S ™ ACTA UNIV. SAPIENTIAE, INFORMATICA 9, 2 (2017) 144-161

&

DOLI: 10.1515/ausi-2017-0010

Object-oriented backtracking

Tibor GREGORICS
ELTE, Ectvos Lorand University

Budapest
email: gt@inf.elte.hu

Abstract. Several versions of the backtracking are known. In this paper,
those versions are in focus which solve the problems whose problem space
can be described with a special directed tree. The traversal strategies of
this tree will be analyzed and they will be implemented in object-oriented
style. In this way, the traversal is made by an enumerator object which
iterates over all the paths (partial solutions) of the tree. Two different
“backtracking enumerators” are going to be presented and the backtrack-
ing algorithm will be a linear search over one of these enumerators. Since
these algorithms consist of independent objects (the enumerator, the lin-
ear search and the task which must be solved), it is very easy to exchange
one component in order to solve another problem. Even the linear search
could be substituted with another algorithm pattern, for example, with
a counting or a maximum selection if the task had to be solved with a
backtracking counting or a backtracking maximum selection.

1 Introduction

The backtracking can solve the tasks that can be made possible to be viewed
as a path-finding problem. In this case, the solution of a task is searched in a
directed graph which may contain even infinite nodes but the number of the
outgoing arcs of each node (i.e. branching factor) is finite. This is the so called

Computing Classification System 1998: F.3.1

Mathematics Subject Classification 2010: 68N30

Key words and phrases: path-finding problem, backtracking algorithm, enumerator, al-
gorithm pattern

144

http://people.inf.elte.hu/gt
http://www.elte.hu
http://www.elte.hu
mailto:gt@inf.elte.hu

Object-oriented backtracking 145

d-graph [10]. The problem space of the task consists of the paths going out
from the start node. Among these paths, the solution path must be found,
which drives from the start node to any goal node.

There exist several versions of the backtracking algorithm [9] and always
that one must be applied which best fits the special features of the directed
graph describing the problem [7].

The most general version [5, 7, 10] can be used in arbitrary §-graphs but
it needs a so-called depth bound to terminate for sure. In this way, if there
exists a solution path whose length is not greater than the depth bound, the
search must find such a solution. However, the determination of the appro-
priate depth bound is not simple. If this depth bound is too small, a solution
will not be found; if it is too big, the computational complexity will grow. The
backtracking algorithms over only finite and acyclic directed graphs [5, 7, 10]
do not need the depth bound to terminate and they can find solution if there
is one.

The best-known versions work in a special directed tree (finite, rooted by
the start node, with the same branching factor of the nodes being at the same
level). Its branches make up the problem space of the task which is represented
by this tree.

This paper focuses on these latest versions of the backtracking. In section
2, those tasks will be defined which can be solved with these versions and
there it will be shown how the problem space of these tasks can be symbolized
with a special so-called backtracking tree. section 4 presents two different
methods that can traverse this backtracking tree in order to enumerate its
branches (that is, the elements of the problem space). These traversals are
based on well-known concepts but the separation of these traversals and the
search will be novel. section 4 shows how these traversals can be implemented
as an isolated object-oriented enumerator. In the section 5 a model will be
sketched where the backtracking is a collaboration between three objects: a
backtracking enumerator, a commonly linear search [3, 4], and the task that
is wanted to solve. The advantages of this approach are discussed in section 6.

2 Model of backtracking tasks

The state-space representation is a well-known general modeling technique
which can treat the tasks as a path-finding problem [5]. It requires a state
space (the set of tuples of values of the essential data corresponding to the
task), the initial and final states, and the operators over the state space. The
solution of a task is the sequence of operators which can transform the initial

146 T. Gregorics

state to any final state. It is obvious that a state space representation can
be mapped to a directed graph where the nodes represent the states, and the
directed arcs symbolize the effects of the operators. In this way, in order to
solve the problem it is enough to find a path which derives from the start node
corresponding to the initial state to any goal node describing the final states.
This is the solution path.

When a task has got particular features, the following modeling technique,
which are a special state space representation, might be used [1, 6, 8, 9].

