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Abstract. In this paper we will present abstract versions of fundamen-
tal theorem of calculus (FTC) in the setting of Kurzweil - Henstock inte-
gral for functions taking values in an infinite dimensional locally convex
space. The result will also be dealt with weaker forms of primitives in a
widespread setting of integration theories generalising Riemann integral.

1 Introduction and preliminaries

The (FTC) theorem is one of the celeberated results of classical analysis. The
result establishes a relation between the notions of integral and derivative of a
function. In its origional form FTC asserts that: if for the function F : [a, b] −→
R, F ′(t) exists and F ′(t) = f(t) and if f(t) if integrable then∫b

a

f(t)dt = F(b) − F(a).

Let us recall that a (tagged) partition of the interval [a, b] is a finite set of
non-overlapping subintervals P = {[xi−1, xi], ti}

n
i=1, where a = x0 < x1 < · · · <
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xn = b and ti’s are the tags attached to each subinterval [xi−1, xi]. The norm
or the mesh of the partition is define to be

|P | = max
1≤i≤n

(ti − ti−1).

Definition 1 A (bounded) function f : [a, b] −→ R is said to be Riemann
integrable if: ∃ x ∈ R such that ∀ ε > 0 ∃ δ > 0 such that for each (tagged)
partition P = {[xi−1, xi], ti}

n
i=1 of [a, b] with |P| < δ

|S(f,P) − x| ≤ ε,

where S(f,P) =
∑n
i=1 f(ti)(xi − xi−1) is the Riemann sum of f corrsponding

to the partition P: The (unique) vector x, to be denoted by
∫b
a f(t)dt shall be

called the Riemann integral of f over [a, b].

Theorem 1 If f : [a, b] −→ R is differentiable on [a, b] and f ′(t) is (Rie-
mann) integrable then ∫b

a

f ′(t)dt = f(b) − f(a).

In the preceeding therem the assumption of the integrability of the derivative
f ′(t) is unavoidable. Below we give an explicate of FTC in the setting of
Kurzweil – Henstock integral, where the integrability of the derivative comes
for free.
Recalling that a gauge is a positive function δ : [a, b] −→ (0,∞) and a partition
P = {[xi−1, xi], ti}

n
i=1 is said to be δ-fine if [xi−1, xi] ⊂ (ti−δ(ti), ti+δ(ti)) ∀ 1 ≤

i ≤ n.

Definition 2 [2], [5] A function f : [0, 1] −→ R is said to be Kurzweil –
Henstock integrable if there exists x ∈ R such that the following is true: for
any ε > 0, there exists a gauge δ(t) > 0 on [a, b] such that if {[xi−1, xi], ti}

n
i=1

is any δ-fine (tagged) partition of [a, b] then

|S(f,P) − x| ≤ ε,

where x is the integral of f and S(f,P) =
n∑
i=1

f(ti)(xi − xi−1) is the Riemann

sum, symbolically we write f ∈ KH([0, 1]).

The (KH–integral) integral is defined in almost the same way as Riemann
integral through Riemann sums. The only difference is in defining the δ here it
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is assumed to be a positive function instead of a constant. The only technicality
to be taken care of and the definition to make sense is that we must have a
δ-fine partition for every gauge. Pierre Cousin [3] gives the existence of such a
partition for every gauge δ(t) in the form of so called Cousin’s lemma. Before
proceeding further, we would like to show that the KH – integral sub- sumes
Riemann integral properly through the famous Dirchlet’s function f : [0, 1] −→
R

f(x) =

{
1, x is rational
0, x is irrational.

We know that f is not Riemann integrable. Here we will show that f is KH –
integrable. Let ε > 0 be given and set

δ(x) =

{
1, x is irrational

ε
2i+1 , x = qi, i ≥ 1

where qi is the enumeration of rationals in [0, 1]. Now let P = {[xi−1, xi], ti}
n
i=1

be a δ-fine partition of [0, 1]. If ti is not rational, the term f(ti)(xi − xi−1) in
the Riemann sum of f with respect to P is 0. If ti is rational and ti = qj for
some j, the term f(ti)(xi−xi−1) in the Riemann sum is less than 2δ(qj) =

ε
2j+1 .

Thus we have ∣∣∣∣∣
n−1∑
i=0

f(ti)(xi − xi−1)

∣∣∣∣∣ < 2
∞∑
j=1

ε

2j+1
= ε

which shows that f ∈ KH([0, 1]). This is the most common example of a
bounded function which is not Riemann integrable. But it turns out to be KH –
integrable and furnishes a comparison between the two theories of integration.

Theorem 2 If f : [a, b] −→ R is differentiable on [a, b] then f ′(t) is (Kurzweil
– Henstock) integrable and∫b

a

f ′(t)dt = f(b) − f(a).

