

DOI: 10.1515/ausi-2017-0003

# On multigraphic and potentially multigraphic sequences

Dedicated to the memory of Antal Iványi

Shariefuddin PIRZADA

University of Kashmir Department of Mathematics Srinagar, Kashmir, India email: pirzadasd@kashmiruniversity.ac.in Bilal Ahmad CHAT

University of Kashmir Srinagar, Kashmir, India email: bilalchat99@gmail.com

Uma Tul SAMEE Islamia College for Science and Commerce, Srinagar, Kashmir email: pzsamee@yahoo.co.in

Abstract. An r-graph(or a multigraph) is a loopless graph in which no two vertices are joined by more than r edges. An r-complete graph on n vertices, denoted by  $K_n^{(r)}$ , is an r-graph on n vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence  $\pi = (d_1, d_2, \ldots, d_n)$  of non-negative integers is said to be r-graphic if it is realizable by an r-graph on n vertices. An r-graphic sequence  $\pi$  is said to be potentially  $S_{L,M}^{(r)}$ -graphic if it has a realization containing  $S_{L,M}^{(r)}$ -graphic. These are generalizations from split graphs to p-tuple r-split graph.

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C07

Key words and phrases: multigraph, multigraphic sequence, potentially multigraphic sequences, split graph

### 1 Introduction

For a positive integer r, an r-graph(or multigraph) is a loopless graph in which no two vertices are joined by more than r edges. An r-complete graph on n vertices, denoted by  $K_n^{(r)}$ , is an r-graph on n vertices in which each pair of vertices is joined by exactly r edges. Clearly,  $K_n^{(1)} = K_n$ . A non-increasing sequence  $\pi = (d_1, d_2, \ldots, d_n)$  of non-negative integers is said to be r-graphic if it is the degree sequence of an r-graph G on n vertices, and such an r-graph G is referred to as a realization of  $\pi$ . We take  $\sigma(\pi) = \sum_{i=1}^{n} d_i$ . For graph theoretical notations and definitions we refer to [9].

Let  $\pi = (d_1, d_2, \dots, d_n)$  be a non-increasing sequence of non-negative integers with  $d_1 \leq \sum_{i=2}^n \min\{r, d_i\}$ . Define  $\pi'_k = (d'_1, d'_2, \dots, d'_{n-1})$  to be the non-increasing rearrangement of the sequence obtained from

$$(d_1, d_2, \ldots, d_{k-1}, d_{k+1}, \ldots, d_n)$$

by reducing by 1 the remaining largest terms that have not been reduced r times, and repeating the procedure  $d_k$  times.  $\pi'_k$  is called the residual sequence obtained from  $\pi$  by laying off  $d_k$ .

The following three results due to Chungphaisian [2] are generalizations from 1-graphs to r-graphs of three well-known results, one by Erdős and Gallai [3], one by Kleitman and Wang [6] and one by Fulkerson, Hoffman and Mcandrew [5].

**Theorem 1** [2] Let  $\pi = (d_1, d_2, ..., d_n)$  be a non-increasing sequence of nonnegative integers, where  $\sigma(\pi)$  is even. Then  $\pi$  is r-graphic if and only if for each positive integer  $t \leq n$ ,

$$\sum_{i=1}^t d_i \leq rt(t-1) + \sum_{i=t+1}^n \min\{rt, d_i\}.$$

**Theorem 2** [2]  $\pi$  is r-graphic if and only if  $\pi'_k$  is r-graphic.

Let the subgraph H on the vertices  $v_i, v_j, v_k, v_l$  of a multigraph G contain the edges  $v_i v_j$  and  $v_k v_l$ . The operation of deleting these edges and introducing a pair of new edges  $v_i v_l$  and  $v_j v_k$ , or  $v_i v_k$  and  $v_j v_l$  is called an elementary degree preserving transformation. If this operation is performed r times on the same edge set, it is called r-exchange.

**Theorem 3** [2] Let  $\pi$  be an r-graphic sequence, and let G and G' be realizations of  $\pi$ . Then there is a sequence of r-exchanges,  $E_1, \ldots, E_k$  such that the application of these r-exchanges to G in order will result in G'.

An r-graphic sequence  $\pi$  is said to be potentially  $K_{m+1}^{(r)}$  if there exists a realization of  $\pi$  containing  $K_{m+1}^{(r)}$  as a subgraph. If  $\pi$  has a realization G containing  $K_{m+1}^{(r)}$  on the m + 1 vertices of highest degree in G, then  $\pi$  is said to be potentially  $A_{m+1}^{(r)}$ -graphic. As a special case of Lemma 2.1 in [13], Yin showed that an r-graphic sequence is potentially  $K_{m+1}^{(r)}$ -graphic if and only if it is potentially  $A_{m+1}^{(r)}$ -graphic.

