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Abstract. The numerical simulation allows to study the high energy
particle physics. It plays important of role in the reconstruction and an-
alyze of these experimental and theoretical researches. This requires a
computer background with a large capacity. Jet physics is an intensively
researched area, where the factorization process can be solved by algo-
rithmic solutions.

We studied parallelization of the k; cluster algorithms. This method
allows to know the development of particles due to the collision of high-
energy nucleus-nucleus.

The Alice offline library contains the required modules to simulate
the ALICE detector that is a dedicated Pb-Pb detector. Using this sim-
ulation we can generate input particles, that we can further analyzed by
clustering them, reconstructing their jet structure. The FastJet toolkit
is an efficient C++ implementation of the most widely used jet cluster-
ing algorithms, among them the k clustering. Parallelizing the standard
non-optimized version of this algorithm utilizing the available CPU ar-
chitecture a 1.6 times faster runtime was achieved, paving the way to
drastic performance increase using many-core architectures.
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1 Introduction

We studied the structure of the jet in the high energy physics using the many-
core architecture of the modern CPUs. We consider the important concept of
the particle physics.

The parton model was introduced by Richard Feynman to analyse the high-
energy hadron collisions. Any hadron can be considered a composition of a
number of point-like constituents.

In the theoretical physics the Quantum Chromodynamics (QCD) is the
theory of strong interaction which describe the interaction between quark and
gluon [5]. The QCD analogue of electric charge is a property called color. The
phenomenon of color confinement, that no particle with colour charge which
can be observed on its own, was introduced. So the color neutral particles
are examined, then we can measure the bound states, hadrons, which are
composed of quark-antiquark pair, meson or three quarks, so called baryon
6, 7].

Parton is useful for interpreting the cascades of radiation produced from
QCD processes and interactions in high-energy particle collisions.

Modern CPU architectures are capable of running multiple threads at the
same time, allowing the developers to utilize more resources at the same time
for the same application, increasing it’s performance. With the increase of
complexity and performance standard tools are including more tools to ease
the development for those architectures. The C+411 standard contains im-
portant tools for threading, like conditional variables and mutexes, that gives
more control over the parallelized algorithms. Using these tools and apply-
ing them in a reasonable way by taking into consideration the hardware and
operating system limitations a 1.6 times better performing ki clustering was
achieved without doing any additional optimizations on the code based on the
FastJet libraries solution.

2 Jet in high energy physics

In the experiment the conception of jet differs from the picture which was
presented by theoretical physics. We observe final state particles moving in
one direction, because the information about particle origin was lost during
hadronisation phase of collision. Therefore, when speaking about jets then we
speak about collimated sprays of particles (Figure 1).

Therefore one should have to map a set of particle to a set of jets by spe-
cial rules. These rules define a jet algorithm [8]. This method contains some
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parameters, which allow us to describe the behaviours more precisely. All to-
gether they determine the definition of the jet. We apply these consideration
to understand the structure of jet in the high energy experimental and the-
oretical physics. The results of theoretical QCD are built in the simulation,
recombination and analyses of the jet research.

2.1 Jet kinematics

We introduce some quantities which are important to know in the k¢ jet al-
gorithm. The interacting partons are not generally in the centre-of-mass of
colliding system, because the fraction of the hadron momentum is changing
from event to event which is specified by each partons. The jets can be intro-
duced by longitudinally boost-invariant variables because the centre-of-mass
system of the partons is boosted along the direction of the colliding hadrons
randomized. The mass, transverse momentum, azimutal angle and rapidity are
introduced by the next expressions:

mass: m:\/Ez—pi—pﬁ—pg
transverse momentum: prt = ,/p2 + pﬁ

azimutal angle: O = arctan(py/px)

rapidity: y = arctan(pyx/E) = %ln %

In the high energy limit, when [p| >> m, the directly measured quantities
are the following
energy E or the transverse energy: Ersin® = py
the azimuth: ©
the pseudo-rapidity: 1 = — In[tan(©/2)],
where the polar angle is given by © = arctan(pt/p;)-

3 Jet algorithm

The origin of the basic publication of the jet finding method is Sterman and
Weinberg [4] and there is huge literature which was published about the newer
version of these processes [16, 15, 3, 1]. These algorithms can be divided into
two major groups: cone algorithms and sequential recombination algorithms.