A slight modification in the definition of δ makes an immense impact and if
we take it to be a constant we get the Riemann integral. It is quite remark-
able that the simple idea of replacing δ by a positive function δ(t) leads to a
powerfull generalization of Riemann integral. The convergence theorems of the
Lebesgue integral hold true in the setting of KH – integral and more impor-
tantly FTC holds in its full generality without the assumption of integrability
of the derivative [1].
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Definition 3 [2] Let F, f : [a, b] −→ R, we say that:
(i) F is primitive of f on [a, b] if F ′(x) exists and F ′(x) = f(x) for all x ∈ [a, b].
(ii) F is a-primitive of f on [a, b] if F is continuous, F ′(x) exists and F ′(x) = f(x)
outside a null set E ⊂ [a, b].
(iii) F is c-primitive of f on [a, b] if F is continuous, F ′(x) exists and F ′(x) = f(x)
outside a countable set E ⊂ [a, b].
(iv) F is f-primitive of f on [a, b] if F is continuous, F ′(x) exists and F ′(x) = f(x)
outside a finite set E ⊂ [a, b].

In the following example we show that the proof of Theorem 2 can be re-
designed to permit one point of non-differentiability.

Example 1 Define f : [0, 1] −→ R by

f(x) =

{
1√
x
, x ∈ (0, 1]

0, x = 0

f is not bounded on [0, 1]. If we take F(x) = 2x for x ∈ [0, 1] then F is continuous
on [0, 1] and F ′(x) = f(x) for all x ∈ (0, 1] but F ′(0) does not exist. Hence F is
an f-primitive of f on [0, 1] with the exceptional set E = {0}. Now, if t ∈ (0, 1]
and ε > 0 we can choose δ(t) in such a way that the conclusion of FTC holds

true for F. To tackle with the point of exception 0 we choose δ(0) = ε2

4 so that
if 0 ≤ v ≤ δ(0), then F(v) − F(0) = 2

√
v ≤ ε.

Now let P = {[xi−1, xi], ti}
n
i=1 be a tagged partition of [0, 1] that is δ-fine. If all

of the tags belong to (0, 1] the proof of Theorem 2 applies without any change.
However, if the first tag t1 = 0 then the first term in the Riemann sum S(f,P)
is equal to f(0)(x1 − x0) = 0. Also we have

|F(x1) − F(x0) − f(0)(x1 − x0)| = |F(x1)| = 2
√
x1 ≤ ε.

We now apply the argument given in Theorem 2 to the remaining terms to
obtain ∣∣∣∣∣

n∑
i=2

F(xi) − F(xi−1) − f(ti)(xi − xi−1)

∣∣∣∣∣ < ε.
Therefore on adding these terms we have

|F(1) − F(0) − S(f,P)| ≤ ε+ ε = 2ε

Since ε is arbitrary we conclude that f ∈ KH([0, 1]) and that∫ 1
0

f(t)dt = F(1) − F(0) = 2.
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The argument of the above theorem can easily be carried over to any excep-
tional set of finitely many points and the conclusion of the theorem is sought
for an f – primitive.
As a significant extension below we present a version of FTC where the con-
clusion holds true for a countably infinite (exceptional) set.

Theorem 3 If f : [a, b] −→ R has a c – primitive F on [a, b] then f ∈ KH[a, b]
and ∫b

a

f(t)dt = F(b) − F(a)

In the preceeding theorem the conclusion holds true for a c – primitive that
is if the exceptional set is taken to be a countably infinite set. We know that
every countable set is a null set. So, it is natural to ask whether the gap
between countable and the null set can be bridged. More precisely, can we
replace above theorem by the assertion: if F is continuous function on [a, b]
and there exists a null set E such that F ′(x) = f(x) for all x ∈ [a, b] − E then
f ∈ KH([0, 1]) and ∫b

a

f(t)dt = F(b) − F(a).

On this account it becomes inevitable to discuss the the so-called Cantor-
Lebesgue function on [0, 1] the construction of the function is given as:
Define

Λ : [0, 1] −→ R

by

Λ(x) = lim
n−→∞Λn(x)

where Λn(x) is taken to be 1
2n on the left out intervals of [0, 1] while construct-

ing the Cantor set, Λn(0) = 0 and Λn(1) = 1.
It is easy to see that Λ is a continuous non-decreasing function and its deriva-
tive Λ ′(x) = 0 for all points of [0, 1] outside the Cantor set.
Now comming back to the question raised above we see that Λ ′(x) exists and
Λ ′(x) = Λ(x) outside a (Cantor) null set. But

∫ 1
0

Λ ′ = 0 6= 1 = Λ(1) −Λ(0)
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2 FTC – for functions taking values in a Frechet
space

We begin this section by giving a formal definition of the Kurzweil – Henstock
integral also known as gauge integral or generalized Riemann integral for func-
tions taking values in a complete metrizable locally convex space known as
Frechet space [7]. In this section X will denote a Frechet space, p(X) a family
of seminorms on X.