The r-join (complete product) of two r-graphs  $G_1$  and  $G_2$  is a graph  $G = G_1 \vee G_2$  with vertex set  $V(G_1) \cup V(G_2)$  and the edge set consisting of all edges of  $G_1$  and  $G_2$  together with the edges joining each vertex of  $G_1$  with every vertex of  $G_2$  by exactly r edges. Let  $K_1^{(r)}$  and  $K_m^{(r)}$  be complete r-graphs with l and m vertices respectively, that is the complete graphs having exactly r edges between every two vertices. The r-split graph of  $K_1^{(r)}$  and  $\overline{K}_m^{(r)}$  denoted by  $\overline{S}_{l,m}^{(r)}$  is the graph  $K_l^{(r)} \vee \overline{K}_m^{(r)}$  having l + m vertices, where  $\overline{K}_m^{(r)}$  (having no edges) is the complement of  $K_m^{(r)}$ . [14]. If  $\pi$  has a realization G containing  $\overline{S}_{l,m}$  on the l + m vertices of highest degree in G, then  $\pi$  is said to be potentially  $\overline{A}_{l,m}$ -graphic.

The following two results due to Yin [13] are generalizations from 1-graphs to r-graphs of two well-known results given by A. R. Rao [12].

**Theorem 4** [13] Let  $n \ge l+1$  and  $\pi = (d_1, d_2, \ldots, d_n)$  be an r-graphic sequence with  $d_{l+1} \ge rl$ . Then  $\pi$  is potentially  $A_{l+1}^{(r)}$ -graphic if and only if  $\pi_{l+1}$  is r-graphic.

**Theorem 5** [13] Let  $n \ge l+1$  and  $\pi = (d_1, d_2, \ldots, d_n)$  be an r-graphic sequence with  $d_{l+1} \ge 2rl-1$ , then  $\pi$  is potentially  $K_{l+1}^{(r)}$ .

An extremal problem for 1-graphic sequences to be potentially  $K_l^{(1)}$ -graphic was considered by Erdős, Jacobson and Lehel [4] and solved by Li et al. [7, 8]. Yin [13] generalized this extremal problem and the Erdős-Jacobson-Lehel conjecture from 1-graphs to r-graphs.

In 2014, the authors [10] proved the following assertion.

**Theorem 6** [10] If  $G_1$  is a realization of  $\pi_1 = (d_1^1, \ldots, d_m^1)$  containing  $K_p$  as a subgraph and  $G_2$  is a realization of  $\pi_2 = (d_1^2, \ldots, d_n^2)$  containing  $K_q$  as a subgraph, then the degree sequence  $\pi = (d_1, \ldots, d_{m+n})$  of the join of  $G_1$  and  $G_2$  is potentially  $K_{p+q}$ -graphic.

The following two results for simple graphs are due to Yin [14].

**Theorem 7** [14]  $\pi$  is potentially  $\overline{A}_{l,m}$ -graphic if and only if  $\pi_l$  is graphic.

**Theorem 8** [14] Let  $n \ge l + m$  and let  $\pi = (d_1, d_2, \dots, d_n)$  be a nonincreasing graphic sequence. If  $d_{l+m} \ge 2l + m - 2$ , then  $\pi$  is potentially  $\overline{A}_{l,m}$ graphic.

A condition for a graphic sequence  $\pi$  to be potentially  $K_4 - e$  graphic can be found in [11], where  $K_4 - e$  is the graph obtained from the complete graph  $K_4$  by deleting one edge e.

## 2 Bounds on the sum of squares of degrees of a multigraph

From the Cauchy-Schwarz inequality, we have

$$\sum_{i=1}^n |a_i b_i| \leq \big(\sum_{i=1}^n |a_i|^2\big)^{\frac{1}{2}} \big(\sum_{i=1}^n |b_i|^2\big)^{\frac{1}{2}},$$

Taking  $a_i = d_i$  and  $b_i = 1$ , we have  $\left(\sum_{i=1}^n d_i\right)^2 \le n \sum_{i=1}^n d_i^2$  which implies  $\frac{1}{n} \left(\sum_{i=1}^n d_i\right)^2 \le \left(\sum_{i=1}^n d_i^2\right)$ . From this and the hand shaking Lemma  $\sum_{i=1}^n d_i = 2|E|$ , we have  $\frac{4|E|^2}{n} = \frac{1}{n} \left(\sum_{i=1}^n d_i\right)^2 \le \sum_{i=1}^n d_i^2$ .

Now we have the following observation, the proof is by using the same argument as in Theorem 1 of [1].

**Lemma 9** For an r-graph G, 
$$\sum_{i=1}^{n} d_i^2 \le |E| (r(n-2) + \frac{2|E|}{n-1}).$$



Figure 1: A 2-graph

**Remark 10** From Lemma 9, we observe that

$$\frac{4|E|^2}{n} \leq \sum_{i=1}^n d_i^2 \leq |E| \big( r(n-2) + \frac{2|E|}{n-1} \big).$$

The following example shows that the equality does not hold in the above inequality.

**Example 11** Consider the 2-graph as shown in Figure 1.

Here,  $\frac{4|E|^2}{n} = \frac{4 \times 16^2}{6} = \frac{512}{3} < 4^2 + 6^2 + 6^2 + 6^2 + 6^2 + 4^2 = 176 < 16(2(6-2) + \frac{2 \times 16}{6}) = \frac{1152}{5}$ .

Now, we have the following result.