Definition 1 (Backtracking task) There are given n finite sets (n € N):
Di1,...,Dn. Let us consider the Cartesian product D = Dy X...xDyn. The aim
is to find the element of the set D that satisfies the statement p: D — L (L =
{false, true}) where this statement can be defined by a series of statetments
00y P1y---yPn : D — L with the conditions below:

1. po = true

2. pn=p

8. P0y P1y- -y Pn 18 monotone, i.e. Vu € D : pi(u) = piq(W)(i=1,...,n)
4. pi(u) depends on only the first i € {1,...,mn} components of u € D, i.e.

vie{l,...,n} and Vu,v € D : pi(u) = pi(v) if Vj, 1 <j <i:u =vi.

The tasks that can be modeled in this way are called backtracking tasks.
Other path-finding problems might also be solved with backtracking but the
backtracking tasks can be solved with a special version of the backtracking
algorithm that will be defined below.

Many times, the series pg, p1, ..., Pn can be defined so that Vi € {1,...,n}:
pi = pi—1/\ Bi where f: D — L and B;(u) depends on the first i € {1,...,n}
components of u € D. In this way, the (3) and (4) conditions of the backtrack-
ing tasks automatically hold.

A classic example for this model is given by the n-queen problem where
n queens must be placed onto an n x n chessboard without being able to
attack each other. One queen attacks any piece in the same row, column and
diagonals. Each row of the board must contain exactly one queen. The possible
positions of the it" queen put on the it" row are included by the set D; =
{0,...,n—1}. (As you can see, the columns are numbered from zero up to
n—1. The reason for this will be clarified soon.) Let us fix that pg = p; = true
and Vi € {2,...,n}and Yu € D : pi(u) = pi1 (W AYj € {1,...;,i—1}: (W #
w A ug —wl # [—jl).

Object-oriented backtracking 147

Definition 2 (Backtracking tree) Let us consider a backtracking task. Its
backtracking tree can be constructed in the following way. The nodes on the
first level (children of the root) represent the elements of Dy. The nodes on
the second level symbolize the elements of D1 x Dy so that the first component
of a node on this level is equal to its parent node. In general, the nodes on the
ith level A =1,...,m) are the elements of D1 x ... x Dy. The branching factor
of the nodes on the i— 1™ level is the cardinality of the set Di. The first i— 1
components of a node on the it level give just the parent of this node; in other
words, the parent node is the prefix of its children. The leaves of this tree are
the elements of set D.

According to this definition, a backtracking task can be treated as a path-
finding problem in its backtracking tree. In order to solve this problem, it is
sometimes enough to find the leaf which satisfies the statement p; sometimes
that path (branch) which drives from the root (this is the start node) to the
leaf satisfying the statement p (this is the goal node) must be sought.

Let m; denote the cardinality of Dj for all i € {1,...,n}. Since the elements
of D; might be numbered from 0 up to m;_;, these elements can be referred
with their ordinal numbers.

[l
[0] %---Nhn 1—1]
AN AN

[0,0] .. [0mz-1] [mi—-1,0] .. [mu—1ma—1]

[0,0, ...,0] [0,m2—1, ..., mp—1] e [m=1,0,...,0] ... [mi—1,mz-1, ... mu—1]

Figure 1: Backtracking tree

This serialization of the set D; defines a bijection between the set D and the
set {0,...,my-my---my — 1}. One element of D can be mapped to a number
in a positional numeral system in mixed bases. The base of the it" digit of
such numbers is mi 1 ---m, and the value of the it" digit might be between
0 and my — 1 for all i € {1,...,n}. It is obvious that the value of an n-digit

148 T. Gregorics

natural number is between 0 and m; - my---m,, — 1. Formally, if v; : D; —
{0,...,my_1} is a bijection (i € {1,...,n}), then v: D — {0,...,[[,_; ,, ™}
wherevVu e D:v(u) =), , vi(w)-]] m; is a bijection, too. Finally,
let us denote ¢ the inverse of v.

Thus each node on the i (i € {1,...,n}) level of the backtracking tree can
be substituted with a code which is a natural number in a positional numeral
system in mixed bases. The base of the j*" digit of this number is Myyq My
and the value of the j'" digit might be between 0 and my_g forallj € {1,...,i}.
The root node is labeled with the special blank.