3.1 Cone algorithms

In the case of cone algorithm we study that particles which are situated inside
the conical angular regions, then the sum of the particle’s momentum concurs
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Figure 1: The structure of jet.
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with the cone axis. The QCD radiation and hadronisation don’t change the di-
rection of a parton’s energy flow. The stable cones are close to original partons
in the direction and energy. The discrepancy between these cone algorithms
are the strategy to find the stable cones and that process which is applied in
that cases where the same particle is found in multiple stable cones.

3.2 Sequential recombination algorithms

This type of the algorithm identifies the closest particles in a pair to calcu-
late the distance measure and recombine them. This process is repeat again,
until it reaches a stopping criterion. The distance measure depends on the
divergence of the perturbative QCD. The differences among the sequential
recombination algorithms are the selecting of the distance measure and the
stopping parameters.

3.2.1 The clustering algorithms

The k¢ algorithm uses the final state particles in a shower which are collinear, it
means that they have small transverse momentum between their constituent
particles [10]. All sequential clustering algorithms have similar method. We
define two distance variables.

The first of them is the one between two particles i and j, where dy =
RZ
min{pfi,pg}- — and a is an exponent which means the kind of the particular

clustering algorithm. The value Rj; is determined by this expression Rizj =
My —nj)z + (D; — q)j)z is a distance between the two particles i and j in the
(n — @) space and R is the radius parameter which specifies the final size of
the jet.

The second distance variable is dijp = p{; this means the distance between
the beam axis and the measured particle in the momentum space.

In the sequential clustering algorithms that process plays important role to
find the minimum of the entire set {dij, dig}. If dj; is the minimum value of
the distance then particles 1 and j are unified into one particle (ij) and it is
calculated sum of four-vectors after which 1 and j are removed from the list of
particles. If dig is the minimum, then object i is becomed part of a final jet
and removed from the list of particles.

This process is repeated until there are particles in a jet, where the distance
between the axes Ry greater than R, this process is an inclusive clustering.
Otherwise the all amount of jets have been found, this is exclusive clustering.
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k¢ algorithm The a value corresponding to the ki algorithms is 2.

The first step of the method is creating a list of the distance in the momentum-
space and the distance from the beams. This algorithm involves a distance
value dj; between all pairs of particles 1 and j

ARZ
(2 2
dij = dji = min(py, p;) Rzll, (1)

where py means the transverse momentum of particle i with respect to the
beam direction z and the expression AR%— = (yi — yj)z + (D — (Dj)z, where

Yyi = %ln E—fgﬁ denotes the i’s rapidity and ®@; constituted the azimuth. The
jet radius R 1s a parameter of the algorithm. This method contains a distance
measure between each of particles 1 and the beam:

dip = ph-

The first kind of this method was the exclusive variation of the k; algorithm
[13], where the consideration of smallest di; and dig were introduced.

If it is a djj, we can replace i and j together with a single object which has
a momentum pj + pj. This object is a pseudojet, this is neither a particle, nor
a full jet.

If the smallest distance is a dig, then we take away 1 from the list of particles
and pseudojets than we add it to the beam jet. This method is repeated until
the smallest djj or dip reaches the threshold dcyt. All particles and pseudojets
are processed.

In the case of the inclusive variation of the k; algorithm [14] the distances
dij and dip are the same as in the exclusive method.

The difference is between them when we determine the smallest value dig,
then the object 1 is removed from the list of particle and pseudojet set and it
is added to the list of final inclusive jets. There is no threshold d¢yu: and the
clustering process is kept until particle or pseudojets remain.

Because the distance measures are the same in both of the inclusive and
exclusive algorithms, the clustering sequence is same in these processes.

We consider the longitudinally-invariant k¢ algorithm for hadron collisions
[13, 14]. It was the first jet algorithm to be implemented in FastJet [9].

Longitudinally invariant k; jet algorithm This jet method applies the
inclusive version [14]. The steps of algorithm are written as following:

1. For each pair of particles i,j determine the k. distance to use equation
(1). with AR%j = (yi — yj)z + (D; — d)j)z, where pi,y; and @; are transverse
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momentum (with respect to the beam direction), rapidity and azimuth of
particle i. R is a jet-radius parameter which is taken of order 1. For each
parton i we calculate the beam distance dig = p%i.