**Lemma 12** A multigraph G is regular if and only if  $\frac{4|E|^2}{n} = \sum_{i=1}^{n} d_i^2$ .

**Proof.** Suppose an r-graph G is regular of degree b. Then 2|E| = nb and  $d_i = b$  for all i = 1, 2, ..., n. We know that  $\sum_{i=1}^{n} d_i^2 = nb^2$  and  $\frac{4|E|^2}{n} = \frac{1}{n}4\frac{1}{4}n^2b^2 = nb^2$ . These together give  $\sum_{i=1}^{n} d_i^2 = \frac{4|E|^2}{n}$ .

Conversely, suppose that  $\sum_{i=1}^{n} d_i^2 = \frac{4|E|^2}{n}$ . Then  $\frac{4}{n}|E|^2 = \sum_{i=1}^{n} d_i^2$ . This implies that  $\frac{1}{n}(d_1^2 + d_2^2 + \ldots + d_n^2 + 2(d_1d_2 + d_1d_3 + \ldots + d_1d_n) + \ldots + 2(d_{n-2}d_{n-1} + d_{n-2}d_n) + 2(d_{n-1}d_n)) - (d_1^2 + d_2^2 + \ldots + d_n^2) = 0$ , which on simplification gives

 $\frac{1}{n} \left( (d_1 - d_2)^2 + (d_1 - d_3)^2 + \ldots + (d_1 - d_n)^2 + (d_2 - d_3)^2 + (d_2 - d_4)^2 + \ldots + (d_2 - d_n)^2 + \ldots + (d_{n-1} - d_n)^2 \right) = 0.$  From this, we see that each term on left side is non-negative for every i, j and right side is equal to zero. Therefore the above equation is possible when  $d_i = d_j$  for every i,  $j = 1, 2, \ldots, n$  and hence G is a regular graph.  $\Box$ 

Now, we have the following observation.

**Lemma 13** Let G be an r-graph with n > 2 vertices. Then G is a complete graph  $K_n^r$  if and only if  $\frac{4|E|^2}{n} = \sum_{i=1}^n d_i^2 = |E| (r(n-2) + \frac{2|E|}{n-1}).$ 

**Proof.** First we note that an r-graph G is a complete r-graph if and only if  $|\mathsf{E}| = \frac{1}{2}\mathsf{rn}(\mathsf{n}-1)$ . Moreover, we know that  $|\mathsf{E}| = \frac{1}{2}\mathsf{nr}(\mathsf{n}-1)$ , which implies that  $2|\mathsf{E}|(\mathsf{n}-2) + 2|\mathsf{E}|\mathsf{n} = \mathsf{nr}(\mathsf{n}-1)(\mathsf{n}-2) + 2|\mathsf{E}|\mathsf{n}$  and on simplication gives  $\frac{4|\mathsf{E}|^2}{\mathsf{n}} = |\mathsf{E}|(\mathsf{r}(\mathsf{n}-2) + \frac{2|\mathsf{E}|}{\mathsf{n}-1})$ . Thus the result follows.

The following result partially answers the question raised in Remark 10.

**Theorem 14** A bipartite multigraph  $G = K_{l,m}^{(r)}$ , where m > 1, is an r-star graph  $K_{l,n-1}^{(r)}$  if and only if  $\sum_{i=1}^{n} d_i^2 = |E| (r(n-2) + \frac{2|E|}{n-1})$ .

**Proof.** Let  $K_{l,m}^{(r)}$  be an r-complete bipartite graph, where m > 1, n = l + m and |E| = rlm. There are l-vertices each of whose degree is  $r \times m$  and m vertices each of whose degree is  $r \times n$  and m vertices each of whose degree is  $r \times n$  and m vertices  $r^2(lm^2 + ml^2) = r^2lm(l + m)$ . Therefore, we have  $|E|(r(n - 2) + \frac{2|E|}{n-1}) = rlm(r(l+m-2) + \frac{2rlm}{n-1}) = r^2lm(\frac{l^2+m^2+4lm-3l-3m+2}{l+m-1})$ . Therefore,  $r^2lm(l+m) = r^2lm(\frac{l^2+m^2+4lm-3l-3m+2}{l+m-1})$ , which gives l = 1. Hence the result follows.

## 3 Potentially r-graphic sequences

**Definition 15** Let  $\overline{S}_{r_1,s_1}^{(r)}, \overline{S}_{r_2,s_2}^{(r)}, \dots, \overline{S}_{r_p,s_p}^{(r)}$  be r-split graphs, respectively with  $r_1 + s_1, r_2 + s_2, \dots, r_p + s_p$  vertices. Let  $L = \sum_{i=1}^p r_i$  and  $M = \sum_{i=1}^p s_i$ . Then

the p-tuple r-split graph, denoted by  $S_{L,M}^{(r)},$  is the graph

$$S_{L,M}^{(r)} = S_{\sum_{i=1}^{p} r_i, \sum_{i=1}^{p} s_i}^{(r)} = \overline{S}_{r_1,s_1}^{(r)} \vee \overline{S}_{r_2,s_2}^{(r)} \vee \ldots \vee \overline{S}_{r_p,s_p}^{(r)}$$

Clearly  $S_{L,M}^r$  has vertex set  $\bigcup_{i=1}^p V(\overline{S}_{r_i,s_i}^{(r)})$  and the edge set consists of all edges of  $\overline{S}_{r_1,s_1}^{(r)}, \overline{S}_{r_2,s_2}^{(r)}, \dots, \overline{S}_{r_p,s_p}^{(r)}$  together with the edges joining each vertex of  $\overline{S}_{r_i,s_i}^{(r)}$  with every vertex of  $\overline{S}_{r_j,s_j}^{(r)}$  by exactly r-edges for every i, j with  $i \neq j$ .