Definition 4 A function f : [0, 1] −→ X is said to be Kurzweil – Henstock
integrable if there exists x ∈ X for which the following is true: for any ε > 0,
and a seminorm p ∈ p(X) there exists a gauge δε,p > 0 on [a, b] such that if
P = {[xi−1, xi], ti}

n
i=1 is any δε,p-fine (tagged) partition of [a, b] then

p (S(f,P) − x) ≤ ε,

where x is the integral of f and S(f,P) =
n∑
i=1

f(ti)(xi − xi−1) is the Riemann

sum, symbolically we write f ∈ KH([0, 1], X).

Lemma 1 Let F : [a, b]→ X be differentiable at a point t ∈ [a, b], then given
ε > 0 there exists δε,p(t) > 0 such that if u, v ∈ [a, b] satisfy

t− δε,p(t) ≤ u ≤ t ≤ v ≤ t+ δε,p(t)

then

p
(
F(v) − F(u) − F ′(t)(v− u)

)
≤ ε(v− u)

Proof. By definition of the derivative at t ∈ [0, 1], we have, given ε > 0 there
exists δε,p(t) > 0, such that

p

(
F(z) − F(t)

z− t
− F ′(t)

)
≤ ε, for |z− t| ≤ δε,p(t), z ∈ [a, b]

p
(
F(z) − F(t) − F ′(t)(z− t)

)
≤ ε|z− t| for all z ∈ [a, b]

with

|z− t| ≤ δε,p(t).
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In particular, if we pick u ≤ t and v ≥ t in this interval around t and note
that v− t ≥ 0 and t− u ≥ 0, then we have

p
(
F(v) − F(u) − F ′(t)(v− u)

)
= p

((
F(v) − F(t) − F ′(t)(v− t)

)
−
(
F(u) − F(t) − F ′(t)(t− u)

))
≤ p

(
F(v) − F(t) − F ′(t)(v− u)

)
+ p

(
F(u) − F(t) − F ′(t)(t− u)

)
≤ ε(v− t) + ε(t− u)
= ε(v− u)

which implies,

p
(
F(v) − F(u) − F ′(t)(v− u)

)
≤ ε(v− u).

�

Now we will present the Frechet space analogue of FTC.

Theorem 4 Let X be a Frechet space. If f : [a, b]→ X has a primitive F i,e.,
F : [a, b]→ X is differentiable at every point of [a, b] and F ′ = f on [a, b] then
f ∈ KH([a, b], X) and ∫b

a

f(t)dt = F(b) − F(a).

Proof. Since F ′(t) exists for every t ∈ [a, b] and F ′(t) = f(t), given ε > 0

there exists δε,p(t) > 0 such that

p

(
F(z) − F(t)

z− t
− f(t)

)
≤ ε,

for

|z− t| ≤ δε,p(t), z ∈ [a, b]

which implies,

p
(
F(z) − F(t) − F ′(t)(z− t)

)
≤ ε|z− t| for all z ∈ [a, b].

Therefore by Lemma 1, if a ≤ u ≤ t ≤ v ≤ b and 0 < v− u ≤ δε(t), then

p(F(v) − F(u) − f(t)(v− u)) ≤ ε|v− u|.
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If P = {[xi−1, xi], ti}
n
i=1 is a δε,p-fine partition of [a, b] then the telescoping sum

F(b) − F(a) =
∑n
i=1{F(xi) − F(xi−1)} satisfies the approximation

p
(
S
(
f,P

)
−
(
F(b) − F(a)

))
= p

(
n∑
i=1

(xi − xi−1)f(ti) −
(
F(xi) − F(xi−1)

))

≤
n∑
i=1

p
(
(xi − xi−1)f(ti) −

(
F(xi) − F(xi−1)

))
≤

n∑
i=1

ε(xi − xi−1)

= ε(b− a)

Since ε > 0 is arbitrary letting ε→ 0, we get f ∈ HK([a, b], X) and∫b
a

f(t)dt = F(b) − F(a).

�

Theorem 5 If f : [a, b] −→ X has a c-primitive F on [a, b] the f ∈ KH([a, b], X)
and ∫b

a

f(t)dt = F(b) − F(a).

