
Acta Univ. Sapientiae, Informatica 9, 1 (2017) 65–82

DOI: 10.1515/ausi-2017-0005

A unified approach of program verification

Dedicated to the memory of Antal Iványi

Tibor GREGORICS
Eötvös Loránd University

Faculty of Informatics
email: gt@inf.elte.hu

Zsolt BORSI
Eötvös Loránd University

Faculty of Informatics
email: bzsr@inf.elte.hu

Abstract. The subject of this paper is a program verification method
that takes into account abortion caused by partial functions in program
statements. In particular, boolean expressions of various statements will
be investigated that are not well-defined. For example, a loop aborts
if its execution begins in a state for which the loop condition is unde-
fined. This work considers the program constructs of nondeterministic
sequential programs and also deals with the synchronization statement
of parallel programs introduced by Owicki and Gries [7]. The syntax of
program constructs will be reviewed and their semantics will be formally
defined in such a way that they suit the relational model of programming
developed at Eötvös Loránd University [3, 4]. This relational model de-
fines the program as a set of its possible executions and also provides
definition for other important programming notions like problem and so-
lution. The proof rules of total correctness [2, 5, 8, 9, 7] will be extended
by treating abortion caused by partial functions. The use of these rules
will be demonstrated by means of a verification case study.

Computing Classification System 1998: F.3.1
Mathematics Subject Classification 2010: 68N30, 68Q60
Key words and phrases: verification, programming model, program constructions, cor-
rectness

65

http://people.inf.elte.hu/gt
http://www.inf.elte.hu/english
http://www.inf.elte.hu/english
mailto:gt@inf.elte.hu
http://people.inf.elte.hu/bzsr
http://www.inf.elte.hu/english
http://www.inf.elte.hu/english
mailto:bzsr@inf.elte.hu

66 T. Gregorics, Zs. Borsi

1 Introduction

In mathematics, a partial function is a binary relation from X to Y that does
not map every element of X to an element of Y. It is well-known that the
expression a/b is not defined if the divisor b is zero. But even the subtraction
x − y may have no defined value, it occurs if x and y are natural numbers
and x is less than y, and the expected value also should be a natural number.
More precisely, f : N × N → N (where f(x − y) = x − y) is a partial function,
because not every element of the set N×N is in the domain of f. The value of
a partial function is undefined when its argument is out of the domain of the
partial function.

In programming, an attempt to divide by zero is handled in various ways
depending on the programming environment. It either leads to a compile-time
error or produces a catchable runtime error if it happens at runtime. In gen-
eral, evaluation to an undefined value may lead to exception or undefined be-
haviour. Programmers encounter with expressions on a daily basis, when they
are constructing statements. The most commonly used form of the assignment
statement sets the value of an expression to a variable. Particularly, boolean
expressions are concerned when one writes loop condition or conditions of an
alternative command. The value of these expressions is not certainly defined
mathematically.

There are programs that have to work without any error. To be able to rea-
son about the correctness of such programs we need to have rigorous definition
of the semantics of the language of these programs. We also need methods
that allow us to verify the correctness of programs. When one provides the
semantics of a program construct, the functions that are used to build the
programming statement (loop condition for example) are assumed to be total
functions. The verification methods also consider program descriptions where
these functions are well-defined.

This paper focuses on partial functions in program descriptions. In par-
ticular, not well defined boolean expressions of various statements will be
considered. They will be took into account when providing the semantics of
statements. The semantics of program constructs are given in such a way that
they suit an existing relational programming model. This model defines the
basic concepts of programming, for example defines the program as a set of
its possible executions. A verification method will be presented as well, that
handles statements containing partial logical functions. Some rules of the ver-
ification method are well known, the new rules will be given along with their
proof.

A unified approach of program verification 67

The rest of this paper is organized as follows. Section 2 reviews how partial
functions are handled in the literature. Section 3 introduces keywords that are
allowed to use to build programs we want to investigate. Next, the semantics
of these elementary programs and construct are provided. The mentioned re-
lational programming model is also presented here shortly. Then we provide
verification rule for each statement that can be formed from our keywords.
Section 4 presents a verification example and illustrates the use of the verifi-
cation rules given in the previous section. Section 5 summarizes our approach
and work.

2 Related work

Z. Manna in [10] presents a verification method for flowchart programs. A
flowchart program is a diagram constructed by edges and nodes, where the
nodes denote statements. y ← g(x, y) stands for an assignment statement
where g(x, y) is a total function mapping Dx ×Dy into Dy.