This backtracking tree can be shown in the Figure 1.

j=i+1.n

3 Traversals of the problem space

3.1 Depth-first traversal

Perhaps the best known traversals method of the problem space of the back-
tracking tasks is the depth-first strategy. This strategy could not work only in
special directed trees but also in general directed graphs. Nevertheless, we must
underline that there is some difference between the well-known depth-first
graph-traversal strategy [2] and the depth-first traversal of a backtracking[10].
Firstly, the latter one does not enumerate only the nodes of the graph but it
searches for the first appropriate path driving from the start node. Secondly,
the standard depth-first graph-traversal explicitly needs the whole graph which
must be traversed but a backtracking algorithm uses much less memory: it
stores only the current path. This property is very useful when a typical artifi-
cial intelligence problem must be solved and the graph of the problem space is
so huge (sometimes infinite) that the total graph could not be stored explicitly.
Thirdly, the backtracking could not record all nodes of the graph which have
been touched earlier. Thus, a node which have been checked might be checked
again when the algorithm rediscovers the very node via another path outgoing
from the start node. Fortunately, this unpleasant phenomenon cannot occur if
the graph is a tree as it can be seen in our case. In the following, the depth-first
traversal means this memory-efficient version of the depth-first strategy.

The depth-first traversal of a directed tree means that the search system-
atically examines the paths outgoing from the root (these are the branches)
from left to right. At each moment, only one partial branch (a path) is stored.
This is the current path and its last node is the current node. In each step, the
traversal tries to go forward (downward in the tree). If it is not able to or it is
not worth going forward, it steps back (upward) to the parent node and selects

Object-oriented backtracking 149

the next branch outgoing from this parent. If there are no other unchecked
branches going from this parent, then it steps backward (upward) while it
finds a parent with untested outgoing branches. In order to implement this
process, the untested branches outgoing from the nodes of the current path
must be recorded.

This depth-first traversal is even easier over the backtracking tree where the
nodes are represented with numbers in a numeral system with mixed bases.
For this traversal, it is enough to store only the current node that can be
represented with an n-length array v (v : N") and the natural number ind. The
label of the current node is the (ind—1)-length prefix of v (i.e. v[1,...,ind—1])
and it is always supposed that the ping_1($p(v)) holds and each element of v
after the position ind is zero. From this information, all outgoing untested
branches of the current path can be read out.

ind < n A pina(o(v))

ind >n
ind :=ind — 1 -
ind > 1A vig = Mind — 1
ind = ind +1 Ving = 0
ind :=ind — 1
ind>1
Vind *= Vind + 1 -

Figure 2: One step of the depth-first traversal

Initially the value of the number ind is 1 and each element of the array v
is zero. The next step of the traversal depends on the statement ping(d(v))
(Figure 2). If it holds and ind < m, then the traversal steps forward with
the increase of ind. Otherwise, the traversal steps back — as if the part of the
current branch below the ind — 1" level had been cut — and it looks for the
node on the current path that has got an unchecked successor and then selects
the first such one as a new current node. The same happens when ind =n+1,

150 T. Gregorics

although, in this case, the traversal does not need to continue since pn($(v))
holds, i.e. p(¢p(v)) holds. The traversal must stop definitely if ind = 0. This
event indicates that the traversal is over.

3.2 Increasing traversal

The problem space of the backtracking tasks in our focus can be traversed with
another strategy. It is enough to enumerate the leaves of the backtracking tree
(see Figure 1) from left to right. Since the nodes can be represented with
natural numbers in a positional numeral system in mixed bases, each leaf is
a natural number and they can be generated in increasing order. However, it
is not worth enumerating them all one by one because those numbers which
may not be goal nodes can be skipped. Yet, how can it be decided without
their examination?