Proof. Let E = {ck}
∞
k=1 be the exceptional set for the c-primitive. Since E is

countable, it is a null set and without loss of generality we may suppose that
f(ck) = 0. We shall define a gauge δε,p on [a, b]. Given ε > 0 if t ∈ [a, b] − E
we take δε,p as in Lemma 1. For t ∈ E, t = ck for some k ∈ N. Since F is
continuous on [a, b] we can choose δε,p(ck) > 0 such that

p
(
F(z) − F(ck)

)
≤ ε

2k+2
∀ z ∈ [a, b]

that satisfy
|z− ck| ≤ δε,p(ck).

Thus a gauge is defined on [a, b].
Now let P = {[xi−1, xi], ti}

n
i=1 be a δε,p-fine partition of [a, b]. If none of the

tags belong to E, then the proof given in the Theorem 4 applies without any
change. However if ck ∈ E is the tag of some subinterval then,

p
(
F(xi) − F(xi−1) − f(ck)(xi − xi−1)

)
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≤ p
(
F(xi) − F(ck)

)
+ p
(
F(ck) − F(xi−1)

)
+ p
(
f(ck)(xi − xi−1)

)
≤ ε

2k+2
+

ε

2k+2

=
ε

2k+1

Now each point of E can be the tag of at most two subintervals in P therefore
for each ti ∈ E we have the following inequality satisfied∑

ti∈E
p
(
F(xi) − F(xi−1) − f(ti)(xi − xi−1)

)
≤

∞∑
k=1

ε

2k
= ε.

Also for ti /∈ E, we have from Lemma 1∑
ti /∈E

p
(
F(xi) − F(xi−1) − f(ti)(xi − xi−1)

)
≤ ε
∑
ti /∈E

(xi − xi−1) ≤ ε(b− a).

Now P is δε,p-fine, therefore we have

|F(b) − F(a) − S(f,P)| ≤ ε(b− a)

Letting ε −→ 0, we conclude that f ∈ KH([0, 1], X) with integral F(b) − F(a)
which proves the theorem. �

3 FTC – some interesting situations in vector inte-
gration

As pointed out in the Section 1 conclusion of the above theorem does not hold
true even for a real valued function if the exceptional set E is taken to be a
null set. But the problem has been dealt with and the conclusion sought, in
the setting of Bochner integral by C. Volintiru [6] with the assumption that
the Hausdorff measure of the image of E under F is 0.
Let (M,d) be a metric space and A ⊂ M. Let Ci be a covering of A with
diam(Ci) ≤ δ ∀ i. Let C(A, δ) be the collection of all such coverings of A.
Now for α > 0, define

hδα(A) = inf

(∑
i

(diamCi)
α : (Ci) ∈ C(A, δ)

)
.

Then
hα(A) = lim

δ−→0hδα(A) = sup
δ>0

hδα(A)
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gives an outer measure on the power set of M which is countably additive on
the σ-field of Borel subsets ofM. This measure is known as Hausdorff measure.

Definition 5 A measurable function f : Ω −→ X (X a Banach space) is said
to be Bochner integrable if there exists a sequence of simple function (fn) such
that

lim
n

∫
Ω

‖fn − f‖dµ = 0

In this case,
∫
E fdµ is defined for each E ∈

∑
by∫

E

fdµ = lim
n

∫
E

fndµ

where
∫
E fn is defined in the ususal way.

Theorem 6 A measurable function f : Ω −→ X is Bochner integrable if and
only if ∫

Ω

‖f‖dµ <∞
Theorem 7 If F is the a-primitive of the function f : [a, b] −→ X such that
h1
(
F(E)

)
= 0 (E being the exceptional set). Then f is measurable and if we

assume the integrability of f, then∫b
a

f(t)dt = F(b) − F(a)

Here we would like to pose following questions which appear to be open!

Problem 1 Does the conclusion of FTC hold true in the setting of KH –
integral for the exceptional set E to be a null set with the assumption that
Hausdorff measure of F(E) is taken to be zero.

Problem 2 Can we have an analogue of Theorem 7 in the setting of a more
general class of integral (which subsumes KH–integral and Bochner integral)
known as Pettis integral [4].

There are two aspects of FTC to ponder upon. One about integrating the
derivatives (what we have discussed) other differentiating the indefinite inte-
grals. A lot of work has been done with regard to this aspect of FTC in the
setting of KH–integral [2]. Below we state a result of paramount importance
on diferentiating integrals and then conclude with a problem which appears
to be open.
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Theorem 8 If f ∈ KH([a, b]) then any indefinite integral F is continuous on
[a, b] and an a-primitive of f that is F ′(t) = f(t) ∀ t ∈ [a, b] − E, where E is
a null set.

Problem 3 If f : [a, b] −→ X is Pettis integrable. Does the conclusion of
above theorem hold true?
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