C. A. Hoare in [9] did not mention that the conditions of the alternative or
loop constructions were total logical functions but his examples showed this.

K. R. Apt and E.-R. Olderog use total logical functions namely Boolean
expressions in their work. For example, to ensure that the expressions x div y
and x mod y are total they additionally stipulate x div y = 0 and x mod y = x
for the special case of y = 0 [1].

D. Gries in his fundamental work on investigating program correctness states
that the guards β1, . . .βn have to be well-defined boolean expressions to make
sure that the alternative command avoids abortion. However, in his verification
rules, by assuming that all boolean expressions used in program descriptions
(i.e. loop conditions, guards of guarded commands) are well-defined, he elim-
inates this condition to make the verification rules simpler [8].

Williem-Paul de Roever et al. extend Floyd’s inductive assertion method for
proving sequential transition systems. In sequential transition systems edges
are labelled by commands in the form of c → f. In their work c has to be a
total boolean condition, but partial state transformations that might lead to
runtime error (for example c→ x := 1/y where c is the guard of the command
x := 1/y) are allowed to use. They present a method for proving that the
execution of a given program will not apply undefined operations [11].

68 T. Gregorics, Zs. Borsi

3 Theoretical background

3.1 Syntax

A parallel nondeterministic program (let S denote it) can be described with a
finite string of symbols including the keywords skip, abort, if, fi, while, do,
od, [,], await, then, ta, parbegin, ‖ and parend, which is generated by the
following grammar:

S =skip | abort | v := f(v) | [S0] | await β then S0 ta |

S1;S2 | if π1 → S1 � . . . � πn → Sn fi | while π do S0 od |

parbegin S1 ‖ · · · ‖ Sn parend

where v denotes the current variables, π, π1, . . . , πn, β are partial logical
functions over the current state space, S0, S1, . . . , Sn are programs. The skip
is the empty program (doing nothing), abort is the wrong program (result-
ing fail), the v := f(v) is the nondeterministic assignment, the (S1;S2) is the
sequential compisition, the if π1 → S1 � . . . � πn → Sn fi is the nonde-
terministic conditional statement, the while π do S0 od is the loop, the [S0]
is the atomic region, the await β then S0 ta is the await-statement, and
parbegin S1 ‖ · · · ‖ Sn parend is the parallel composition.

3.2 Semantics

Before the semantics of the elementary programs and the program construc-
tions described above are shown the concept of the program must be clarified.

All concepts of our programming model as like as the concept of the program
are based on the state space. The concept of the state space has already been
interpreted in several ways. For many people, the state space is a model of a
von Neumann type of computer, others, e.g. Dijkstra [2], associate this notion
with the problem to be solved where a state is a compound of the values of the
main data types. So, the program is “outside” of the state space operating on
it. In our programming model, this second meaning is used. In [3], the notion
of the state space is a Cartesian product of the type value set of data types.
The only mistake of this obvious definition is that it imposes an order on the
components. In [5, 6], this mistake has been repaired.

A program is the complex of its executions. An execution is a sequence of
states. A program, by definition, can always begin, i.e. at least one execution
has to start from each state. The program is nondeterministic because several

A unified approach of program verification 69

executions may start from the same state and nobody knows which execution
will happen. The first state (start state) of all executions and the last, if the
execution is finite, are in the so called base state space. Namely the state space
can be permanently changed; the inner states of the executions may have got
new components because the program can create and destroy new components
(variables) during its execution, so the state space changes dynamically. Two
constraints are given: all new components have to be destroyed at the ter-
mination, at the very latest, but the base variables should never be removed.
The current state always contains the components of the base state space. The
variables of the base state space are the base variables; the other variables are
the auxiliary variables of the program. Thus the base state space is always a
subspace of the current state space. The case when the execution of a program
goes wrong will be denoted by a finite sequence of states where the last state
is the fail.

A sequence can be given by the enumeration of its elements between the signs
”<” and ”>”: < e1, e2, · · · >. We will use the interconnection of two sequences
if the end of the first sequence is identical to the front of the second one.
More precisely, if α =< a1, . . . , an > and β =< b1, b2, · · · > are sequences and
an = b1 6= fail, then their interconnection is α⊗ β =< a1, . . . , an, b2, · · · >.

The formal definition of the program [6] requires some notions. Let H∗∗

denote the set of all finite and infinite sequences of the elements of set H. H∞
includes the infinite sequences; H∗ contains the finite ones. So, H∗∗ = H∗∪H∞
and H∗ ∩ H∞ = ∅. The length of the sequence α ∈ H∗∗ is |α|, the value of
which is ∞ if the sequence is infinite.

