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1 Introduction

For a positive integer r, an r-graph(or multigraph) is a loopless graph in which
no two vertices are joined by more than r edges. An r-complete graph on n

vertices, denoted by KEI), is an r-graph on m vertices in which each pair of

vertices is joined by exactly r edges. Clearly, Kg) = Kn. A non-increasing se-
quence 7t = (dj, dy, ..., dn) of non-negative integers is said to be r-graphic if it
is the degree sequence of an r-graph G on n vertices, and such an r-graph G is
referred to as a realization of t. We take o(mr) = Y I ; d;. For graph theoretical

notations and definitions we refer to [9].

Let T = (dj,d2,...,dn) be a non-increasing sequence of non-negative inte-
n
gers with d; < ) min{r, di}. Define 7, = (dj,d5,...,d], ;) to be the non-

i=2
increasing rearrangement of the sequence obtained from

(d1,d2y. .oy di—1,dis1yeeoydn)

by reducing by 1 the remaining largest terms that have not been reduced r
times, and repeating the procedure dy times. 7[{< is called the residual sequence
obtained from 7t by laying off d.

The following three results due to Chungphaisian [2] are generalizations from
1-graphs to r-graphs of three well-known results, one by Erdés and Gallai [3],
one by Kleitman and Wang [6] and one by Fulkerson, Hoffman and Mcandrew
[5].

Theorem 1 [2| Let m = (dq,dy,...,dn) be a non-increasing sequence of non-
negative integers, where o(m) is even. Then T is v-graphic if and only if for
each positive integer t < n,

t n
Z di <rt(t—1)+ Z min{rt, di}.
i=1

i=t+1
Theorem 2 (2] 7 is v-graphic if and only if 70, is r-graphic.

Let the subgraph H on the vertices vy, vj, vk, Vi of a multigraph G contain the
edges vivj and viv;. The operation of deleting these edges and introducing a
pair of new edges vivi and vjvy, or vivx and vjv is called an elementary degree
preserving transformation. If this operation is performed r times on the same
edge set, it is called r-exchange.
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Theorem 3 [2] Let 7 be an v-graphic sequence, and let G and G’ be realiza-
tions of m. Then there is a sequence of r-exchanges, Eq,..., Ex such that the
application of these r-exchanges to G in order will result in G'.

An r-graphic sequence 7t is said to be potentially K:L)H if there exists a real-

(r)
m+1

on the m+ 1 vertices of highest degree in G, then 7t is said to be poten-

ization of 7t containing K as a subgraph. If 7t has a realization G containing

(r)
Km—H

tially Aﬁlrgraphic. As a special case of Lemma 2.1 in [13], Yin showed that
(r)

my1-graphic if and only if it is potentially

an r-graphic sequence is potentially K
AL?H -graphic.

The r-join (complete product) of two r-graphs Gy and G; is a graph G =
G1V Gy with vertex set V(G1)UV(G;) and the edge set consisting of all edges
of G; and G; together with the edges joining each vertex of G; with every
vertex of Gy by exactly r edges. Let K{T) and Km be complete r-graphs with
L and m vertices respectively, that is the complete graphs having exactly r

edges between every two vertices. The r-split graph of K{T) and K(;) denoted
by g{;)n is the graph K{T) v K having 1 + m vertices, where K (having no
edges) is the complement of KE,?. [14]. If 7t has a realization G containing Sy m

on the 1+ m vertices of highest degree in G, then 7 is said to be potentially
Aim-graphic.

The following two results due to Yin [13] are generalizations from 1-graphs
to r-graphs of two well-known results given by A. R. Rao [12].

Theorem 4 [13] Let n > 1+ 1 and m = (dy,d2,...,dn) be an r-graphic
sequence with diy1 > rl. Then 7 is potentially A{% -graphic if and only if T
s T-graphic.

Theorem 5 [13] Let n > 1+ 1 and m = (dy,da,...,dn) be an r-graphic
(r)

sequence with diy1 > 2rl —1, then 7t is potentially K /;.