2. We find the minimum dmi, of all the djj, dig. If dnin is a di merge
particles 1 and j into a single particle, then we sum their four-momenta. If it
is a dig then declare particle i which is a final jet and remove it from the list.

3. Repeat from step 1 until no particle are left.

The exclusive version of the longitudinally invariant k jet algorithm [14] is
similar, except two cases:

i. a dip is the smallest value, that particle becomes part of the beam jet.

ii. The clustering is stopped when all di; and dig are larger than the value
dcut-

In the next section we study the parallelization of the cluster k; algorithm.
We apply the simulation of the CERN Alice experiment offline method.

4 FastJet clustering

To do the jet clustering on the detected points, the FastJet [9] package is used.
It is implemented in C++ and provides many different jet finding algorithms
and analysis tools. The user can select from the widely used sequential recom-
bination algorithms, that are implemented efficiently, while it also supports
plugins for other solutions. The initial motivation to use this toolkit is the
inclusion of it in the Alice Offline Framework, so after the simulation of the
detector, the further process of the resulting particles can generate the jet
structures.

4.1 AliRoot

AliRoot is the Off-line framework for simulation, reconstruction and analysis
of the ALICE experiment at CERN. The framework and all applications are
developed based on the ROOT system. Mostly it is based on Object Oriented
programming paradigm, but as it was developed since 1998 it has some legacy
code and other libraries, that were developed based on different principles.

The simulation part of the tool covers all processes of primary collisions and
it generates the newly created particles, follows through their transportation
in the detector, calculates the hits in each component. The result can be either
stored in so called summable digits or digits derived from the summable ones
and it can also create raw data.
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For the work presented in this paper the system’s TPC detected points were
used. The Time Projection Chamber (TPC) detector is the main tracking
component of ALICE. Particles passing through this detector ionizes the gas
molecules inside the TPC and these ionization points are registered. The TPC
detector consists of two cylindrical volumes sitting along the beam. These
volumes are split into 18 trapezoidal readout sectors. The detector measures
track positions on 159 rows [2].

4.2 Parallelizing the clustering

The goal is to not rewrite the structure of the toolkit, only include the nec-
essary parts to utilize the parallel processing capabilities of the CPU. The
used N2 clustering - which requires O(N?) operations - is considerably slower
than the more optimized versions of the tile based clustering methods, but
applying SIMD techniques can show rapidly how much we can gain on this
field from utilizing multiple cores [17]. Even if parallelism is used, the current
algorithm can lead to very inefficient solutions if not done right. It is necessary
to check each element N times, which naively may result in the generation of
new threads for every single particle. Even if the maximum number of threads
supported by the hardware is taken into account, the overhead of creating
just a few threads in each iteration results in significant bottlenecks. Thus, for
such applications a generally good idea is to implement a Thread Pool that will
create the maximum number of threads only once and keep them alive until
there is any future work to do. In this initial work parallelization is done on
the distance update of the newly created jets after each recombination step.
This requires the new jet to being compared with other existing jets and find
the nearest neighbor and to set it’s distance. In case a closer jet is found the
process becomes sequential on the the assignment of the new closest neighbor
(Subsection 3.2.1).

4.3 Implementation

An important part of the implementation is the presence of the Thread Pool.
The threading uses the elements of the C++11 standard, namely the pool
depends on conditional variables, mutexes and locks. It provides two queues
for storing the incoming callable functions and the input data. The required
argument of the function implemented for the parallel computation is a user
defined JetData typed parameter. This will contain the necessary values for
the computation of clusters. After the pool’s creation, the initialized threads
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are waiting on a conditional variable until some work is presented to the FIFO.
To push work into the queues and to retrieve them from there, a unique lock
is ensuring, that only one thread can reach the container at any given time.
After a job is pushed in or popped out by a worker, the lock gets released
and some other threads can reach the additional if any tasks. The workers
are notified through the conditional variable if they have any processing to
do. After pushing in the jobs, the pool will know how much (numberOfTasks)
work there is to do. This information is used for waiting until all the tasks
are finished. This is followed by an atomic counter done, that is increased
each time a task finishes it’s work. The main thread of the application will
wait on a conditional variable (exitCondition) of the pool, dedicated to signal
the conclusion of all the processing, that have been assigned before the last
waitKernel call. After all the work is done and the waiting is over the counters
are reset to 0. At the program’s end, all containers are destroyed and the
threads are joined.