Definition 1 Let A be the so-called base state space and Ā be the set of all
states which belong to the state spaces B whose subspace is A, i.e. Ā =

⋃
A≤B

B.

Ā does not contain the state fail. The relation S ⊆ A × (Ā ∪ {fail})∗∗ is a
program over A, if

1. DS = A

2. ∀a ∈ A and ∀α ∈ S(a) : |α| ≥ 1 and α1 = ai

3. ∀α ∈ RS and ∀i(1 ≤ i < |α|) : αi 6= fail

4. ∀α ∈ RS : |α| <∞→ α|α| ∈ A ∪ {fail}

Now, we are going to give the semantics of the elementary programs and
program constructions so that they are treated as programs in the sense of

70 T. Gregorics, Zs. Borsi

the previous definition. Our aim is to define the set of state-sequences that are
mapped to an arbitrary state by a construction.

Definition 2 Let A be a state space and σ ∈ A be the current state.
skip(σ) ::= {< σ >}

Definition 3 Let A be a state space and σ ∈ A be the current state.
abort(σ) ::= {< σ, fail >}

Definition 4 Let A be a state space and f ⊆ A× A be a relation and σ ∈ A
be the current state.

(v := f(v))(σ) ::=

{
{< σ, σ ′ >| σ ′ ∈ f(σ)} if σ ∈ Df
{< σ, fail >} if σ /∈ Df

Definition 5 Let A be the common base state space of the program S1 and
S2. Let σ ∈ A be the current state.

(S1;S2)(σ) ::= {α | α ∈ S1(σ) ∩A
∞
} ∪

{α | α ∈ S1(σ) and | α |<∞ and α|α| = fail} ∪
{α⊗ β | α ∈ S1(σ) ∩A

∗
and β ∈ S2(α|α|)}

Definition 6 Let A be the common base state space of the program S1 . . . Sn
and the conditions π1 . . . πn. Let σ ∈ A be the current state.

(if π1 → S1 � . . .� πn → Sn fi)(σ) ::= ω(σ) ∪
n⋃
i=1

σ∈Dπi∧πi(σ)

Si(σ)

where ω(σ) =

{
{< σ, fail >} if ∃i ∈ [1..n] : σ /∈ Dπi

∨ ∀i ∈ [1..n] : σ ∈ Dπi
∧ ¬πi(σ)

∅ otherwise

Definition 7 Let A be the common base state space of the program S0 and
the condition π. Let σ ∈ A be the current state.

(while π do S0 od)(σ) ::=


(S0;while π do S0 od)(σ) if σ ∈ Dπ ∧ π(σ)
{< σ >} if σ ∈ Dπ ∧ ¬π(σ)

{< σ, fail >} if σ /∈ Dπ

A unified approach of program verification 71

Definition 8 Let A be a state space and f ⊆ A× A be a relation and σ ∈ A
be the current state.
[S](σ) ::= S(σ)

Definition 9 Let A be the common base state space of the program S0 and
the condition β. Let σ ∈ A be the current state.

(await β then S0 ta)(σ) ::=


abort(σ) if σ /∈ Dβ
[if β then S0 fi](σ) if σ ∈ Dβ ∧ β(σ)

(skip;await β then S0 ta)(σ) if σ ∈ Dβ ∧ ¬β(σ)

Before the definition of the parallel composition the concept of the “unin-
terrupted” must be intoduced. Let S be a program and σ be an arbitrary state
of its base state space. The execution S(σ) is uninterrupted if the program S

is the skip, abort, an assignment statement, an atomic region [P] or an await
statement await β then S0 ta where σ /∈ Dβ or β(σ) is true.

We must remark that in case of S(σ) is not uniterrupted (where σ is an
arbitrary state and S is a program), then there is a finite set H of program
pairs (u, T) so that u(σ) is uninterrupted and S(σ) =

⋃
(u,T)∈H

(u; T)(σ). This u is

named as the first statement of S and T is the remainder part of S relative to
the state σ.

Definition 10 Let A be the common base state space of the programs S1 . . . Sn
and σ ∈ A be the current state.

