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Abstract. Given a colored graph G, its color energy Ec(G) is defined as
the sum of the absolute values of the eigenvalues of the color matrix of
G. The concept of color energy was introduced by Adiga et al. [1]. In this
article, we obtain some new bounds for the color energy of graphs and
establish relationship between color energy Ec(G) and energy E(G) of a
graph G. Further, we construct some new families of graphs in which one
is non-co-spectral color-equienergetic with some families of graphs and
another is color-hyperenergetic. Also we derive explicit formulas for their
color energies.

1 Introduction

The concept of energy of a graph G was introduced by Gutman [9] in 1978
as the sum of the absolute values of the eigenvalues of the adjacency matrix
of the graph G. His focus was to solve a question from theoretical chemistry
“how energy depends on the molecular structure?” In other words, he tried to
find the relation between the energy of a graph and its structure. Gutman has
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obtained an upper and a lower bound for energy of a graph G in terms its size
m,

2
√
m ≤ E(G) ≤ 2m (1)

He further characterized graphs for which these bounds are sharp. For details
of graph energy we refer to [9, 10, 11].

For many years, researchers have extended the concept of graph energy
and continued to work on varieties of graph energy such as Laplacian energy,
distance energy etc [11].

Recently Adiga et al. [1] introduced the concept of color energy of a graph
based on the color matrix of the graph.

Definition 1 Let G be a vertex colored graph of order n. Then the color ma-
trix of G is the matrix Ac(G) = [aij]n×n, whose entries are given by

aij =


1 if vi and vj are adjacent with c(vi) 6= c(vj)
−1 if vi and vj are non-adjacent with c(vi) = c(vj)

0 otherwise.

where c(vi) is the color of a vertex vi in G.

If the eigenvalues of Ac(G) are λ1, λ2, . . . λn, which are also called as color
eigenvalues, then the color energy Ec(G) is the sum of their absolute values.
That is,

Ec(G) =

n∑
i=1

|λi|

If a graph G is colored with minimum number of colors χ, then Eχ(G) is
the color energy of G, Aχ(G) is the color matrix, Pχ(G, λ) is the characteristic
polynomial and Specχ(G) is the spectrum of the graph G.

They have proved that

n∑
i=1

λ2i = 2(m+m′c) (2)

where m is the size of G and m′c is the number of pairs of non-adjacent vertices
receiving the same color in G.

Further, the authors have derived explicit formulas for color energies of some
families of graphs and have obtained bounds for Ec(G). Among those results
the following would be used for further discussion.
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The color energies of Kn and K1,n−1 are

Eχ(Kn) = 2(n− 1) and Eχ(K1,n−1) = 2(n− 1) (3)

respectively with the spectra

Specχ(Kn) =

(
−1 n− 1
n− 1 1

)
and Specχ(K1,n−1) =

(
−(n− 1) 1

1 n− 1

)
(4)

and for any graph G√
2(m+m′c) + n(n− 1)D

2
n ≤ Ec(G) ≤

√
2n(m+m′c) (5)

where D = |det(Ac(G))|.
In this direction, Rajesh Kanna et al. [12] have proved that the color energy

of the friendship graph F
(k)
3 of order n is 2(n− 1) with the spectrum

Specχ(F
(k)
3 ) =

(
o 2 −k

k− 1 k 2

)
(6)

where the friendship graph F
(k)
3 is the graph obtained by taking k copies of C3

with a vertex in common.
Research in the area of color energy has seen rapid rise in recent years and

concepts such as color Laplacian energy [4, 15], color signless Laplacian energy
[5], minimum covering color energy of a graph [13], reduced color energy etc.
[2, 3] were added to the literature. Although several studies have been done
in this area, no study has been initiated to explore the relation between color
energy and energy of graphs.

Apart from these studies, a classification of graphs of order ≤ 6 on the basis
of their color energy is found in [16]. Also the lower bounds in terms of the
smallest and largest color eigenvalues of a graph G with order n, size m and
the number of pairs of the non-adjacent vertices in G receiving same color
were obtained in [17].

In this paper, we establish relationships between Ec(G) and E(G) apart
from finding new bounds for Ec(G). In addition to this, we introduce non-co-
spectral graphs that are color-equienergetic with complete graphs and a family
of color-hyperenergetic graphs.