The function responsible for the processing of the work needs to be able
to access the internal functions required for the jet clustering, so it was im-
plemented in the ClusterSequence class as an additional member function. It
requires a template parameter, that will tell what is the jet definition used by
FastJet, when the clustering itself was instantiated.

The clusterization is done through the ClusterSequence’s _simple_N2_cluster
function, as such, this is the only routine from FastJet, that is changed. These
modifications apply the currently available parallelism, creating the thread
pool, preparing the work for the threads and waiting for them to be finished
before moving onto the recombination step of the next jet. For the input data
of the workers an evenly chunked subset of the jets are used. Because the
jets are not changed, except the current one, it will not create additional race
condition among the threads. The presented implementation has one part only
where concurrency applies, when the new nearest neighbor is set. To prevent
issues from this a unique lock protects the assignment of the new element.

4.3.1 Algorithm

The algorithm of the thread pool’s enqueue is presented in Figure 2. The
input parameter fn is a function pointer to the implemented worker callable
InitJetBPool and data is a JetData type pointer to the input of the actual
task.

The function handling the wait for finishing all running tasks is shown in
Figure 3.

How the worker threads are retrieving their task and processing it is shown
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: procedure ENQUEUE(fn, data)
lock queue_mutex
tasks.push_back(fn)
datas.push_back(data)
+-+numberOfTasks
unlock queue_mutez

end procedure

Figure 2: The Enqueue function of the Thread Pool

1: procedure WAITALL

2 lock wait_mutex

3 if done !'= numberOfTasks then
4 exitCondition.wait(wait_mutex)
5: done « 0

6 numberOfTasks « 0

7 else

8 done + 0

9: numberOfTasks « 0

10: end if

11: end procedure

Figure 3: The WaitAll function of the Thread Pool

in Figure 4. As this is the most time consuming kernel, it incorporates the
shared memory to compute the triplets as fast as possible.

The routine responsible for the nearest neighbor check is described in Fig-
ure 5. The required parameters are the last jet (jetA), the new jet after jet-jet
recombination (jetB), the table containing the distance between two jets (diJ),
the pointer to the first element of the list containing the jets (head) and the
pointer to the last element (tail). The NN member of jetl is the nearest neigh-
bor of jetl, while NN_dist is the distance between the two. The initial NN _dist
is set to R%, where in this case R, the jet-radius parameter is set to 0.2. The
parallel version of InitJetB also two more parameters to know which interval
a specific thread needs to work on.
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1: procedure WORKER

2 lock queue_mutex

3 task « tasks.front()
4 data « datas.front()
5: tasks.pop_front|()

6 datas.pop_front()

7 unlock queue_mutex

8

9

TASK(data)
: ~++done
10: if done == numberOfTasks then
11: exitCondition.notify_one()
12: end if

13: end procedure

Figure 4: The worker retrieving a task with it’s argument and processing it

1: procedure INITJETB(jetA, jetB, diJ, head, tail)

2 for jetl in head..tail do

3 if jetI-NN == jetA or jetI-NN == jetB then
4: find nearest neighbor for jetl

5: end if

6 if jetB != NULL and jetl != jetB then

7 if distance(jetl, jetB) < jetl—NN_dist then
8 jetI-NN_dist = distance(jetl, jetB)

9: jetI-NN = jetB

10: Update diJ accordingly

11: end if

12: if distance(jetl, jetB) < jetB—NN_dist then
13: jetB—>NN_dist = distance(jetl, jetB)

14: jetB—=NN = jetl

15: end if

16: end if

17: if jetl 5NN == tail then

18: jetl->NN = jetA

19: end if

20: end for

21: end procedure

Figure 5: Nearest neighbor calculation after a recombination step
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The part dispatching the parallel work is described in Figure 6. The required
parameter is mazThread that tells how many concurrent threads can run on
the given processor.