(parbegin S1 ‖ · · · ‖ Si ‖ · · · ‖ Sn parend)(σ) ::=
n⋃
i=1

Bi(σ)

where

Bi(σ) =



(Si;parbegin S1 ‖ · · · ‖ Si−1 ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is uninterrupted⋃
(u,T)∈H
(u;parbegin S1 ‖ · · · ‖ Si−1 ‖ T ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is not uninterrupted and Si(σ) =
⋃

(u,T)∈H
(u; T)(σ)

Let S be a program, σ be an arbitrary state of its base state space and the
execution S(σ) is not uniterrupted. A finite set H of program pairs (u, T) so
that u(σ) is uninterrupted and S(σ) =

⋃
(u,T)∈H

(u; T)(σ) can be given as follows:

72 T. Gregorics, Zs. Borsi

• If S = (S1;S2) and S1(σ) is uninterrupted, then S(σ) = (S1;S2)(σ).
If S = (S1;S2) where S1(σ) is not uninterrupted and S1(σ) =

⋃
(u,T)∈H

(u; T)(σ),

then S(σ) =
⋃

(u,T)∈H
(u; (T ;S2))(σ).

• If S = if π1 → S1 � . . .� πn → Sn fi and all of its conditions are defined
and some of them are true in σ (∀i ∈ [1..n] : σ ∈ Dπi ∧ ∃i ∈ [1..n] : σ ∈
πi(σ)), then

S(σ) =
n⋃
i=1

σ∈Dπi∧πi(σ)

(skip;Si)(σ)

• If S = while π do S0 od and σ ∈ Dπ ∧ ¬π(σ),
then S(σ) = (skip; (S0;while π do S0 od))(σ).

• If S = await β then S0 ta and σ ∈ Dβ ∧ ¬β(σ),
then S(σ) = (skip;await β then S0 ta))(σ).

• If S = parbegin S1 ‖ · · · ‖ Si ‖ · · · ‖ Sn parend, then S(σ) =
n⋃
i=1

Bi(σ)

where

Bi(σ) =



(Si;parbegin S1 ‖ · · · ‖ Si−1 ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is uninterrupted⋃
(uij

,Tij)∈Hi

(uij ;parbegin S1 ‖ · · · ‖ Si−1 ‖ T ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is not uninterrupted and Si(σ) =
⋃

(uij
,Tij)∈Hi

(uij ; Tij)(σ)

3.3 Verification

Informally, a program is correct if it satisfies the intended input/output rela-
tion. Program correctness is expressed by so-called correctness formulas. These
are statements of the form

{{Q}}S{{R}}

where S is a program and Q and R are assertions. The assertion Q is the
precondition of the correctness formula and R is the postcondition. The pre-
condition describes the set of initial states in which the program S is started
and the postcondition describes the set of desirable final states.

A unified approach of program verification 73

More precisely: a correctness formula is true if every excecution of S that
starts in a state satisfying Q is finite (it terminates) and its final state satisfies
R. (This is the concept of the total correctness. The partial correctness is
omitted in this paper.)

Reasoning about correctness formulas in terms of semantics is not very con-
venient. Hoare has introduced a proof system allowing us to prove partial
correctness of deterministic programs in a syntax-directed manner, by induc-
tion on the program syntax [9]. Dijkstra, Gries and Owicki have developed this
system for nondeterministic and parallel programs [2, 8, 7]. Now this system
is going to be extended.

The first six rules are well-known, they are only shown for the sake of com-
pleteness without their proofs.

Theorem 11 Let Q and R be two assertions.

Q =⇒ R

{{Q}} skip {{R}}

Theorem 12 Let Q and R be two assertions, v := f(v) be an assignment.

Q =⇒ v ∈ Df ∧ ∀e ∈ f(v) : Rv←e
{{Q}} v := f(v) {{R}}

The Rv←e means that the components of v must be substituted for the
corresponding components of e. In that case when the relation f ⊆ A × A of
the assingment is a total function, i.e., f is a (deterministic) function mapping
from A to A and Df = A, the rule of assigment can be written in the following
form.

Q =⇒ Rv←f(v)
{{Q}} v := f(v) {{R}}

Theorem 13 Let Q and R be two assertions, S be a program.

{{Q}} S {{R}}

{{Q}} [S] {{R}}

Theorem 14 Let Q and R be two assertions, S1 and S2 be two programs.

∃Q ′ : A→ L
{{Q}} S1 {{Q

′}}

{{Q ′}} S2 {{R}}

{{Q}} (S1;S2) {{R}}

74 T. Gregorics, Zs. Borsi

Theorem 15 Let Q and R be two assertions, and S∗ stand for the program S

annotated with assertions such as preconditions of the assignments or invari-
ants of the loops.