An r-graphic sequence  $\pi$  is said to be potentially  $S_{L+M}^{(r)}$ -graphic if there exists a realization of  $\pi$  containing  $S_{L+M}^{(r)}$  as a subgraph. If  $\pi$  has a realization G containing  $S_{L+M}^{(r)}$  on the L + M vertices of highest degree in G, then  $\pi$  is said to be potentially  $A_{L+M}^{(r)}$ -graphic.

Let  $n \ge L + M$  and let  $\pi = (d_1, \ldots, d_n)$  be a non-increasing sequence of non-negative integers with  $d_L \ge r(L + M) - 1$  and  $d_{L+M} \ge rL$ . We define sequences  $\pi_1, \ldots, \pi_L$  as follows. Construct the sequence

$$\pi_1 = (d_2 - r, \dots, d_L - r, d_{L+1} - r, \dots, d_{L+M} - r, d_{L+M+1}^1, \dots, d_n^1)$$

from  $\pi$  by reducing 1 from the largest term that have not been already reduced r times, and then reordering the last n - L - M terms to be non-increasing. For  $2 \le i \le r$ , construct

$$\pi_{i} = (d_{i+1} - ir, \ldots, d_{L} - ir, d_{L+1} - ir, \ldots, d_{L+M} - ir, d_{L+M+1}^{i}, \ldots, d_{n}^{i})$$

from

$$\begin{aligned} \pi_{i-1} = & (d_i - (i-1)r, \dots, d_L - (i-1)r, d_{L+1} - (i-1)r, \dots, \\ & d_{L+M} - (i-1)r, d_{L+M+1}^{i-1}, \dots, d_n^{i-1}) \end{aligned}$$

by deleting  $d_i - (i - 1)r$ , reducing the first  $d_i - (i - 1)r$  remaining terms of  $d_{i-1}$  by one that have not been already reduced r times, and then reordering the last n - L - M terms to be non-increasing.

We start with the following lemma.

**Lemma 16** If  $\pi = (d_1, d_2, \dots, d_n)$  is the graphic sequence of  $S_{L,M}^{(r)}$ , then

$$\pi = \left( \left( \sum_{i=1}^{m} r(r_i + s_i - 1) \right)^{r_j}, \left( \sum_{i=1}^{m} rr_i + \sum_{i=1, i \neq j}^{m} rs_i \right)^{s_j} \right), \text{ for } j = 1, 2, \dots, m.$$

**Proof.** To prove the result we use induction on m. For m = 1, the result is obviously true. For m = 2, we have  $S_{\substack{j \\ i=1}}^{(r)} r_{i}, \sum_{\substack{j=1 \\ i=1}}^{2} s_{i}$ . Therefore for every  $i = 1, 2, ..., r_{1}$  and  $i = 1, 2, 3, ... = r_{2}$  and  $j = 1, 2, 3, ..., s_{1}$  and  $j = 1, 2, 3, ..., s_{2}$ 

$$\overline{\mathbf{d}_{i}} = \mathbf{d}_{i} + \mathbf{r}(\mathbf{r}_{2} + \mathbf{s}_{2}) \tag{1}$$

and

$$\overline{\mathbf{d}_{\mathbf{j}}} = \mathbf{r}(\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{s}_2),\tag{2}$$

where  $\overline{d_i}$  and  $\overline{d_j}$  are respectively the degree of  $\overline{v_i^{th}}$  and  $\overline{v_j^{th}}$  vertex in  $S_{r_1+r_2,s_1+s_2}$ and  $d_i$  is the degree of  $i^{th}$  vertex in  $K_{r_1}$ . Equations (1) and (2) hold for every i, j. Thus the graphic sequence  $\pi^2$  of  $S_{r_1+r_2, s_1+s_2}$  is

$$\begin{aligned} \pi^2 &= \left( \left( r(r_1 + s_1 - 1) + r(r_2 + s_2)^{r_1}, \left( r(r_1 + s_1 - 1) + r(r_2 + s_2)^{r_2}, \right. \\ &\left. \left( r(r_1 + r_2 + s_2) \right)^{s_1}, \left( r(r_1 + r_2 + s_2) \right)^{s_2} \right) \\ &= \left( \left( \sum_{i=1}^2 r(r_i + s_i - 1) \right)^{r_j}, \left( \sum_{i=1}^m rr_i + \sum_{i=1, i \neq j}^m rs_i \right)^{r_j} \right), \text{ for } j = 1, 2. \end{aligned}$$

