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Abstract. In the paper, the authors find the sum of the Lah num-
bers and make sure that the Kummer confluent hypergeometric function

1F1(n+ 1; 2; z) has only n− 1 real and negative zeros.

1 Notation and main results

In combinatorics, the Bell numbers, usually denoted by Bn for n ∈ {0} ∪ N,
count the number of ways a set with n elements can be partitioned into disjoint
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and nonempty subsets. These numbers have been studied by mathematicians
since the 19th century, and their roots go back to medieval Japan, but they
are named after Eric Temple Bell, who wrote about them in the 1930s. Every
Bell number Bn can be generated by

ee
x−1 =

∞∑
k=0

Bk
k!
xk

or, equivalently, by

ee
−x−1 =

∞∑
k=0

(−1)kBk
xk

k!
.

In combinatorics, the Stirling numbers arise in a variety of combinatorics
problems. They are introduced in the eighteen century by James Stirling.
There are two kinds of the Stirling numbers: the Stirling numbers of the first
and second kinds. Every Stirling number of the second kind, usually denoted
by S(n, k), is the number of ways of partitioning a set of n elements into k
nonempty subsets, can be computed by

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k− i)n,

and can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
, k ∈ {0} ∪ N.

In combinatorics, the Lah numbers, discovered by Ivo Lah in 1955 and
usually denoted by L(n, k), count the number of ways a set of n elements can
be partitioned into k nonempty linearly ordered subsets and have an explicit
formula

L(n, k) =

(
n− 1

k− 1

)
n!

k!
.

The Lah numbers L(n, k) can also be interpreted as coefficients expressing
rising factorials (x)n in terms of falling factorials 〈x〉n, where

(x)n =

{
x(x+ 1)(x+ 2) . . . (x+ n− 1), n ≥ 1,
1, n = 0
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and

〈x〉n =

{
x(x− 1)(x− 2) . . . (x− n+ 1), n ≥ 1,
1, n = 0.

In combinatorics and the theory of polynomials, the partial Bell polynomials
Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 can be defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

and satisfy

Bn,k(1!, 2!, . . . , (n− k+ 1)!) = L(n, k). (1)

The complete Bell polynomials Yn(x1, x2, . . . , xn) are defined [3, p. 134] by

Yn(x1, x2, . . . , xn) =

n∑
k=1

Bn,k(x1, x2, . . . , xn−k+1) (2)

and

Y0(x1, x2, . . . , xn) = 1. (3)

In the theory of special functions, the generalized hypergeometric series

pFq(a1, . . . , ap;b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

is defined for complex numbers ai ∈ C and bi ∈ C\{0,−1,−2, . . . } and for pos-
itive integers p, q ∈ N. The generalized hypergeometric series pFq(a1, . . . , ap;
b1, . . . , bq; z) converges absolutely for all z ∈ C if p ≤ q, for |z| < 1 if p = q+1,
and for |z| = 1 if p = q+1 and <[b1+ · · ·+bq−(a1+ · · ·+ap)] > 0. Specially,
the series

1F1(a;b; z) =

∞∑
k=0

(a)k
(b)k

zk

k!

is called the Kummer confluent hypergeometric function and it is analytic for
all z ∈ C. See [4, pp. 3–5].

In [5] and [7], two explicit formulas for the Bell numbers Bn in terms of
the Stirling numbers of the second kind S(n, k) together with the Kummer
confluent hypergeometric function 1F1(k+1; 2; 1) and the Lah numbers L(n, k)
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respectively were established as follows. For n ∈ N, the Bell numbers Bn can
be expressed as

Bn =
1

e

n∑
k=1

(−1)n−k1F1(k+ 1; 2; 1)k!S(n, k) (4)

and

Bn =

n∑
k=1

(−1)n−k

[
k∑
`=1

L(k, `)

]
S(n, k). (5)

Comparing the formulas (4) with (5) motivates us to conjecture that

k!

e
1F1(k+ 1; 2; 1) =

k∑
`=1

L(k, `), k ∈ N. (6)

With the help of the famous software Mathematica 9, we can verify that
the equality (6) holds true for 1 ≤ k ≤ 9 and they equal the following values
respectively:

e,
3

2
e,

13

6
e,

73

24
e,

167

40
e,

4051

720
e,

37633

5040
e,

43817

4480
e,

4596553

362880
e.

This hints us that the above conjecture is true.
The aim of this paper is to prove a more general conclusions than the above

conjecture. This general conclusion can be restated as the following theorems.