{{Q}} S∗ {{R}}

{{Q}} S {{R}}

The next three rules take into consideration the cases when some logical
functions of the construction is not well-defined. These rules are the extensions
of the well-known versions that use well-defined logical functions. An assertion
P will be interpreted as the set of states that satisfy P many times in the
following rules. From its context it can be decided which interpretation holds.
For example, Q and R are assertions in the expression Q =⇒ R but they are
sets in Q ⊆ R.

Theorem 16 Let Q and R be two assertions, and S1, . . . Sn be programs and
π1, . . . πn be conditions.

Q =⇒ π1 ∨ · · ·∨ πn
Q ⊆ Dπ1 ∩ · · · ∩ Dπn

∀i ∈ {1, . . . , n} : {{Q∧ πi}} Si {{R}}

{{Q}} if π1 → S1 � . . .� πn → Sn fi {{R}}

Proof. We must show that the executions of the conditional statement starting
from Q finish at R. Let q be an arbitrary state of Q. Since Q ⊆ Dπ1 ∩· · ·∩Dπn
and Q =⇒ π1 ∨ · · · ∨ πn, according to the definition each execution of
the conditional statement starting from q belongs to the executions of the
component Si where its condition πi is satisfied by q.

These executions terminate in a state satisfying R because ∀i ∈ {1, . . . , n} :
{{Q∧ πi}}Si{{R}} thus {{Q}} if π1 → S1 � . . .� πn → Sn fi {{R}} holds. �

Theorem 17 Let Q and R be two assertions, and S0 be a program and π be
a condition.

∃I : A→ L and ∃t : A→ Z
Q =⇒ I

I ⊆ Dπ
I∧ ¬π =⇒ R

I∧ π =⇒ t ≥ 0
{{I∧ π}} S0 {{I}}

∀c0 ∈ Z : {{I∧ π∧ t = c0}} S0 {{t < c0}}

{{Q}} while π do S0 od {{R}}

A unified approach of program verification 75

Proof. We need to prove that the executions of the loop starting from Q are
finite and they finish at R. Let q be an arbitrary state of Q. Since Q =⇒ I

and I ⊆ Dπ thus q ∈ Dπ.
The execution starting from q can be splitted into the sections of the exe-

cutions generated by the body S0. Each section is started at a state satisfying
I ∧ π and terminates at a state satisfying I (see the cond. {{I ∧ π}}S0{{I}}). If
the total execution is finite, its last section finishes at a state satisfying ¬π or
the state q own satisfies ¬π if the loop stops at once. It means that each finite
execution strating from q finishes at a state of R since I∧ ¬π =⇒ R.

The proof will be complete if we show that there is no infinite execution
from q. If there would be an infinite execution, it should consist of infinite
sections. Let us consider the infinite sequence of integers that is mapped from
the beginning states of the sections by the function t. Because of the criterion
∀c0 ∈ Z : {{I ∧ π ∧ t = c0}} S0 {{t < c0}} this sequence should be strictly
monotone decreasing thus it should contain negative numbers. However all
numbers must be nonnegative because of the criterion I∧ π =⇒ t ≥ 0. This
is a contradiction. �

Theorem 18 Let Q and R be two assertions, and S0 be a program and β be
a condition.

Q ⊆ Dβ
{{Q∧ β}} S0 {{R}}

{{Q}} await β then S0 ta {{R}}

Proof. It is enough to show that the executions of the conditional statement
starting from Q finish at R. Let q be an arbitrary state of Q. If q ∈ Dβ and q
satisfies β, the executions of the await-statement starting from q are identical
to the executions of the atomic region S0 starting from q. These executions
finish at a state in R because of {{Q∧ β}} S0 {{R}}. �

The last rule is about the parallel composition.

Theorem 19 Let Q, Q1, . . . Qn and R, R1, . . . Rn be assertions, S1, . . . Sn
be programs, and S∗1, . . . S

∗
n be the annotations of the corresponded programs.

Q =⇒ Q1 ∧ . . . ∧ Qn

∀i ∈ {1, . . . , n} : {{Qi}}S
∗
i {{Ri}}

and they are interference free

R1 ∧ . . . ∧ Rn =⇒ R

{{Q}} parbegin S1 ‖ · · · ‖ Sn parend {{R}}

76 T. Gregorics, Zs. Borsi

where standard proof outlines {{Qi}}S
∗
i {{Ri}}, i ∈ {1, . . . , n}, are called interfer-

ence free if no normal assignment or atomic region u of a component program
Si interferes with the proof outline {{Qj}}S

∗
j {{Rj}} of another component pro-

gram Sj where i 6= j. We say that u does not interfere with {{Q}}S∗{{R}} if the
following conditions are satisfied:

1. for all assertions r in {{Q}}S∗{{R}} the formula {{r∧ pre(u)}}u{{r}} holds,
where pre(u) is the precondition of u in the annotation S∗,

2. for all termination function t : Ā → Z in {{Q}}S∗{{R}} where A is the
base state space of the parallel composition the formula {{pre(u) ∧ t =
c0}} u {{t ≤ c0}} holds, where c0 is an arbitrary integer.