Let us suppose that the number v has been examined and the statement
Pind—1(¢d(v)) holds but the statement ping(P(v)) does not. It is obvious that
each natural number whose first ind digits are identical to the first ind digits
of v does not satisfy ping, too. Thus, the enumeration might ignore these
numbers. In order to get the next number of the enumeration, it is enough to
increase the ind™ digit of v by one. In the case when p($(v)) holds there is no
index ind where array v can be changed, i.e. ind = n+1). If the enumeration
should be continued, the value of the variable ind must be changed to n.

ind >n

ind:=n —

c:=1

c=1ANind<n

Vind < Mind — 1

Vind ‘= Vind + 1 Vind = 0

c:=0 ind == ind — 1

Figure 3: One step of the increasing traversal

Object-oriented backtracking 151

This increasing is the task of the algorithm of the Figure 3 [6, 9]. This is
a positional addition where variable ind indicates the position which must
be increased. The variable ¢ contains the carry digit of the addition. If this
algorithm terminates with ¢ = 0, then the variable v will contain the next
element of the enumeration. The termination with ¢ = 1 indicates the overflow
of the addition and it means that the enumeration is over.

This algorithm must be embedded into the environment which analyzes the
current v and looks for the first ind for which the statement ping(d(v)) is
false. (If there is no such ind, then pn(¢(v)) and thus p(d(v)) is true.) This
ind must be passed to the above algorithm.

3.3 Comparison of the traversals

It is worth comparing the two traversal techniques. Let us look at, for example,
the problem space of the 4-queens problem (see Figure 4). In this tree, the
depth-first traversal moves vertically while the increasing traversal enumerates
a part of the leaves horizontally.

-] [1] (2] (3]
P P (- T =2
/ Phe ~ T~a
fw\ N ’ \\[0’2]
N \

[0,0,0 [0,1,0]
.\ m
[0,0,0,0] [0,1,0,0]

N - AN

Figure 4: Two kinds of traversals over the 4-queen problem

The backtracking steps can be observed well in the depth-first traversal.
If a number of a node at the level ind does not satisfy the statement ping,
i.e. pina(P(v)) is false where v is the label of the node, then the traversal

152 T. Gregorics

steps back. During the increasing traversal, the backtracking steps are totally
hidden. When this enumeration selects a new leaf, then it might jump over
several leaves. Each jump is corresponded to the series of backtracking steps
of the depth-first traversal which selects the next branch for examination.

The depth-first traversal does not need the examination of p. It relies on the
statements ping only. The algorithm of the increasing traversal does not use
directly the statements ping but it is supposed that, before calling this algo-
rithm, the p(¢$(v)) has been examined. If it is false, the statement ping_1(d(v))
holds but the statement ping(d(v)) does not; this ind must be given to the
algorithm as input parameter beside the v.

4 Backtracking enumerators

Now the above traversals are going to be implemented as independent enu-
merator objects. These enumerators iterate over the elements of the problem
space.

The problem space (D = Dj x...xDy,) can be modeled by the class Task (see
Figure 5). This class provides the method rho() which can decide whether an
element satisfies p; or does not. Certainly, this method is abstract; it must be
overridden when the concrete task becomes known. A task can be represented
by the pair of array v and array m. These are the members of the class Task.
The array v contains one element of the set of D. The m[i] gives upper limit
of the elements of v[i], i.e. for all i € [1,...,n] : 0 < v[i] < m[i]. This is the
invariant of this representation.

Task
+n: int
+V int[1...n]
+m: int[1...n]

+ correct(ind:int) : bool, int
+ rho(i:int) : bool

Figure 5: Abstract class of the backtracking task

This class is extended with the method correct() that decides whether the

Object-oriented backtracking 153

current element of the problem space satisfies the statement p(¢$(u.v)) or does
not.

[,i:=true,ind

-lIANi<n
[:=rho(7)
1:=1+1

ind:=1—1

Figure 6: The method correct()

This examination is a special (optimistic) linear search [3, 4] which must
check p(i) where 1 goes from 0 up to n and must give the first 1 for which p(i)
is false. This process can be accelerated if the index ind (ind € [1,...,n])
is known where ping_1($p(u.v)) is true. In this case, it is enough to start the
search from the index ind instead of 1 (see Figure 6). If p(d(u.v)) is false, it
is useful to give back the ind where rho(ind — 1) is true but rho(ind) is false.

