -4.365949618530290e-8
1.50 -0.1737387990139451 10 -4.602881871269254e-3 400 -1.436682305996181e-8
1.75 -0.1423209371968936 15 -1.515323082023606e-3 500 -6.034363442475256e-9
2.00 -0.1182431916254876 20 -6.472543327776920e-4 1000 -3.98801070822799e-10
2.25 -0.0994093212014470 25 -3.240429977697511e-4 2000 -2.57608536992070e-11
2.50 -0.0844261867988090 50 -3.249890204825881e-5 3000 -5.15300117644723e-12
3.00 -0.0624571308541209 75 -7.777974714283007e-6 5000 -6.75339712163883e-13
4.00 -0.0369437578241234 100 -2.739351068678330e-6 10000 -4.26161647550093e-14
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Fig. 2 presents the graphs of the residual errors of RESmn of Eq. (10) with
m = 50, 75, 100, 150, 200 and n = 50, and the logarithm of coefficients |ai| with
m = 200 and n = 50, for showing the convergence of the method. It can see
that the residual errors are very small value, about 10−39.

(a) The residual errors (b) The logarithm of coefficients |ai|

Figure 2: Graphs of the residual errors for different values of m and the loga-
rithm of coefficients |ai|, for showing the convergence of the method.

5 Conclusion

In this paper, the combination of the methods of the quasilinearization and the
FRC2s collocation is used for constructing an approximation of the solution
of the nonlinear singular Thomas-Fermi equation on unbounded domain. The
present method has several advantages. For example, for the first time, the
fractional order of rational Chebyshev functions of the second kind (FRC2s)
has been introduced as a new basic for Spectral methods. The fractional basis
were used to solve an ordinary differential equation and this provides an in-
sight into an important issue. The roots of the FRC2s are used on unbounded
domain [0,∞) as collocation points for solving Thomas-Fermi equation and
the problem does not convert to a bounded domain. Some researchers solved
the equation by changing the variables in this equation [58, 62] or domain
truncation [38] but we solved the problem without any changing on variables
or domain in this equation. An approximate optimal value of L is calculated.
The convergence of the obtained results is shown. The accurate solutions for
y(t), y ′(t) and y ′(0) by 200 collocation points are obtained. This article pro-
vided a good history of solving Thomas-Fermi equation by other researchers
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and the numerical methods to solve equations in unbounded domains.
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