4 Case study

Consider the following problem: given an array x of n integer numbers and an
integer number k. Count the elements of x that are divisors of k.
Specification of the problem can be given in the following way:
A = (x : Zn, k : Z, count : N)
Pre = (x = x ′)

Post = (Pre∧ count =
n∑
j=1

χ(x[j] | k))

where χ : L→ {0, 1} and χ(true) = 1 and χ(false) = 0

Let S denote the following program:

i, count := 1, 0
while i ≤ n do

if
x[i] | k→ count := count+ 1 �
x[i] - k→ skip

fi ;
i := i+1

od

LetQ ′ denote the intermediate assertion of the sequence S, between the initial-
isation and the loop,Q ′′ the intermediate assertion that holds before executing
the assignment i := i + 1, Inv the invariant and t the variant function of the
loop.

A unified approach of program verification 77

Now we shall to prove that {{Pre}} S {{Post}} holds. Since S is a sequence,
due to Theorem 14. it is sufficient to prove that

1. {{Pre}} i, count := 1, 0 {{Q ′}} and

2. {{Q ′}} DO {{Post}}, where DO denotes the loop:
while i ≤ n do if x[i] | k→ count := count+ 1 � x[i] - k→ skip fi;
i:=i+1 od
and Q ′ = (Pre∧ count = 0∧ i = 1) is given.

Let us prove the two conditions:

1. {{Pre}} i, count := 1, 0 {{Q ′}}
By replacing i with 1 and count with 0 in Q ′ we obtain (Pre ∧ 0 =
0 ∧ 1 = 1), that is Pre. Obviously Pre =⇒ Pre holds. We proved
that Pre =⇒ Q ′i←1,count←0 holds. Now, by the remark of Theorem 12.
{{Pre}} i, count := 1, 0 {{Q ′}} is deduced.

2. {{Q ′}} DO {{Post}}

Instead of proving this verification condition, due to Theorem 17. it is
sufficient to prove that

(a) Q ′ =⇒ Inv and

(b) Inv ⊆ Di≤n and

(c) Inv∧ ¬(i ≤ n) =⇒ Post and

(d) Inv∧ i ≤ n =⇒ n− i ≥ 0 and

(e) ∀c0 ∈ Z : {{Inv∧ i ≤ n∧ n− i = c0}} S0 {{Inv∧ n− i < c0}}

where S0 denotes the loop body if x[i] | k → count := count + 1�
x[i] - k→ skip fi; i:=i+1.
and the loop invariant Inv and the variant function t are given as follows:

Inv = (Pre∧ i ∈ [1..n+ 1]∧ count =
i−1∑
j=1

χ(x[j] | k))

t = n− i
Let us prove the conditions separately:

(a) Q ′ =⇒ Inv

We have to prove that Q ′ implies

i. Pre
This holds since Q ′ contains Pre.

78 T. Gregorics, Zs. Borsi

ii. i ∈ [1..n+ 1]
Since i = 1, i is an element of the not empty set [1..n+ 1]. The
interval [1..n+ 1] is not empty, because n, that is the length of
the array x, is zero or a positive integer number.

iii. count =
i−1∑
j=1

χ(x[j] | k)

Due to condition Q ′, count = 0 and i = 1. Thus the sum is
empty and its value is also 0.

(b) Inv ⊆ Di≤n
Since i ≤ n is a well-defined logical function, its domain contains
all states of the statespace, including those that satisfy Inv.

(c) Inv∧ ¬(i ≤ n) =⇒ Post

i. Pre
The invariant contains the precondition, therefore Inv implies
Pre.

ii. count =
n∑
j=1

χ(x[j] | k)

Since i ∈ [1..n+ 1] and ¬(i ≤ n), therefore we get i = n+ 1.

This, together with count =
i−1∑
j=1

χ(j | k)) we know from Inv,

yields the desired condition.

(d) Inv∧ i ≤ n =⇒ n− i ≥ 0
This holds because due to the loop condition i ≤ n is true.