This shows that the result is true for m = 2. Assume that the result holds for m = k - 1, therefore for all  $j = 1, 2, \dots, k - 1$ ,

$$\pi^{k-1} = \left( \left( \sum_{i=1}^{k-1} r(r_i + s_i - 1) \right)^{r_j}, \left( \sum_{i=1}^{k-1} rr_i + \sum_{i=1, i \neq j}^{k-1} rs_i \right)^{r_j} \right), \text{ for } j = 1, 2.$$

Now for  $\mathfrak{m} = \mathfrak{k}$ ,

$$\begin{split} G &= S_{r_1,s_1}^{(r)} \vee S_{r_2,s_2}^{(r)} \vee \ldots \vee S_{r_{k-1},s_{k-1}}^{(r)} \vee S_{r_k,s_k}^{(r)} \\ &= A \vee S_{r_k,s_k}^{(r)}, \quad \text{where} \quad A = S_{r_1,s_1}^{(r)} \vee S_{r_2,s_2}^{(r)} \vee \ldots \vee S_{r_{k-1},s_{k-1}}^{(r)}. \end{split}$$

Since the result is proved for all m = k - 1 and using the fact that the result is proved for each pair and since the result is already proved for k = 2, it follows by induction hypothesis that result holds for m = k also. That is,

$$\pi = \left( \left( \sum_{i=1}^{k} r(r_i + s_i - 1) \right)^{r_j}, \left( \sum_{i=1}^{k} rr_i + \sum_{i=1, i \neq j}^{k} rs_i \right)^{s_j} \right), \text{ for } j = 1, 2, \dots, k$$

This proves the lemma.

**Lemma 17** A non-increasing integer sequence  $\pi = (d_1, \ldots, d_n)$  is potentially  $A_{L,M}^{(r)}$ -graphic if and only if it is potentially  $S_{L,M}^{(r)}$ -graphic.

**Proof.** We only need to prove that if  $\pi = (d_1, \ldots, d_n)$  is potentially  $S_{L,M}^{(r)}$  graphic, then it is potentially  $A_{L,M}^{(r)}$ -graphic. We choose a realization G of  $\pi$  with vertex set  $V(G) = \{v_1, \ldots, v_n\}$  such that  $d_G(v_i) = d_i$  for  $1 \le i \le n$ , the induced r-subgraph  $G[\{v_1, \ldots, v_{L+M}\}]$  of  $\{v_1, \ldots, v_{L+M}\}$  in G contains  $S_{L,M}^{(r)}$  as its r-subgraph and  $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}|$  is maximum. Denote  $H = G[\{v_1, \ldots, v_{L+M}\}]$ . If  $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}|$  is maximum. Denote  $H = G[\{v_1, \ldots, v_{L+M}\}]$ . If  $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}|$  is potentially  $A_{L,M}^{(r)}$ -graphic. Assume that  $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}| < L$ . Then there exists  $v_i \in \{v_1, \ldots, v_L\} \setminus V(K_L^{(r)})$  and a  $v_j \in V(K_L^{(r)}) \setminus \{v_1, \ldots, v_L\}$ . Let  $A = N_H(v_j) \setminus (\{v_i\} \cup N_H(v_i))$  and  $B = N_G(v_i) \setminus (\{v_j\} \cup N_G(v_j))$ . Since  $d_G(v_i) \ge d_G(v_j)$ , we have  $|B| \ge |A|$ . Let C be any subset of B such that |C| = |A|. Now form a new realization G' of  $\pi$  by a sequence of r-exchanges to the r-edges of the star centralized at  $v_j$  with end vertices in A with the non r-edges of the star centralized at  $v_i$  with end vertices in A. It is easy to see that G' contains  $S_{L,M}^{(r)}$  on  $\{v_1, \ldots, v_{L+M}\}$  so that  $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}$  is larger than that of G, which contradicts to the choice of G.

We use the Havel-Hakimi procedure to test whether or not an r-graphic sequence  $\pi$  is potentially  $A_{L,M}^{(r)}$ -graphic.

**Theorem 18** For  $r \ge 1$  and  $n \ge 1$ , an r-graphic sequence  $\pi = (d_1, \ldots, d_n)$  is potentially  $A_{L,M}^{(r)}$ -graphic if and only if  $\pi_L$  is r-graphic.

**Proof.** Assume that  $\pi$  is potentially  $A_{L,M}^{(r)}$ -graphic. Then  $\pi$  has a realization G with the vertex set  $V(G) = \{v_1, \dots, v_n\}$  such that  $d_G(v_i) = d_i$  for  $(1 \le i \le n)$ 