Theorem 1 For z ∈ C and n ∈ N, the formula

n∑
k=1

L(n, k)zk−1 =
n!

ez
1F1(n+ 1; 2; z) (7)

is true. Specially, for n ∈ N, the Lah number L(n, k) and the complete Bell
polynomials Yn(x1, x2, . . . , xn) satisfy

n∑
k=1

L(n, k) =
n!

e
1F1(n+ 1; 2; 1) (8)

and

Yn(1!, 2!, . . . , n!) =
n!

e
1F1(n+ 1; 2; 1) (9)

respectively.
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Theorem 2 The Kummer confluent hypergeometric function 1F1(n + 1; 2; z)
has only n− 1 real and negative zeros.

Remark 1 The equations in (4) can be rewritten as

n∑
k=1

(−1)n−kakS(n, k) = Bn,

where ak is sequence A000262 in the Online Encyclopedia of Integer Sequences.
Such a sequence ak has a nice combinatorial interpretation: it counts “the
sets of lists, or the number of partitions of {1, 2 . . . , k} into any number of
lists, where a list means an ordered subset.” This reveals the combinatorial
interpretation of the special sequence k!1F1(k+ 1; 2; 1) and the total sum Lk =∑k
`=1 L(k, `) of the Lah numbers L(k, `).

2 Proofs of theorems

We now start out to prove Theorems 1 and 2.
Proof. [Proof of Theorem 1] It is easy to see that the equality (9) follows
from substituting (1) into (8) and making use of (2) and (3). Hence, in what
follows, we pay our attention to the proof of the formula (7).

In [6, p. 79, Theorem 2.1], we obtained

n∑
k=1

L(n, k)xk =
e−x

xn

∫∞
0

I1
(
2
√
t
)
tn−1/2e−t/x d t (10)

for n ∈ N and x > 0, where the modified Bessel function of the first kind Iν(z)
can be defined by

Iν(z) =

∞∑
k=0

1

k!Γ(ν+ k+ 1)

(
z

2

)2k+ν
(11)

for ν ∈ R and z ∈ C. See [1, p. 375, 9.6.10]. Substituting (11) for ν = 1

http://oeis.org/A000262
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into (10) and straightforward computing arrive at

n∑
k=1

L(n, k)xk =
e−x

xn

∫∞
0

∞∑
k=0

1

k!(k+ 1)!
tn+ke−t/x d t

=
e−x

xn

∞∑
k=0

1

k!(k+ 1)!

∫∞
0

tn+ke−t/x d t

=
e−x

xn

∞∑
k=0

1

k!(k+ 1)!
xn+k+1Γ(n+ k+ 1)

= e−x
∞∑
k=0

(n+ k)!

k!(k+ 1)!
xk+1

= n!xe−x
∞∑
k=0

(n+ 1)k
(2)k

xk

k!

= n!xe−x1F1(n+ 1; 2; x).

Therefore, it follows that

n∑
k=1

L(n, k)xk−1 =
n!

ex
1F1(n+ 1; 2; x) (12)

for x > 0 and n ∈ N.
Since the functions

n∑
k=1

L(n, k)zk−1 and
n!

ez
1F1(n+ 1; 2; z)

are entire functions, that is, they are analytic on the whole complex plane
C, by the uniqueness theorem of analytic functions in the theory of complex
functions, see [17, p. 210, Corollary], and by the formula (12), we easily derive
the formula (7) for z ∈ C and n ∈ N. The proof of Theorem 1 is complete. �

Proof. [Proof of Theorem 2] In [2, Lemma], the authors stated that if

Pm,k(x) =

m∑
n=1

Lk(m,n)x
n,

then the m roots of Pm,k(x) are real, distinct, and non-positive for all m ∈ N,
where the associated Lah numbers Lk(m,n) for k > 0 can be defined by

Lk(m,n) =
m!

n!

n∑
r=1

(−1)n−r
(
n

r

)(
m+ rk− 1

m

)
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and Lk(m,n) = 0 for n > m. Since L1(m,n) = L(m,n), see [2, p. 158, Eq. (4)],
when k = 1, the polynomial Pm,k(x) becomes

Pm,1(x) =

m∑
n=1

L(m,n)xn.

The formula (7) implies that the integer polynomial Pm,1(x)
x have the same

zeros as the Kummer confluent hypergeometric function 1F1(n+ 1; 2; z). Since
the Kummer confluent hypergeometric function 1F1(n+1; 2; z) has no positive
zero, the zeros of Pm,1(x) are non-positive, and then the Kummer confluent
hypergeometric function 1F1(n+1; 2; z) has only n−1 real and negative zeros.
The proof of Theorem 2 is complete. �

Remark 2 The formula (5) has been generalized by R. B. Corcinoy, J. T.
Malusay, J. A. Cillar, G. J. Rama, O. V. Silang, and I. M. Tacoloy in Philip-
pines. There are more new results in [12] and [13, Section 5] for the Bell
numbers Bn.

Remark 3 There are some new and closely related results published in [9, 10,
11, 14, 15, 16, 18] and references cited therein.

Remark 4 This paper is a revised version of the preprint [8].
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