(e) ∀c0 ∈ Z : {{Inv∧ i ≤ n∧ n− i = c0}} S0 {{Inv∧ n− i < c0}}
Let c0 be an arbitrary integer number. Since the loop body S0 is a
sequence, we use Theorem 14. with Inv∧ i ≤ n∧ n − i = c0 as Q
and with Inv∧n− i < c0 as R. It is sufficient to prove the following
two conditions:

i. {{Inv∧ i ≤ n∧ n− i = c0}} IF {{Q
′′}} and

ii. {{Q ′′}} i := i+ 1 {{P ∧ n− i < c0}}

where IF denotes the conditional statement if x[i] | k → count :=
count+ 1� x[i] - k→ skip fi
and the intermediate assertion of the loop body is Q ′′ is given:
Q ′′ = Invi←i+1 ∧ n− i = c0

A unified approach of program verification 79

i. {{Inv∧ i ≤ n∧ n− i = c0}} IF {{Q
′′}}

Due to Theorem 16., the following conditions are sufficient to
prove:

A. Inv∧ i ≤ n∧ n− i = c0 =⇒ (x[i] | k∨ x[i] - k) and

B. Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k and

C. {{Inv∧ i ≤ n∧n− i = c0∧ x[i] | k∧n− i = c0}} count :=
count+ 1 {{Q ′′}} and

D. {{Inv∧i ≤ n∧n−i = c0∧x[i] - k∧n−i = c0}} skip {{Q ′′}}

Let us prove the conditions separately:

A. Inv∧ i ≤ n∧ n− i = c0 =⇒ (x[i] | k∨ x[i] - k)
For each state of the statespace for which Inv ∧ i ≤ n ∧

n− i = c0 holds, either x[i] is a divisor of k or x[i] is not a
divisor of k.

B. Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k
In order to ensure that x[i] | k and x[i] - k are well-defined
functions, we have to take into account not only that the
divisibility x[i] | k can be answered only if x[i] is not zero,
but the index i has to be inside the bounds of the array x.
More precisely, we want to prove that
Inv ∧ i ≤ n ∧ n − i = c0 =⇒ i ∈ [1..n] ∧ x[i] 6= 0 ∧ i ∈
[1..n]∧ x[i] 6= 0.
Although i ∈ [1..n+ 1] (due to the invariant) and the loop
condition i ≤ n together allow us to deduce that i ∈ [1..n]
holds, we cannot guarantee that each state of the statespace
for which Inv∧ i ≤ n∧n− i = c0 holds, x[i] is not 0. The
reason is, that there is no assumption for the elements of
x, except that they are integer numbers. The case when
x[i] = 0, is not excluded by any condition we know and are
allowed to use. If x[i] equals 0, the expressions x[i] | k and
x[i] - k have no defined value. The current condition cannot
be proven. We provide the remaining part of the proof for
the sake of completeness.

C. {{Inv∧ i ≤ n∧n− i = c0∧ x[i] | k∧n− i = c0}} count :=
count+ 1 {{Q ′′}}
Let us recall that Q ′′ is (Invi←i+1 ∧ n− i = c0).
Q ′′count←count+1 = (Pre∧ i+ 1 ∈ [1..n+ 1]∧ count+ 1 =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k)). By Theorem 12. it is sufficient

80 T. Gregorics, Zs. Borsi

to prove that
(Inv ∧ i ≤ n ∧ n − i = c0 ∧ x[i] | k ∧ n − i = c0) =⇒
Q ′′count←count+1.
• Pre
Pre in included in Inv.

• i+ 1 ∈ [1..n+ 1]
Due to the invariant i ∈ [1..n+ 1] holds. This, combined
with the loop condition i ≤ n implies i + 1 ∈ [1..n + 1].
i = 1 and i ≤ n.

• count+ 1 =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k))

By the loop invariant Inv, count =
i−1∑
j=1

χ(x[j] | k)). Since

in this case x[i] is a divisor of k, χ(x[i] | k) = 1, we added
1 to both sides of the previous equation.

D. {{Inv∧i ≤ n∧n−i = c0∧x[i] - k∧n−i = c0}} skip {{Q ′′}}
Let us recall that Q ′′ is (Invi←i+1 ∧ n − i = c0) that is

(Pre∧ i+ 1 ∈ [1..n+ 1]∧ count =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] |

k) ∧ n − i = c0). By Theorem 11. it is sufficient to prove
that
(Inv∧ i ≤ n∧ n− i = c0 ∧ x[i] - k∧ n− i = c0) =⇒ Q ′′.