4.1 Depth-first enumerator

The class DepthFirstEnum describes the object of dept-first enumerator (see
Figure 7). It provides the enumeration operators: first(), next(), current(),
end() [3, 4]. These operators iterate over the partial branches of the back-
tracking tree of the problem space of the backtracking task.

Each partial branch can be represented with its ending node, which is an
element of Dy X ... X Ding_1. It can be described with the members of the
variable u of Task and the variable ind of (N). The values of ind are between
0 and n. Thus these are members of the class DepthFirstEnum. We suppose
that pina_1(p(w.v)) and for all i € [ind+ 1..n] : w.v[i] = 0. The method end()
indicates the end of the traversal. This is implemented by ind = 0 when the
traversal has stepped back from the root because it could not find a solution.
The method current() returns the current node that is represented by the
members. The method first() sets the initial values of the members. In the
case . < 1 the traversal must be finished immediately, i.e. ind := 0. Otherwise

154 T. Gregorics

DepthFirstEnum
#ind:int
#u :Task

+first() :void
+next() :void
+end() : bool
+current(): (Task, int)

Figure 7: The class of depth-first enumerator

the initialization u.v :=[0,...,0] : ind := 1 is needed. The method next() does
one step in the problem space according to the depth-first traversal (see Figure
2 with the following corresponding: u.rho(ind) instead of ping(p(v)) , w.vlind]
instead of ving, and u.m[ind] instead of minq).

4.2 Increasing enumerator

The class IncreasingEnum describes the object of increasing enumerator
(Figure 8). It provides the enumeration operators: first(), next(), current(),
end(). These operators iterate over some leaves of the backtracking tree. These
leaves must be enumerated in increasing order according to their value in the
positional numeral system in mixed bases, which has been mentioned before.

Each leaf can be represented by the variable u of Task. It is worth introduc-
ing the member ¢ of {0, 1} that is the overflow digit of the increasing process
(see Figure 8). Its value 1 indicates the end of the traversal.

The method end() checks the value of overflow digit c¢. The method current()
returns the current leaf. The method first() initializes u.v and c¢. The enu-
meration starts with the element described by the number [0,...,0] (this is
the first value of the variable u) and the overflow c is 0 except for the case
n < 1 when the traversal must be finished immediately, i.e. ¢ := 1. The method
next() does one step in the problem space according to the increasing traver-
sal (see Figure 2). Its input parameter is the position ind (ind € [1,...,n]),
which shows which position of the number u must be increased according to

Object-oriented backtracking 155

IncreasingEnum
#u :Task
#c :{0,1}
#ind:int
+first() : void
+next(int) : void
+end() : bool
+current() : (Task, int)

Figure 8: The class of increasing enumerator

the rules of the positional numeral system in mixed bases.

The input of the method next() is provided by the method correct() (see
the class Task) and that method requires the index ind produced by the
method next() where ping—1($(w.v)) is true but ping($(uw.v)) is false. Thus
the members of the class of the increasing enumerator might be completed
with the index ind so that either ind is zero or ping_1(¢(u.v)) holds. In
addition each element of u.v behind the position ind is zero. Initially the
method first() gives the index ind a value (ind := 0), this index is changed
based on its input parameter and then its value is recomputed by the method
next(), and its value can be queried by the method current().

5 Component-oriented backtracking

Based on a backtracking enumerator, the backtracking algorithm can be com-
posed easily. In object-oriented environment, the backtracking algorithm is
the result of the cooperation of three objects (see Figure 9): the object of the
backtracking enumerator, the object of the task, and the object of the linear
search over enumerator [3, 4].

The classes of two kinds of enumerators have been derived from the abstract
class Enumerator (see Figure 11). This super class includes an object of the
class Task and an index. The role of this index has been discussed earlier. This
index is needed for the method cond() of the linear searching.

Under increasing enumeration the method next() uses this index: its initial

156 T. Gregorics

first()
run() next()
found() end()
elem() current()
: LinearSearch : Enumerator

only the depth-first

traversal calls it
only the increasing rho()l/

traversal calls it

correct()

: Task

Figure 9: Collaboration of components of the backtracking algorithm

value is got from the linear searching and then the method next() modifies it.
However, this would be an irregular implementation of the method next() be-
cause it usually has no external input. Thus — instead of changing the interface
of the method next() — a “setter” method of the index has been introduced
(setInd()). We do the same with the extra output of the method current().
Since this output is required by the linear search a “getter” method has been
also implemented with this very index (getInd()). These new methods are
defined in the super class Enumerator.