and G contains  $S_{L,M}^{(r)}$  on the vertices  $v_1, \ldots, v_{L+M}$ , where  $L + M \leq n$ , so that  $V^{(r)}(K_L) = \{v_1, \ldots, v_L\}$  and  $V(\overline{K}_M^{(r)}) = \{v_{L+1}, \ldots, v_{L+M}\}$ . By applying a sequence of r-exchanges to G in order we will show that there is one such realization G' such that  $G' \setminus v_1$  has degree sequence  $\pi_1$ . If not, we may choose such a realization H of r-graphic sequence  $\pi$  such that the number of vertices adjacent to  $v_1$  in  $\{v_{L+M+1}, ..., v_{d_1+1}\}$  is maximum. Let  $v_i \in \{v_{L+M+1}, ..., v_{d_1+1}\}$  and assume that there is no edge between  $v_1$  and  $v_i$  and let  $v_i \in \{v_{d_1+2}, \ldots, v_n\}$ and there are r edges between  $v_1$  and  $v_i$ . We may assume that  $d_i > d_i$ . Hence there is a vertex  $v_t, t \neq i, j$  such that there are r edges between  $v_i$  and  $v_t$ and no edge between  $\nu_j$  and  $\nu_t$ . Clearly  $G = (H \setminus \{\nu_1^{(r)}\nu_j, \nu_i^{(r)}\nu_t\}) \bigcup \{\nu_1^{(r)}\nu_i, \nu_i^{(r)}\nu_t\}$ (where  $v_i^{(r)}v_i$  means that there are r edges between  $v_i$  and  $v_i$ ) is a realization of  $\pi$  such that  $d_G(v_i) = d_i$  for  $1 \leq i \leq n$ , G contains  $S_{I,M}^{(r)}$  on  $v_1, \ldots, v_{L+M}$ with  $V^{(r)}(K_L) = \{v_1, \dots, v_L\}$  and  $V(\overline{K}_M^{(r)}) = \{v_{L+1}, \dots, v_{L+M}\}$  and G has the number of vertices adjacent to  $v_1$  in  $\{v_{L+M+1}, \ldots, v_{d_1+1}\}$  larger than that of H. This contradicts the choice of H. Repeating this procedure, we can see that  $\pi_i$  is potentially  $A_{I-i}^{(r)}$ -graphic successively for  $i = 2, \dots, L$ . In particular,  $\pi_L$  is r-graphic.

Conversely, suppose that  $\pi_L$  is r-graphic and is realized by a graph  $G_L$  with a vertex set  $V(G_L) = \{v_{L+1}, \ldots, v_n\}$  such that  $d_{G_L}(v_i) = d_i$  for  $L + 1 \leq i \leq n$ . For  $i = L, L - 1, \ldots, 1$  form  $G_{i-1}$  from  $G_i$  by adding a new vertex  $v_i$  that is adjacent to each of  $v_{i+1}, \ldots, v_{L+M}$  with r-edges and also to the vertices of  $G_i$  with degrees  $s_{L+M+1}^{(i-1)} - r, \ldots, d_{d_i+1}^{(i-1)} - r$ . Then for each  $i, G_i$  has degrees given by  $\pi_i$  and  $G_i$  contains  $S_{L-i,M}^{(r)}$  on L+M-i vertices  $v_{i+1}, \ldots, v_{L+M}$  whose degrees are  $d_{i+1} - ir, \ldots, d_{L+M} - ir$  so that  $V(K_{L-i}^{(r)}) = \{v_{L+1}, \ldots, v_{L+M}\}$ . In particular,  $G_0$  has degrees given by  $\pi$  and contains  $S_{L,M}^{(r)}$  on L + M vertices  $v_1, \ldots, v_{L+M}$  whose degrees are  $d_1, \ldots, d_{L+M}$ . In particular,  $G_0$  has degrees are  $d_1, \ldots, d_{L+M}$  so that  $V(K_L^{(r)}) = \{v_1, \ldots, v_L\}$  and  $V(\overline{K}_M^{(r)}) = \{v_{L+1}, \ldots, v_L\}$ . Hence the result follows.

The following is a sufficient condition for an r-graphic sequence to be potentially  $A_{L,M}^{(r)}$ -graphic.

**Theorem 19** Let  $n \ge L + M$  and let  $\pi = (d_1, \ldots, d_n)$  be an r-graphic sequence. If  $d_{L+M} \ge 2rL + rM - 2$ , then  $\pi$  is potentially  $A_{L,M}^{(r)}$ -graphic.

**Proof.** Let  $n \ge L + M$  and let  $\pi = (d_1, \ldots, d_n)$  be a non-increasing rgraphic sequence with  $d_{L+M} \ge 2rL + rM - 2$ . By using the argument similar to Theorem 8,  $\pi$  is potentially  $K_L^{(r)}$ -graphic and hence by Lemma 17,  $A_L^{(r)}$ -graphic. Therefore, we assume that G is a realization of  $\pi$  with a vertex set  $V(G) = (\nu_1, \ldots, \nu_n)$  such that  $d_G(\nu_i) = d_i$ ,  $(1 \leq i \leq n)$  and G contains  $K_L^{(r)}$  on  $(\nu_1, \ldots, \nu_L)$ , that is,  $V(K_L^{(r)}) = \{\nu_1, \ldots, \nu_L\}$  and

$$\mathbf{t} = e_{\mathsf{G}}(\{\nu_1, \dots, \nu_{r_1}, \dots, \nu_L\}, \{\nu_{L+1}, \dots, \nu_{L+s_1}, \dots, \nu_{L+M}\})$$