An extremal problem for 1-graphic sequences to be potentially K{”—graphic
was considered by Erdés, Jacobson and Lehel [4] and solved by Li et al. [7, 8].
Yin [13] generalized this extremal problem and the Erdds-Jacobson-Lehel con-
jecture from 1-graphs to r-graphs.

In 2014, the authors [10] proved the following assertion.
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Theorem 6 [10] If Gy is a realization of m = (dl,...,dl) containing K, as
a subgraph and Gy is a realization of My = (d%,...,dﬁ) containing Kq as a
subgraph, then the degree sequence @ = (dy,...,dman) of the join of Gy and

G is potentially Ky q-graphic.
The following two results for simple graphs are due to Yin [14].
Theorem 7 [14] 7 is potentially Khm—gmphic if and only if Ty is graphic.

Theorem 8 [14] Let n > L+ m and let m = (di,da, -+ ,dn) be a non-
increasing graphic sequence. If diym > 21+ m — 2, then 7t is potentially Ay m-
graphic.

A condition for a graphic sequence 7 to be potentially K4 — e graphic can
be found in [11], where K4 — e is the graph obtained from the complete graph
K4 by deleting one edge e.

2 Bounds on the sum of squares of degrees of a
multigraph

From the Cauchy-Schwarz inequality, we have

Zlalb | < ( Zlall

n n
Taking a; = di and b; = 1, we have (Z di)2 <n) di2 which implies
i=1 i=1

n

n n
%( > di)2 < (Z df) From this and the hand shaking Lemma )_d; = 2JE|,

i=1 i=1
we have 4|E‘ (Zd) <Zd2

Now we have the followmg observatlon the proof is by using the same ar-
gument as in Theorem 1 of [1].

n
Lemma 9 For an r-graph G, _ df < |E|( (n—2)+ 2E] )

n—1
i=1



On multigraphic and potentially multigraphic sequences 39

Figure 1: A 2-graph

Remark 10 From Lemma 9, we observe that

4E 2lE
|| <Zd2<\E| r(n— 2)+|f|1).

The following example shows that the equality does not hold in the above
inequality.

Example 11 Consider the 2-graph as shown in Figure 1.

Here, 462 — 9162 _ 512 -2 2 4 24 62+ 62 +42 = 176 < 16(2(6—2) +
2x16 1152
1) = 5

Now, we have the following result.

n
Lemma 12 A multigraph G is regular if and only if — 4P => diz.
i=1

Proof. Suppose an r-graph G is regular of degree b. Then 2|E| = nb and d; = b
n
foralli=1,2,...,n. We know that 5 d2 =nb? and 25 = 141n2p2 = np2,

i=1
4JE
—.

n
These together give Y d? =
i=1
“2_4\E\ F L
Conversely, suppose that ) df . Then [E]* = > df. This implies
i=1 i=1
that 2(d?+d+...+dd+2(did2+ dydz + ...+ didn) + ...+ 2(dn2dn1 +
dn_2dn)+2(dn1dn)) — (d% + d% +...+d%) = 0, which on simplification gives
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T]L<(d1—dz)z—i—(d]—d3)2+...+(d1—dn)z—i—(dz—d3)2+(d2—d4)2+...+

(dy—dn)?+...+(dno1— dn)2> = 0. From this, we see that each term on left

side is non-negative for every i, j and right side is equal to zero. Therefore the
above equation is possible when d; = d; for every i, j = 1,2,...,n and hence
G is a regular graph. O

Now, we have the following observation.

Lemma 13 Let G be an r- gmph with 1 > 2 vertices. Then G is a complete
graph K{, if and only if — AIE)2 Z d2 |E|( n—2)+ 21E) )

n—1

Proof. First we note that an r-graph G is a complete r-graph if and only if

[E| = frn(n — 1). Moreover, we know that |[E| = %nr(n — 1), which implies
that 2|E|(n —2) + 2[En =nr(n — 1)(n — 2) + 2|E/n and on simplication gives
@ = IE\( (n—2)+ ZIEl ) Thus the result follows. O

The following result partially answers the question raised in Remark 10.