The super class LinearSearch (see in Figure 11) provides the method run()
that encapsulates the schema of the algorithm of linear searching, further-
more the method found() and the method elem() that give the result of the
search. Two versions of this algorithm can be differed depending on the way
of the traversal. (see Figure 10) Under depth-first traversal the solution can
be found if the index of the enumerator is greater than n. This makes calling
the method correct() unnecessary. The index ind can be asked from the class
DepthFirstEnum with its “getter” and the value n can be reached through
the object u. Under the increasing traversal the method correct() requires
the index of the enumerator (this can be asked with the “getter” of the class
IncreasingEnum), modifies this index, and gives it to the method next()
through the “setter” of the enumerator. These differences can be written in

Object-oriented backtracking 157

under depth-first traversal: under increasing traversal:
[:= false [:= false
t.first() t.first()
=l A =t.end() =l A =t.end()
u = t.eurrent() u = t.current()
l:=t.getInd() > u.n l,ind := u.correct(t.getInd())
— t.setInd(ind)
t.nert() t.next()

Figure 10: Two versions of linear search

the overridden method cond() of the class DepthFirstLinSearch and the
class IncreasingLinSearch thus the method run() which calls this method
cond() can be implemented independently on the way of enumeration. Here
the “template function” design pattern is applied. (We must remark that the
assignment u := t.current() in the method run() requires a deep copy.)

The backtracking algorithm is an instance of the class BacktrackSearch
(see Figure 11). It owns the enumerator which includes the task and creates
the appropriate object of the linear searching depending on the kind of the
enumerator. The method run() calls the same named method of linear search-
ing. Here the “bridge” design pattern is applied.

6 Discussion

The fact that the backtracking consists of three, well-separated components
makes the algorithm very flexible. By changing components, it is very easy to
change the properties of the search.

In order to solve a new task, it is enough to derive a new class from the
super class Task and only the abstract method rho(i) must be overridden.
The object u of the enumerator will be an instance of this new class while the
other two objects (the enumerator and the linear search) do not change; they
are reused.

The object of linear search must be exchanged when the task does not look
for one solution but it wants to count how many solutions there are or it wants
to look for the best solution according to a given point of view. In these cases,

158 T. Gregorics

Enumerator \V4
BacktrackSearch #ind :int Task
i #t : Enumerator #u :Task +n: int
i #s: Linearsearch +getind() :int +v :int[1..n]
i +run() :void + setInd(int) : void +m:int[1..n]
+ found() : bool + getTask() : Task + correct(ind:int) : bool, int
! +elem() :Task + first() : void + rho(izint) : bool
' + next() : void
i +end() : bool
. +current() :Task
LinearSearch

i #t : Enumerator Queens
i [+run() :void
+ found() : bool +rho(i) : bool
+elem() :Task
cond() : bool DepthFirstEnum IncreasingEnum
#c:{0,1}
+first() : void +first() : void
+next() : void +next() : void
+end() : bool +end() : bool
+is_depthfirst():bool +is_increasing():bool

DepthFirstLinSearch | | IncreasingLinSearch

cond() :bool # cond() :bool

Figure 11: Class diagram of the backtracking algorithm

it is enough to use a counting or a conditional maximum search instead of the
linear search.

The “backtracking counting” comes from the counting [3, 4] over enumer-
ators if it uses a backtracking enumerator. Sometimes, only certain solutions
must be counted. To solve this task, a logical function 3; : D — L is needed
to check this certain property. (see Figure 12)

The “backtracking maximum search” is the conditional maximum search
[3, 4] with a special enumerator. (see Figure 13) The function f : D — H maps
to the well-ordered set H, thus the states of D can be compared.

Only the class Task has to be modified if the model of the task which is
wanted to solve slightly differs from the model of backtracking tasks. Many
times, the problem space of a path-finding task can be described with the
directed tree where the number of the outgoing arcs of the nodes can differ on
the same level and the goal nodes may be inner nodes.