(that is, the number of edges between  $\{\nu_1,\ldots,\nu_L\}$  and  $\{\nu_{L+1},\ldots,\nu_{L+M}\}$ ) is maximum. If  $t=rLM+rs_1s_2+s_j\sum\limits_{i=1}^{j-1}rs_i,$  for  $j=3,4,\ldots,p,$  then the cardinality of the edge set of  $S_{L,M}^{(r)}$  is same as t and therefore G contains  $S_{L,M}^{(r)}$  on the vertices  $\nu_1,\nu_2,\ldots,\nu_{L+M}$  with  $V^{(r)}(K_M)=\{\nu_1,\nu_2,\ldots,\nu_L\}$  and

$$V(\overline{K^{(r)}}_M) = \{v_{L+1}, v_{L+2}, \dots, v_{L+s_1}, \dots, v_{L+M}\}.$$

In other-words,  $\pi$  is potentially  $\overline{A}_{L,M}^{(r)}$ -graphic. Assume that  $t < \{rLM + rs_1s_2 + s_j \sum_{i=1}^{j-1} rs_i\}$ , for  $j = 3, 4, \ldots, p$ . Then there exists a  $\nu_k \in \{\nu_1, \nu_2, \ldots, \nu_{s_i}\}$  and  $\nu_m \in \{\nu_{s_i+1}, \nu_{s_i+2}, \ldots, \nu_{s_i+s_j}\}, (i \neq j)$  such that  $\nu_k^r \nu_m \notin E(G)$ . Let

$$A = N_{G \setminus \{\nu_{s_i+1}, \nu_{s_i+2}, \dots, \nu_{s_i+s_j}\}}(\nu_k) \setminus N_{G \setminus \{\nu_1, \nu_2, \dots, \nu_{s_i}\}}(\nu_m)$$

and

$$\mathsf{B}=\mathsf{N}_{G\setminus\{\nu_{s_{\mathfrak{i}}+1},\nu_{s_{\mathfrak{i}}+2},\ldots,\nu_{s_{\mathfrak{i}}+s_{\mathfrak{j}}}\}}(\nu_{k})\cap\mathsf{N}_{G\setminus\{\nu_{1},\nu_{2},\ldots,\nu_{s_{\mathfrak{i}}}\}}(\nu_{\mathfrak{m}}).$$

Then  $e_G(x, y) = r$  for  $x \in N_{G \setminus \{\nu_1, \dots, \nu_L\}}(\nu_m)$  and  $y \in N_{G \setminus \{\nu_1, \dots, \nu_{L+M}\}}(\nu_k)$ . Otherwise, if  $e_G(x, y) < r$ , then  $G' = (G \setminus \{\nu^{(r)}y, \nu_m^{(r)}x\}) \cup \{\nu_k^{(r)}\nu_m, x^{(r)}y\}$  is a realization of  $\pi$  and contains  $\overline{S}_{L,M}^{(r)}$  on  $\nu_1, \dots, \nu_{L+M}$  with  $V(K_L^{(r)}) = \{\nu_1, \dots, \nu_L\}$  and  $(\overline{K}_M^{(r)}) = \{\nu_{L+1}, \dots, \nu_{L+M}\}$  such that

$$e_{G'}(\{v_1,\ldots,v_L\},\{v_{L+1},\ldots,v_{L+M}\}) > t,$$

which contradicts the choice of G. Thus B is r-complete. We consider the following cases.

Let  $A=\emptyset$ . Then  $2rL+rM-2\leq d_k=d_G(\nu_k)< rL+rM-1+r|B|,$  and so  $|B|\geq rL$ . Since each vertex in  $N_{G\setminus\nu_1,\ldots,\nu_L}(\nu_m)$  is adjacent to each vertex in B by r edges and  $|N_{G\setminus\{\nu_1,\ldots,\nu_L\}}(\nu_m)|\geq 2rL+rM-2=rL+rM-1$ . It can be easily seen that the r induced subgraph of  $N_{G\setminus\{\nu_1,\ldots,\nu_L\}}(\nu_m)\cup\{\nu_m\}$  in G contains  $\overline{S}_{L,M}^{(r)}$ 

as a subgraph. Thus  $\pi$  is potentially  $\overline{A}_{L,M}^{(r)}$ - graphic.

Let  $A \neq \emptyset$ . Let  $a \in A$ . If there are  $x, y \in N_{G \setminus \{\nu_1, \dots, \nu_L\}}(\nu_m)$  such that  $e_G(x, y) < r$  then  $G' = (G \setminus \{\nu_m^{(r)} x, \nu_m^{(r)} y, \nu_k^{(r)} a\}) \cup \{\nu_k^{(r)} \nu_m, a^{(r)} \nu_m, x^{(r)} y\}$  is a realization of  $\pi$  and contains  $\overline{S}_{L,M}^{(r)}$  on  $\nu_1, \dots, \nu_{L+M}$  with  $V(K_L^{(r)}) = \{\nu_1, \dots, \nu_L\}$  and  $V(\overline{K}_M^{(r)}) = \{\nu_{L+1}, \dots, \nu_{L+M}\}$  such that  $e_{G'}(\{\nu_1, \dots, \nu_L\}, \{\nu_{L+1}, \dots, \nu_{L+M}\}) > t$  which contradicts the choice of G. Thus  $N_{G \setminus \{\nu_1, \dots, \nu_L\}}(\nu_m)$  is r-complete. Since

 $|N_{G\setminus \{\nu_1,\ldots,\nu_L\}}(\nu_{\mathfrak{m}})| \geq rL + rM - 1 \text{ and } e_G(\nu_{\mathfrak{m}},z) = r,$ 

for any  $z \in N_{G \setminus \{\nu_1, \dots, \nu_L\}}(\nu_m)$ , it is easy to see that the induced r-subgraph of  $N_{G \setminus \{\nu_1, \dots, \nu_L\}}(\nu_m) \cup \{\nu_m\}$  in G is r-complete, and so contains  $\overline{S}_{L,M}^{(r)}$  as a r-subgraph. Thus  $\pi$  is potentially  $\overline{A}_{L,M}^{(r)}$ -graphic.