• Pre
Pre in included in Inv.

• i+ 1 ∈ [1..n+ 1]
We prove this in the same way as we did in the previous
case.

• count =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k))

By the loop invariant Inv, count =
i−1∑
j=1

χ(x[j] | k)). Since

in this case x[j] is not a divisor of k, χ(x[i] | k) evaluates
to zero. The desired condition holds because both sides

of the equation count =
i−1∑
j=1

χ(x[j] | k)) in Inv remained

the same.

• n− i = c0

A unified approach of program verification 81

It is obviously true, since it is on the left side.

ii. {{Q ′′}} i := i+ 1 {{Inv∧ n− i < c0}}
Q ′′ = (Invi←i+1∧n− i = c0. It is obvious that (Invi←i+1∧n−
i = c0) =⇒ (Inv∧n− i < c0)

i←i+1, therefore by Theorem 12
we get the expected correctness formula.

To prove the correctness formula {{Q}} S {{R}}, all the verification conditions
generated by the verification rules have to be satisfied. Let us remember that
the following condition was not proven:
Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k
We could not guarantee that both of the logical functions x[i] | k and x[i] - k
are well-defined functions. Evaluating these functions of the program might
lead to abortion. The rest of the conditions were unnecessary to prove, their
proof was given for the sake of completeness.

5 Summarization

The main idea behind this work is to take into account abortion caused by
partial functions in programs and extend verification rules to be able to ensure
that such programs are total correct. To reason about correctness, we provided
the formal definition of the semantics of programs under our investigation. One
of the contributions of this paper is, that the semantics of program constructs
are defined in such a way that they suit an existing relational model of pro-
gramming. This relational model defines the program as a set of its possible
executions and also provides definition for other important programming no-
tions like problem and solution. Then, we provide a verification rule for each
class of statements. The first six rules are well-known. Three rules are new,
they are presented along with their proofs. The use of the rules is demonstrated
by means of a verification case study.

References

[1] K. R. Apt, E.-R. Olderog, Verification of Sequential and Concurrent Program,
Springer-Verlag, 1997. ⇒67

[2] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
New York, 1976. ⇒65, 68, 73

[3] Á. Fóthi, Mathematical Approach to Programming, Ann. Univ. Sci. Budapest.
Sect. Comput. 9 (1988) 105–114. ⇒65, 68

https://www.uni-oldenburg.de/en/computingscience/csd/persons-contacts/prof-dr-ernst-ruediger-olderog/
http://www.springer.com/gp/
https://www.pearson.com/us/higher-education.html
http://people.inf.elte.hu/fa/

82 T. Gregorics, Zs. Borsi

[4] Á. Fóthi et al, Some concepts of a Relational Model of Programming, Proc. 4th
Symposium on Programming Language and Software Tools, Visegrád, Hungary,
June 8-14, 1995. (ed. Varga L.,) pp. 434–446, ⇒65

[5] Á. Fóthi, Bevezetés a programozáshoz, ELTE Eötvös Kiadó. 2005. (in Hungar-
ian). ⇒65, 68

[6] T. Gregorics, Concept of abstract program, Acta Universitatis Sapientiae, In-
formatica, 4, 1 (2012) 7–16. ⇒68, 69

[7] D. Gries, S. Owicki, An axiomatic proof technique for parallel programs, Acta
Inf., 6, 4 (1976) 319–340. ⇒65, 73

[8] D. Gries, The Science of Programming, Springer, Berlin, 1981. ⇒65, 67, 73
[9] C. A. Hoare, An axiomatic basis for computer programming, Comm. of the ACM

12, 10 (1969) 576–580. ⇒65, 67, 73
[10] Z. Manna, Mathematical theory of computation, McGraw Hill, 1974. ⇒67
[11] W.-P. de Roever et al, Concurrency Verification, Cambridge University Press,

2001. ⇒67

Received: June 12, 2017 • Revised: July 8, 2017

http://people.inf.elte.hu/fa/
http://people.inf.elte.hu/gt/
http://www.acta.sapientia.ro/acta-info/C4-1/info41-1.pdf
http://www.acta.sapientia.ro/acta-info/C4-1/info41-1.pdf
https://www.cs.cornell.edu/gries/
https://link.springer.com/journal/236
https://link.springer.com/journal/236
https://www.cs.cornell.edu/gries/
http://www.springer.com/gp/
http://dl.acm.org/citation.cfm?id=363235&picked=prox&cfid=773390474&cftoken=82585266
http://theory.stanford.edu/~zm/
http://www.cambridge.org/