Object-oriented backtracking 159

c:=0
t.first()
—t.end()

u = t.current()

l,ind := u.correct(t.getInd())
t.setInd(ind)
LA B(u)
cr=c+1 SKIP
t.next()

Figure 12: Backtracing counting with increasing enumerator

In the first case, the tree can be extended with alibi nodes so that the
branching factor becomes constant inside one level of the tree. Certainly, the
semantic of the statement p; must be changed so that it gives false on these
alibi (fake) children node.

In the second case, the criterion p = p,, is substituted with the criterion
p=diel,...,n: p;or, in a more general way, the criterion p = 3 €
1,1dots,n : p; /A y; where y; : D — L is the logical function so that the value
of yi(u) depends only on the first i components of the state u. During depth-
first traversal, the method correct() of the linear search must be overridden
as Yina(u). The value of ying(u) can be computed by an appropriate new
method gamma() of the class Task. During increasing traversal, the method
correct() must be overridden so that it results in true if there exists an ind €
1,...,m where ping(u) /A vina(u) holds, otherwise it results in the first index
ind € 1,...,n where pinq(u) false.

At the end, we mention the didactical advantage which appears when this
component-oriented backtracking is introduced into education. At this stage
of the syllabus, the linear search (and other algorithm patterns) has been
well known. Only the backtracking enumerator is the novelty. It can help if
students have already met the concept of the enumerator; moreover, they have

160

T. Gregorics

[:= false

t.first()

—t.end()

u = t.current()

I1,ind := u.correctl(t.getInd())
t.setInd(ind)

-l 1Al 1Al
mazr < f(u)
'K l,mazx, elem =
SKIP maz, elem = SKIP true, f(u). u
J(u),u ' '

t.next()

Figure 13: Backtracking maximum search with increasing enumerator

used various enumerators. Certainly, the description of the backtracking tasks
which can be solved in this way must be introduced but it is not avoidable in
other syllabi.

References

1]

K.A. Berman, J. L. Paul, Fundamentals of Sequential Algorithms, PWS Publish-
ing, 1996. = 146

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. =148

T. Gregorics, Programozds 1.kotet Tervezés, ELTE Eotvos Kiadd, 2013. (in Hun-
garian) =145, 153, 155, 158

T. Gregorics, Programming theorems on enumerator, Teaching Mathematics and
Computer Science, 8, 1 (2010) 89-108. =145, 153, 155, 158

I. Fekete, T. Gregorics, S. Nagy, Bevezetés a mesterséges intelligencidba, LSI,
1990. (in Hungarian) = 145

A. Fé6thi, Bevezetés a programozdsba, ELTE Eotvos Kiadd, 2005. (in Hungarian)
=146, 151

http://eecs.ceas.uc.edu/~berman/
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
mailto:gt@inf.elte.hu
http://eotvoskiado.hu
mailto:gt@inf.elte.hu
http://tmcs.math.unideb.hu/
http://tmcs.math.unideb.hu/
mailto:fekete@inf.elte.hu
mailto:gt@inf.elte.hu
saci@inf.elte.hu
mailto:fa@inf.elte.hu
http://eotvoskiado.hu

Object-oriented backtracking 161

[7] 1. Futé (ed), Mesterséges intelligencia, Aula, 1999. (in Hungarian) = 145

[8] D. E. Knuth, Estimating the efficiency of backtrack programs, Mathematics of
Computation 29 (1975) 121-136. =146

[9] K. I. Lorentey, Fekete, A. Féthi, T. Gregorics, On the wide variety of back-
tracking algorithms, ICAI’05 Eger, Hungary, January 28—-February 3. 2005, pp.
165-174. = 145, 146, 151

[10] N. J. Nilsson, Principles of Artificial Intelligence, Springer-Verlag, Berlin, 1982.

=145, 148

Received: November 2, 2017 « Revised: November 27, 2017

http://www-cs-faculty.stanford.edu/~knuth/
mailto:fekete@inf.elte.hu
mailto:fa@inf.elte.hu
mailto:gt@inf.elte.hu
http://ai.stanford.edu/~nilsson/