All graphs considered in this paper are simple and connected. Our graph
theoretic and spectral graph theoretic terminologies follow [6, 7, 8, 18].
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2 Bounds for color energy of graphs

In this section, we present some new bounds for the color energy of graphs in
terms of the largest positive color eigenvalue λ1 and the largest absolute value
of the color eigenvalue λmax of Ac(G). First we present an upper bound for
color energy in terms of λ1, order n, size m and m ′c which denotes the number
of pairs of non-adjacent vertices receiving the same color in G.

Theorem 2 Let G be a colored graph of order n, size m. Let λ1 ≥ λ2 ≥ · · · ≥
λn be the color eigenvalues of Ac(G). Then

Ec(G) ≤ |λ1|+
√
(n− 1)[2(m+m′c) − λ

2
1] (7)

where m′c be the number of pairs of non-adjacent vertices receiving the same
color.

Proof. λ1 ≥ λ2 ≥ · · · ≥ λn are color eigenvalues of Ac(G), so by the Cauchy-
Schwartz inequality,

( n∑
i=2

|λi|

)2
≤ (n− 1)

( n∑
i=2

|λi|
2

)
n∑
i=2

|λi| ≤

√√√√(n− 1)

( n∑
i=2

|λi|2
)

=

√
(n− 1)[2(m+m′c) − λ1

2], by Equation (2).

Hence,

Ec(G) ≤ |λ1|+

√
(n− 1)[2(m+m′c) − λ1

2].

�

Remark 3 The above theorem gives an upper bound for color energy of a
graph G. This is an improvement on the upper bound given in the Inequality
(5). For example, consider the graph G given in Figure 1 which is a paw.
χ(G) = 3 with respect to given coloring. Inequality (5) yields the result that
Ec(G) ≤ 6.33 whereas Inequality (7) shows that Ec(G) ≤ 6.24. It is to be

observed that Specχ (G) =

(
−2 −1 1 2

1 1 1 1

)
and hence Eχ(G) = 6.
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Figure 1: Graph G

Theorem 4 If G is a graph of order n, size m and λmax is the largest absolute
value of eigenvalue of the color matrix of G, then

Ec(G) ≥
(
2(m+m′c)

λmax

)
where m′c be the number of pairs of non-adjacent vertices receiving the same
color.

Proof. Let λmax be the largest absolute value of color eigenvalue of Ac(G).
Then

λmax|λi| ≥ λ2i
holds for i = 1, 2, . . . , n. Then summing over all i’s, we get

n∑
i=1

λmax|λi| ≥
n∑
i=1

λ2i

λmax

n∑
i=1

|λi| ≥ 2(m+m′c), by Equation (2).

So that,

Ec(G) ≥
(
2(m+m′c)

λmax

)
.

�

Next we present bounds of the color energy of a graph G in terms of only
m and m ′c. In order to prove this result, we require the following lemma.

Lemma 5 ([14]) If A is a real or complex n × n matrix with eigenvalues
λ1, λ2, . . . , λn, then for 1 ≤ k ≤ n
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1. Sk = (−1)kck.

2. Sk is the sum of the k× k principal minors of A.

where cks are the coefficients in characteristic polynomial of A and Sk, the kth

symmetric function of λ1, λ2, . . . , λn is the sum of the products of the eigen-
values taken k at a time.

Theorem 6 If G is a colored graph of order n, size m and m ′c is the number
of pairs of non-adjacent vertices receiving the same color, then

2
√

(m+m ′c) ≤ Ec(G) ≤ 2(m+m ′c).

Proof. Consider,

(Ec(G))
2 =

( n∑
i=1

|λi|

)2
=

n∑
i=1

|λi|
2 +

∑
i6=j

|λi||λj|

=

n∑
i=1

|λi|
2 + 2

∑
i<j

|λi||λj|. (8)

By Lemma 5, S2 is the sum of all 2×2 principal minors of Ac(G). Therefore,
we get ∑

1≤i<j≤n
λiλj =

∑
1≤i<j≤n

∣∣∣∣aii aij
aji ajj

∣∣∣∣
=

∑
1≤i<j≤n

(aiiajj − aijaji).

As Ac(G) is the color matrix, aij = aji and aii = 0 ∀i. Thus,∑
1≤i<j≤n

λiλj =
∑

1≤i<j≤n
−(aij)

2

= −(m+m ′c). (9)

We know that ∑
i<j

|λi||λj| ≥ |
∑
i<j

λiλj| (10)
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therefore, from Equation (9) and (10), we have∑
i<j

|λi||λj| ≥ |m+m′c|. (11)

Using this together with Equations (2), (8) and (11), we get

(Ec(G))
2 ≥ 2|(m+m′c)|+ 2|(m+m′c)|

≥ 4|(m+m′c)|.