Theorem 14 A bipartite multzgmph G = Klm?
graph K1 w1 if and only if Z d? = [El(r(n —2) + 2IEl ).

n—1
i=1

where m > 1, is an r-star

Proof. Let K . be an r-complete bipartite graph, where m > 1, n=1+m
and |E| = rlm There are l-vertlces each of whose degree is rxm and m vertices

each of whose degree is 1 x 1, so Z di2 =1(rm)? + m(r1)? = Ir*m? + mr?l? =
i=1

r?(lm? + m1?) = r2lm(l + m). Therefore, we have [E[(r(n —2) + ﬁ) =

n—1
rim(r(l+m—2)+2Mm) = Tzlm(12+m2+41m73173m+z). Therefore, 2lm(l4+m) =

+m—1
Tzlm(lerm +fi“n1ljl 3m+2), which gives 1 = 1. Hence the result follows. d

3 Potentially r-graphic sequences

Definition 15 Let ST] S],Sg)sz, ... >§£;),sp be r-split graphs, respectively with

TI 481, T2+ S2,..., Tp + Sp vertices. Let L=Y" ;1 and M =3P | si. Then
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the p-tuple r-split graph, denoted by S(Lr;v[, 1s the graph

i =5 =5 vl v vEy

P T1,S1 T2,S2 Tp,Sp *
Ti, Si
=1

M=

i i=1

Clearly S} ; has vertex set U, V(ggfsi) and the edge set consists of all edges
of g(r) §m g(r) . together with the edges joining each vertex of §(T)

T1,81) Y12,82) °**) ¥ Tp,s Ti,Si

with every vertex of §g?sj by exactly r-edges for every i, j with 1 #j.

An r-graphic sequence 7t is said to be potentially S(LQM—graphic if there ex-
ists a realization of 7t containing S(LQM as a subgraph. If 7t has a realization G
containing S(LTJ)FM on the L + M vertices of highest degree in G, then 7 is said
to be potentially ABM—graphic.

Let n > L+ M and let m = (dy,...,dn) be a non-increasing sequence of
non-negative integers with dp > r(L + M) — 1 and diym > rL. We define
sequences Ty, ..., 7 as follows. Construct the sequence

1 1
m = (dz—T,...,dL—T,dL+] —T,...,dL+M—T,dL+M+1,...,dn)
from 7t by reducing 1 from the largest term that have not been already reduced
T times, and then reordering the last n — L — M terms to be non-increasing.
For 2 <1i < r, construct
T = (diy1 —ir, ..., dp—ir,diy —in ..oy diem — i digvgr --e, dy)

from

T4 :(di_(i_])r)--wdl__(i_”T)dLJﬂ —(i—])T,...,

dim— (=D d - di ')

by deleting d;i — (1 — 1)r, reducing the first d;i — (1 — 1)r remaining terms of
di_1 by one that have not been already reduced r times, and then reordering
the last n — L — M terms to be non-increasing.

We start with the following lemma.
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Lemma 16 If tw=(dy,dy,...,dn) is the graphic sequence of S(Lr;vl, then

m Tj m m S
=<<ZT(TH—31—1)> ,<Zrn+ Z rsi> ), for j=1,2,...,m
i=1 i=1 i=1, i%

Proof. To prove the result we use induction on m.