1: procedure DisPATCHTOPOOL(maxThread)
2 JetData datajmaxThread]

3 for i in 0..maxThread do

4: datalil.begin « beginning of the i chunk of the jet list
5: datalil.end « end of the it" chunk of the jet list
6 datalil.jetA «+ jetA

7 datalil.jetB « jetB

8 datali].di] « diJ

9: datalil.head + head

10: datalil.tail « tail

11: ThreadPool.enqueue(InitJetBPool, datali])

12: end for

13: ThreadPool. WaitAll()

14: end procedure

[ S sl S S R s}

[}

Figure 6: Dispatching work to the thread pool and synchronization at the end

4.4 Results

The complexity of the used algorithm (Subsection 4.3.1) is O(N?), which re-
quires a high amount of computation to be done. In such case the usage of
parallel computing can reduce the overall runtime. In this subsection the re-
sulting performance increase is discussed and how the implemented thread
pool helps keeping the thread creation overhead down. All tests were running
on the same environment detailed in Table 1. The performance evaluation and
comparison was done using the raw data from an event simulated with the Ali-
Root (Subsection 4.1) framework’s PbPbbench test application. The detected
points were directly sent to the modified FastJet routine. The generated event
used for the tests contained 140535 elements.

The system used for development and testing is described in Table 1.

While applying parallelism (Subsection 4.2) on a given problem can greatly
increase the performance, it also generates some overhead by creating ad-
ditional threads. Comparing a parallel implementation (Subsection 4.3) with
constant thread creation and another with the thread pool enabled, the thread-
ing performance of the two is far from each other. Also while using multiple
threads the operating system needs to do context switching to let a specific
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work be done. Figure 7 shows the runtime of the two different approach.

CPU #Thread OS Compiler
Intel Core 3 Windows Visual
i7 4710HQ 10 Pro C++ 2013

Table 1: The test system

The result shows, that the naive threading based implementation took 271, 31
seconds to finish, while with the thread pool the runtime was only 207, 9 sec-
onds, leading to a 1.3 times better performance.

Figure 8 shows the runtimes of the parallel thread pool based implementa-
tion with the original sequential clustering.
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Figure 7: Runtime using naive threading or a thread pool

The parallel implementation taking 207, 9 seconds is 1.67 times faster com-
pared to the original sequential solution’s 347,18 second long run.

Figure 9 shows the full time of the recombination loop. Comparing the paral-
lel implementation with the performance of the optimized tile based clustering,
the difference is still big.

The runtime of the parallel O(N?) algorithm is 234,52 seconds, the tile
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Figure 8: Runtime of the parallel O(N?) algorithm and the sequential cluster-
ing
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Figure 9: Runtime of the parallel O(N?) algorithm and tile based clustering
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based clustering takes only 3,58 seconds. This shows the optimized tile based
clustering of the FastJet toolkit is 65.5 times faster compared to the proposed
parallel method. As more work is still needs to be done on the parallelization
this number can be greatly reduced giving the possibility to the parallelized
algorithm to be even faster compared to the tile based solution.

5 Summary

Applying parallelization is the mean to utilize all the available processor re-
sources independent from the given algorithm. Even if the complexity is O(N?),
the performance increase is valuable. It was shown, by using a naive paralleliza-
tion approach the resulting algorithm might perform better in comparison to
it’s sequential implementation, but the generated overhead will neglect it’s
positive effect. Thus by applying a thread pool on the overall system and gen-
erating the worker threads only once at the start of the application the over-
all runtime can be decreased considerably. Comparing the proposed parallel
method to an already optimized, yet not multi-threaded, tile based cluster-
ing method also implemented in the FastJet toolkit (Section 4), the proposed
algorithm still shows much slower runtime because of it’s O(N?) nature.

6 Future work

To further increase the performance of the algorithm and even if not to make
an O(N?) clustering faster than a tile based one, additional techniques should
be explored for further optimizations and performance gain. Modern CPUs
have some form of vectorization support for multiple generations now that
can further speed up the evaluation of the different algorithms. This requires
the data to be restructured to conform the requirements of the vectorization.

By using many-core architectures, like GPUs, it is possible to achieve full
parallelization [11, 12], meaning to do all available computation in parallel. The
downfall of this approach might come from the increasing amount of required
memory. To fully parallelize an O(N?) algorithm, it will take N? memory too,
which leads to impossible requirements fairly soon. It needs to be explored
where the balance is and where the limit should be drawn between runtime and
resource requirement to be able to run the application much faster, without
needing insane amount of memory.

Furthermore it is important to not just increase the performance of the
selected algorithm, but to apply the techniques and conclusions shown in this
paper on other already optimized routines, to see how the overall jet clustering
can benefit from parallelization.
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