Taking positive square-root, we get

Ec(G) ≥ 2
√
(m+m′c). (12)

Now, for all connected graphs, n ≤ 2m ≤ 2(m+m′c).
Thus, √

2n(m+m′c) ≤
√
4(m+m′c)

2.

Taking positive square-root, we get√
2n(m+m′c) ≤ 2(m+m′c).

Therefore, from Equation (5), we can write

Ec(G) ≤ 2(m+m′c) (13)

and the result follows from Equations (12) and (13). �

Remark 7 The inequality 2
√
(m+m ′c) ≤ Ec(G) is true for disconnected

graphs also.

3 Relationship between color energy and energy of
a graph

Although several aspects of color energy have been studied, relationship be-
tween color energy and energy was not taken into account. The color energy
of Kn is 2(n − 1) which is same as its energy, whereas the color energy and
the energy of K1,n−1 are not same. So, it is interesting to find the relationship
between color energy and energy and in this section an attempt is made to
obtain this relationship.
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Theorem 8 If G is a graph of order n and size m, then

[Ec(G)]
2 ≥ E(G).

Proof. From Equations (1) and (5), we know that

2m ≥ E(G) and Ec(G) ≥
√
2(m+m′c) + n(n− 1)D

2
n ).

Therefore,

[Ec(G)]
2 ≥ 2(m+m′c) + n(n− 1)D

2
n

≥ 2(m+m′c)

≥ 2m
≥ E(G).

�

Next theorem tells us about the relation between Ec(G), E(G) and the largest
absolute value of the eigenvalue of the color matrix of G.

Theorem 9 If G is a colored graph and λmax is the largest absolute value of

the eigenvalue of the color matrix of G, then Ec(G) ≥
E(G)

λmax
.

Proof. From Theorem 4, we have

Ec(G) ≥
(
2(m+m′c)

λmax

)
.

Thus,

λmaxEc(G) ≥ 2(m+m′c)

≥ 2m
≥ E(G), by Equation (1).

Therefore,

Ec(G) ≥
E(G)

λmax
.

�

Computation of Ec(G) and E(G) have shown that E(G) ≤ Ec(G) and hence
we state the following conjecture.

Conjecture 10 If G is a graph, then

E(G) ≤ Ec(G).
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4 Non-co-spectral color-equienergetic graphs

The color-co-spectral graphs are the graphs having same color eigenvalues [1].
Obviously these graphs are color-equienergetic. It is interesting to note that
Kn and K1,n−1 graphs are color-equienergetic with Eχ = 2(n − 1). However,
they are not color-co-spectral.

In this section, we introduce a new family of unicyclic graphs which is color-
equienergetic with some families of graphs and a family of bicyclic graphs
which is color-hyperenergetic. Also we present explicit formulas for color en-
ergies of these graphs.

Theorem 11 If S = K1,n−1 + e is a unicyclic graph of order n and size m
obtained by adding a single edge between two pendant vertices of the star graph
K1,n−1, then Eχ(S ) = 2(n− 1).

b

b b

b

b

b

b
b

b

b

b

b

Figure 2: S = K1,n−1 + e

Proof. S is a unicyclic graph of order n with n−3 pendant vertices. χ(S ) =
3, as it contains a C3.

The color matrix of S of order n× n,

Aχ(S ) =



0 1 1 −1 −1 −1 . . . −1 −1
1 0 1 0 0 0 . . . 0 0

1 1 0 1 1 1 . . . 1 1

−1 0 1 0 −1 −1 . . . −1 −1
−1 0 1 −1 0 −1 . . . −1 −1
−1 0 1 −1 −1 0 . . . −1 −1
...

...
...

...
...

...
. . .

...
...

−1 0 1 −1 −1 −1 . . . 0 −1
−1 0 1 −1 −1 −1 . . . −1 0


n×n

The characteristic polynomial

Pχ(S , λ) = det(λI−Aχ(S )).
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That is,

Pχ(S , λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 1 1 1 . . . 1 1

−1 λ −1 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

In order to get the characteristic polynomial we apply a series of row trans-
formations.

Adding first three rows of Pχ(S , λ) to take the factor (λ−2) out of the first
row.