For m = 1, the result is obviously true. For m = 2, we have S ™

2 2
R
Therefore for every i = 1,2,...,77 and i = 1,2,3,... = 1, and j =
1,2,3,...,81 andj:1,2,3,...,sz
di = di +7(r2 + 52) (1)
and
dj =7(r1 + 12+ 82), (2)

where d; and E] are respectively the degree of @ and \? vertex in Sy, 4r,.61 45,
and d; is the degree of it" vertex in K, . Equations (1) and (2) hold for every
i, j. Thus the graphic sequence 7% of Sti4ra, s14sy 1S

T2

™
712:<<T(T1+S11)+T(T2+52> »<T(T1+511)+V(T2+52> J

(T(ﬁ + 12+ Sz)> S], (T(ﬁ +12+ Sz)>sz>

((erl—i-sl—]) (ZTH i rsi>rj>, for j=1,2.

i=1, i#
This shows that the result is true for m = 2. Assume that the result holds for
m =k — 1, therefore for all j=1, 2, ---, k—1,

k—1 T‘j k—1 k—1 ‘l‘j
. =<<ZT(H+Si—1)> ,<Zrn+ Z rsi> ), for j=1,2.
i=1 i=1

i=1, i#4j
Now for m =k,
G_ST151\/ST252\/ \/STk1Sk1\/STkSk
=AV S where A = Sr1,s1 V S‘rz,sz V...V STk 158k—1°

T'k,Sk)
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Since the result is proved for all m = k—1 and using the fact that the result is
proved for each pair and since the result is already proved for k = 2, it follows
by induction hypothesis that result holds for m = k also. That is,

k .
<(erl—|—sl—1 ZTH Z rsi>S]>, for j=1,2,...,k

=1, 14

This proves the lemma. ([

Lemma 17 A non-increasing integer sequence @ = (dy,...,dn) is potentially
A(LT;\A—gmphz'c if and only if it is potentially S(LT;\A—gmphz'c.

Proof. We only need to prove that if m = (dj,...,dy) is potentially SLM

graphic, then it is potentially ALM -graphic. We choose a realization G of
7t with vertex set V(G) = {vi1,...,vn} such that dg(vi) = dj for 1 < 1 <
n, the induced r-subgraph G[{w, «oyviam) of {viy...,viim} in G contains
S(Lr;vl as its r-subgraph and V(K )) N{v1,...,v } is maximum. Denote H =

Glfvr, -y v T IVIKT N, .o, dd = L that s, VI K =ryev,
then 7 is potentially AL wv-graphic. Assume that IV( ) N {v1, Lyl < L
Then there exists vi € {vi,...,vi}\ V( ) and a vj € V( ) \{Viy...,VLE
Let A = NH(V]') \ ({vi} U Ny(vi)) and B Ng(vi) \ ({V]} U NG(Vj)). Since
dg(vi) > dg(vj), we have [B] > [A|. Let C be any subset of B such that
|C| = |A]. Now form a new realization G’ of 7t by a sequence of r-exchanges to
the r-edges of the star centralized at v; with end vertices in A with the non
r-edges of the star centralized at v; with end vertices in C, and by a sequence
of r-exchange the r-edges of the star centralized at vi with end vertices in C
with the non r-edges of the star centralized at v; with end Vertices in A. It is
easy to see that G’ contains S(LT}\A on {vi,...vL M} so that IV( )ﬂ{w, VS
is larger than that of G, which contradicts to the choice of G O

We use the Havel-Hakimi procedure to test whether or not an r-graphic
sequence 7T is potentially A(Lt;v[—graphic.

Theorem 18 Forr > 1 andn > 1, an r-graphic sequence ™= (dy,...,dn) is
potentially A(LT;\A—gmphz'c if and only if T is r-graphic.

Proof. Assume that 7t is potentially A(Lr%v[—graphic. Then 7 has a realization G

with the vertex set V(G) ={v1,...,vn} such that dg(vi) = d; for (1 <i<n)
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and G contains S(Lr;vl on the vertices vi,...,vi4+m, where L + M < n, so that