**Theorem 20** If  $\pi = (d_1, d_2, ..., d_n)$  is an r-graphic sequence such that  $\sigma(\pi)$  is at least  $(n^2 - 3n + 8)r$ , then  $\pi$  is potentially  $K_4^{(r)}$ -graphic.

**Proof.** Let  $\pi = (d_1, d_2, \ldots, d_n)$  be an r-graphic sequence such that  $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$  and  $\sigma(\pi) = (n^2 - 3n + 8)r$ . Suppose G is a graphical realization of  $\pi$  and e(G) is the size of G. Then  $2e(G) = \sigma(\pi)$  and  $2e(G^c) = nb(n-1) - \sigma(\pi) = nr(n-1) - (n^2 - 3n + 6)r = r(2n-6)$ , so that  $e(G^c) = r(n-3)$ , where  $G^c$  is the complement of the r-graph G. An extremal problem is r-graph G is obtained by deleting r(n-3) independent edges from the complete r-graph  $K_n^{(r)}$  of order n. Hence the largest vertex number of independent sets in  $G^c$  is 3. This implies that the largest possible complete r-subgraph of G is of order 3. As  $1 \le n-3 \le 3$ . Hence there is no complete r-subgraph of order 4 in G. Therefore, we have

$$\sigma(K_4^{(r)},n) \ge (n^2 - 3n + 6)r + 2r = (n^2 - 3n + 8)r$$

Now Suppose that  $\pi = (d_1, d_2, \ldots, d_n)$  is r-graphic sequence with  $d_1 \ge d_2 \ge \ldots \ge d_n \ge r$  and  $\sigma(\pi) \ge (n^2 - 3n + 8)r$ . Then every graphical realization G of  $\pi$  is obtained by removing at most r(n - 4) edges from the r-complete graph  $K_n^{(r)}$ . Hence the maximal complete subgraph of G has order at least n - (n - 4) = 4. Thus G is potentially  $K_4^{(r)}$ . In other words,

$$\sigma(K_4^{(r)}, n) \le (n^2 - 3n + 8)r \tag{3}$$

Combining (3) and (4), the result follows.

Acknowledgements. The authors thank the anonymous referee for his useful comments and suggestions.

### References

- D. de Caen, An upper bound on the sum of squares of degrees in a graph, *Discrete Math.* 185 (1998) 245–248. ⇒38
- [2] V. Chungphaisan, Conditions for a sequences to be r-graphic, Discrete Math. 7 (1974) 31–39. ⇒36, 37
- [3] P. Erdős, T. Gallai, Graphs with prescribed degrees (in Hungarian) Matematikai Lapok 11(1960) 264–274. ⇒36
- [4] P. Erdős, M. S. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: *Graph Theory, Combinatorics and Applications*, vol. 1, John Wiley and Sons, New York, 1991, 439–449. ⇒37
- [5] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, *Canad. J. Math.* **17** (1965) 166–177.  $\Rightarrow$  36
- [6] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs with given valencies and factors, *Discrete Math.* **6** (1973) 79–88.  $\Rightarrow$  36
- [7] J. S. Li, Z. X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially  $p_k$ -graphic sequences is true, *Sci. China Ser. A* **41** (1998) 510–520.  $\Rightarrow$  37
- [8] J. S. Li, Z. X. Song, An extremal problem on the potentially  $p_k$ -graphic sequence, Discrete Math. **212** (2000) 223–231.  $\Rightarrow$ 37
- [9] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blakswan, Hyderabad, India 2012.  $\Rightarrow 36$
- [10] S. Pirzada, B. A. Chat, Potentially graphic sequences of split graphs, *Kragujevac J. Math.* 38, 1 (2014) 73–81. ⇒37, 38
- [11] S. Pirzada, B. A. Chat, F. A. Dar, Graphical sequences of some family of induced subgraphs, J. Algebra Comb. Discrete Appl. **2(2)** (2015) 95–109.  $\Rightarrow$  38
- [12] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (ed. A. R. Rao, Macmillan and Co. India Ltd, I.S.I. Lecture Notes Series, 4 (1979) 251–267. ⇒37
- [13] J. H. Yin, Conditions for r-graphic sequences to be potentially  $K_{m+1}^r$ -graphic, Discrete Math. **309** (2009) 6271–6276.  $\Rightarrow$ 37
- [14] J. H. Yin, A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially  $S_{r,s}$ -graphic, *Czechoslovak Math. J.* **62,3** (2012) 863–867.  $\Rightarrow$  37, 38

Received: November 30, 2016 • Revised: January 19, 2017