Pχ(S , λ) = (λ− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

−1 λ −1 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding first row of Pχ(S , λ) to its second row and taking the factor (λ+ 1)
out of the second row, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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Now adding second row of Pχ(S , λ) to its third row, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 0 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding the third row of Pχ(S , λ) to its qth row where q ≥ 4 and taking the
factor (λ− 1) common from q rows, we get

Pχ(S , λ)=(λ−2)(λ+1)(λ−1)(n−3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 0 λ −1 −1 −1 . . . −1 −1
0 0 1 1 0 0 . . . 0 0

0 0 1 0 1 0 . . . 0 0

0 0 1 0 0 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 1 0 0 0 . . . 1 0

0 0 1 0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding the first row and q rows of Pχ(S , λ) to its third row and subtracting
the second row from its third row, then take the factor [λ+(n− 2)] out of the
third row

Pχ(S , λ)=(λ−2)(λ+1)(λ−1)(n−3)[λ+(n−2)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

0 0 1 0 0 0 . . . 0 0

0 0 1 1 0 0 . . . 0 0

0 0 1 0 1 0 . . . 0 0

0 0 1 0 0 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 1 0 0 0 . . . 1 0

0 0 1 0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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Now subtracting the second and third row of Pχ(S , λ) from its first row and
subtract the third row from qth row where q ≥ 4, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)(λ− 1)(n−3)[λ+ (n− 2)] det(I)

where I is the identity matrix.
Thus,

Pχ(S , λ) = (λ− 2)(λ+ 1)(λ− 1)(n−3)[λ+ (n− 2)].

Therefore,

Specχ S =

(
−(n− 2) −1 1 2

1 1 n− 3 1

)
. (14)

Hence, Eχ(S ) = 2(n− 1). �

Remark 12 We observe that, the family of graphs S , F
(k)
3 , Kn and K1,n−1 are

color-equienergetic. From Equations (4), (6) and (14), clearly we can see their
spectra are not same. So, these families of graphs are non-co-spectral color-
equienergetic.

It is interesting to note that addition of an edge between a pendant vertex
and a vertex of degree two to S brings a significant difference in its energy.

Theorem 13 If H = S +e is a bicyclic graph of order n and size m obtained
by adding an edge between a pendant vertex and a vertex of degree two of the
graph S = K1,n−1 + e, then Eχ(H ) = 2(n− 3+

√
5).

b

b

b

b

b b

b

b

b

b
b

Figure 3: H = S + e

Proof. H is bicyclic graph of order n with n − 4 pendent vertices. Thus,
χ(H ) = 3, as it contains two copies of C3 with two vertices in common.
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The color matrix of H of order n× n,

Aχ(H ) =



0 1 1 −1 −1 −1 . . . −1 1

1 0 1 0 0 0 . . . 0 −1
1 1 0 1 1 1 . . . 1 1

−1 0 1 0 −1 −1 . . . −1 0

−1 0 1 −1 0 −1 . . . −1 0

−1 0 1 −1 −1 0 . . . −1 0
...

...
...

...
...

...
. . .

...
...

−1 0 1 −1 −1 −1 . . . 0 0

1 −1 1 0 0 0 . . . 0 0


n×n

The characteristic polynomial

Pχ(H , λ) = det(λI−Aχ(H )).

That is,

Pχ(H , λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 1 1 1 . . . 1 −1
−1 λ −1 0 0 0 . . . 0 1

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 0

1 0 −1 1 λ 1 . . . 1 0

1 0 −1 1 1 λ . . . 1 0
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 0

−1 1 −1 0 0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

Thus,

Pχ(H , λ) = [λ+ (n− 3)](λ+
√
5)(λ−

√
5)(λ− 1)(n+1)

Therefore,

Specχ H =

(
−(n− 3) −

√
5 1

√
5

1 1 (n− 3) 1

)
.

Hence, Eχ(H ) = 2(n− 3+
√
5).

�

Remark 14 The above theorem gives us the color energy of the family of
graphs H = S + e of order n which is 2(n − 3 +

√
5). We observe that

Eχ(H ) > 2(n−1). As a color-hyperenergetic graph has the color energy greater
than 2(n− 1) [1], H is a family of color-hyperenergetic graphs.
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5 Concluding remarks and scope

In this study, we have explored new bounds for the color energy of graphs
and have been successful in finding better bounds than those found in the
literature. However, it remains as an open problem to determine graphs for
which these bounds are sharp. Further, new bounds for Ec(G) in terms of its
order n can be determined. Another interesting area would be explore the
relation between Ec(G) and topological indices, and identify graphs for which
they match. As we have observed the color energy is defined in terms of its
color matrix which of course depends upon the coloring scheme. Therefore,
study of color energy with respect to a specific coloring is yet another area to
be investigated.
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