VII(Kp) = {v1,...,vi} and V(K;(\;l)) ={vii1,...,vLiMm}- By applying a sequence
of r-exchanges to G in order we will show that there is one such realization
G’ such that G’ \ v; has degree sequence 7;. If not, we may choose such a
realization H of r-graphic sequence 7t such that the number of vertices adjacent
to vi in {Viyms+1,...,Va, 41} is maximum. Let vi € {Vviim+1,...,Va,+1} and
assume that there is no edge between v; and v; and let vj € {v4,42,...,Vn}
and there are T edges between v and v;. We may assume that d; > d;. Hence
there is a vertex wi,t # 1,j such that there are r edges between v; and v,
and no edge between v; and vy. Clearly G = (H\{v%ﬂvj,vgr)vt}) U{v%r)vi,v]mvt}
(r)

(where v; 'vj means that there are r edges between v; and vj) is a realization
of 7 such that dg(vi) = d; for 1 < i < n, G contains S(Lr,;v[ on Vi,...,ViiM
with V(Ky) = {vi,...,v1} and V(R&)) = {vii1y...,viam} and G has the
number of vertices adjacent to vy in {Vi4+m41,...,Va,+1} larger than that of H.
This contradicts the choice of H. Repeating this procedure, we can see that
m; is potentially A(Li)i—graphic successively for i = 2,..., L. In particular, 7 is
T-graphic.

Conversely, suppose that 7tp is r-graphic and is realized by a graph Gt
with a vertex set V(Gr) = {vi41,...,vn} such that dg, (vi) = di for L+ 1 <

i<n Fori=LL-1...,1 form Gi; from G; by adding a new vertex
v; that is adjacent to each of viyi1,...,viim with r-edges and also to the
vertices of G; with degrees SE]MH —Ty.e., did:l] — 1. Then for each 1, G; has
degrees given by 7; and G; contains S(LT_]i’M on L+M—1 vertices vit1y...,VL+M
whose degrees are diy; — ir,...,drsm — ir so that V(K(Lr_]i) = {Vis1y..., V1)
and V(K&) ) ={vii1,...,viam} In particular, Gy has degrees given by 7 and
contains S(Lr‘%v[ on L + M vertices vy,...,vi+m whose degrees are di,...,di+m
so that V(K(LT)) ={v1,...,v } and V(K&)) ={viy1,...,VvLiMm]}- Hence the result
follows. O

The following is a sufficient condition for an r-graphic sequence to be po-
tentially A(Lrg\d—graphic.

Theorem 19 Letn > L+ M and let m = (dy,...,dn) be an r-graphic se-
quence. If dpym > 2rL+ 1M — 2, then 7 is potentially A(LT;\A—gmphic.

Proof. Let n > L + M and let ®m = (dj,...,dn) be a non-increasing 1-
graphic sequence with dpypm > 2rL +rM — 2. By using the argument similar
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to Theorem 8, 7t is potentially K(LT)—graphic and hence by Lemma 17, A(LT)—
graphic. Therefore, we assume that G is a realization of 71 with a vertex set
V(G) = (v1,...,vn) such that dg(vi) = di, (1 €1 < n) and G contains K(LT)
on (vi,...,vr), that is, V(K(Lr]) ={v1,...,v } and

t= eG({Vh---)Vﬁ)---aVL}){VL+1)--->VL+51)--->VL+M})

(that is, the number of edges between {vi,...,vi} and {vii1,...,vi4m]}) is
-1

maximum. If t = rfLM4-rs1s,4s5 ) 7sy, for j = 3,4,...,p, then the cardinality
i=1

of the edge set of S(Lr;\,l is same as t and therefore G contains S(LT;\A on the vertices

V1, V2, ..oy Vigam with VO (Ky) = {vi,va, ..., v} and

V(KO M) = Vi1, Vit2y o ooy Vidsyy - - -y VIAM

In other-words, 7t is potentially K(L?\A—graphic. Assume that t < {rLM+rs1s;+
—1

sj > vsi}, for j = 3,4,...,p. Then there exists a v € {vi,vz,...,vs} and
i=1

Vin € {Vs; 41, V425 - - - Vsi+s; b (1 # ) such that vivi, € E(G). Let

A= NG\ 1 ve e 2mavsg s V) A NGV v, 1 (V)

and
B = NG\{VSi+],V5i+2,...,vsi+5j}(vk) N NG\{V])\)Z)-"yVSi}(vm)'

Then eg(x,y) = 1 for x € Ng\p,,..v}(Vim) and y € Ngyp,,.vp ) (Vi) Oth-
erwise, if eg(x,y) < r, then G’ = (G \{v(r)y,vmx}) U {vl(g)vm,x(r)y} is a real-
ization of 7t and contains §(Lr}vl on vi,...,viim with V(K(Lr)) ={vi,...,v }and

(Kl(\jl)) = {Vis1y. .- )VL+M} such that

eG/({v1 yoo. )VL}) {VL-H) o 7VL+M}) > 1,

which contradicts the choice of G. Thus B is r-complete. We consider the fol-
lowing cases.

Let A =0. Then 2rL +1M — 2 < dy = dg(vk) < tTL+1M — 1 +1[B|, and so
IB| > rL. Since each vertex in Ng\,,, v, (Vi) is adjacent to each vertex in B by
T edges and [Ng\,,..v}(Vm)l > 2rL+T™™M — 2 =1L +1M — 1. It can be easily

seen that the T induced subgraph of Ng\p,,,...v}(Vm) U{vim} in G contains g(LT,;\/l
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as a subgraph. Thus 7t is potentially K(Lr,;\/l‘ graphic.

Let A # (. Let a € A. If there are X,y € Ng\p,,.v (Vi) such that
eg(x,y) < r then G’ = (G \{vg)x,vg)y,v](:)a}) U {vl(g)vm, a(T)vm,x(r)y} is a
realization of 7t and contains §(LT3V[ on vi,...,viym with V(K%_T)) ={vi,...,v1}

and V(ﬂ\:{)) = {Vi41y...,Vigm]) such that eg/ ({vi, ..., vih {vigi, ..., viem)) > t
which contradicts the choice of G. Thus Ng\p,,..v}(Vm) is T-complete. Since

NG\ ,ov (V[ > TL+T™™M =1 and  eg(vm,z) =T,

for any z € Ng\(,,..v }(Vm), it is easy to see that the induced r-subgraph of
NG\y,.v ) (V) U{vm} in G is r-complete, and so contains g({’;vl as a r-subgraph.

Thus 7t is potentially K(Lt;v[—graphic. O

Theorem 20 If w = (di,dy,...,dn) is an r-graphic sequence such that o(7)
is at least (n? — 3n + 8)r, then 7 is potentially Ky) -graphic.

Proof. Let m= (d;, dy,...,dn) be an r-graphic sequence such that d; > d; >
...>dn >1and o(n) = (n? — 3n + 8)r. Suppose G is a graphical realization
of 7t and e(G) is the size of G. Then 2e(G) = o(7) and 2¢(G¢) =nb(n—1) —
o(m) =nr(n—1)—(n?—=3n+6)r =r(2n—6), so that e(G¢) = r(n—3), where
G°€ is the complement of the r-graph G. An extremal problem is r-graph G is
obtained by deleting r(n — 3) independent edges from the complete r-graph
Kg ) of order n. Hence the largest vertex number of independent sets in G€ is
3. This implies that the largest possible complete T-subgraph of G is of order
3. As 1 <n—3 < 3. Hence there is no complete r-subgraph of order 4 in G.
Therefore, we have

U(KE;T)W) > M2 —3n46)r+2r=Mn’—3n+8r

Now Suppose that @ = (dy, dy,...,dn) is r-graphic sequence with d; > d; >
... > dn > rand o(m) > (n? — 3n + 8)r. Then every graphical realization
G of 7t is obtained by removing at most r(n —4) edges from the r-complete

graph Kg). Hence the maximal complete subgraph of G has order at least
n— (n—4)=4. Thus G is potentially Kf). In other words,

G(Kf), n) < (m?—=3n+8r (3)
Combining (3) and (4), the result follows. O
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