
Acta Univ. Sapientiae, Informatica 8, 2 (2016) 171–185

DOI: 10.1515/ausi-2016-0008

Jet browser model accelerated by GPUs
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Abstract
In the last centuries the experimental particle physics began to de-

velop thank to growing capacity of computers among others. It is allowed
to know the structure of the matter to level of quark gluon. Plasma in
the strong interaction. Experimental evidences supported the theory to
measure the predicted results. Since its inception the researchers are in-
terested in the track reconstruction. We studied the jet browser model,
which was developed for 4π calorimeter. This method works on the mea-
surement data set, which contain the components of interaction points in
the detector space and it allows to examine the trajectory reconstruction
of the final state particles. We keep the total energy in constant values
and it satisfies the Gauss law. Using GPUs the evaluation of the model
can be drastically accelerated, as we were able to achieve up to 223 fold
speedup compared to a CPU based parallel implementation.

1 Introduction

The huge measurement data is generated in the experiment of high energy
particle physics e.g. in the ATLAS experiment (CERN) ∼ 40 × 106 events
per second are detected which requires 64 TB/sec. Every year at about one
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milliard events are measured, this represents three milliard simulation of the
event each year and the number of detected particles is growing exponentially.
The evaluation requires large computer capacity. Many fundamental questions
raise in this research. One of these is the trajectory reconstruction. This process
contains more levels. The first is a clearing the pure measurement data. Next
process contains the path reconstruction. This method includes two types of
elaboration. One of them is an online process to apply the level of assembly
program. In the next step the valuable stored data is studied by high level
computer program in batch mode.

In our article we work on the first level to use directly measured data set.
A jet browser algorithm was published in [1] to study the particle orbit in 4π
calorimeter.

The GPUs are providing an easy to program parallel model [10] that makes
us capable to achieve higher precision in our computations, while also reach-
ing out for bigger datasets [5]. The ever evolving and increasingly efficient
architecture of the GPUs makes it also a viable option to run the applica-
tions even on a laptop these days without relying on supercomputers and very
special not consumer level hardwares. Thus we implement a CUDA based par-
allel implementation of the Jet browser to broaden the limit of the original
algorithm.

2 Jet physics

The jet physics [6] plays important role in the high energy physics. We present
the process from the collision of protons to observable particles by detector
(Figure 1).

It contains three different parts. The first range is the parton session, which
contains the quark gluon plasma with strong interaction on the distance 10−15m.
In the theoretical model the jet are produced in hard scattering processes gen-
erating high transverse momentum quarks or gluon. The next part of the pro-
cess is particle, where the constituents are formed from the quarks and gluon.
This is called hadronisation procedure. In the last phase we detect the final
state objects, which are the components of the electromagnetic and hadronic
showers. The theoretical studying applies the Monte Carlo simulations. At the
parton and particle process PYTHIA [8] software package is used to calculate
and at detector phase the final state particle is simulated by GEANT [11].

We mention that, there are more kind definitions of the jet, because the
laws of physics are different between short-range and the finale hadronisation.
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Figure 1: The structure of jet

It is important, that the definition is adequate with both theoretically and
experimentally.

3 Jet algorithm

The experimental data which is contains of large number of particles to mea-
sure their four-momentum. The particle’s energy, impulses pT and position
retrieve from data set. Two main jet definitions [2] are being used. One of
them is Cone Jet and the other is the kT Jet algorithm. In the cone jet algo-
rithm we apply that the jet stays in circular range in the plain of the detector
to describe by angles to search the stable energy state. The kT algorithm
can be used, where the values and direction of particle’s momentum have the
same order of magnitude, therefore the finale state showers will be collinear.
These definitions fulfill both theoretical and experimental model also. Several
advanced procedures [4, 7, 3] has been developed in this research field.

4 Parallel graph based trajectory reconstruction

In [1] a graph based trajectory reconstructing method was introduced. As
all reconstruction algorithms, this is also very computation intensive, where
even if the input dataset isn’t very large, the combination of those inputs can
generate a lot of work. To effectively speed up the process now we introduce a
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CUDA based GPU implementation for the same problem, as the GPUs proved
to be a valuable device in parallel computations [5].

4.1 Jet browser model

The jet analysis and the jet reconstruction method are applied to study the
structure of jet in high energy physics. A shower is a narrow cone of hadrons
and other particles which are produced in detector phase. These constituents
are measured by detector to determine the trajectories and the type of con-
stituents [1].

In 2009 year Gy. Vesztergombi has presented a new idea of a 4π detector [9].
A few particle trajectories (e−, e+, γ) can be reconstructed by a model, which
was published [1]. The component of shower take part in the electromagnetic
and strong interaction, decaying in two or more particles, but we neglect the
strong interaction, because the cross section is very small. We can measure
the point of the elements (e−, e+), which consists of components of the three
dimensional Euclidean space. The jet reconstruction model involves the energy
and charge conservation. It has been proven that the orbits correspond to
weighted directed tree graph G(Ψ, E, V,w).

This method consists of three steps: We find all of neighbor detected points
and fit a straight line to them. Next we merge these small pieces for a long
orbit. At the end we determine the common points of the trajectories.

Let us denote the set of measured points by Vp in the Euclidean space.
The three-points-straight is accepted, if the fitting error is smaller then the
value of εY , εZ. These quantity depend on the experimental and theoretical
considerations. The set Sstp contains the three-point-straight. This can be
constructed by recursive using the set Vp with finite steps.

In the second part of the model we merge the short peaces for a long trajec-
tories. In this case we have taking into account the curvature of the orbits and
the distance between two different straights. The insertion was successfully, if
the peaces were very close to each other. The time sequence of the measured
points has strong consecutively, therefore the postfix and prefix map can be
defined unique on this set.

During the hadronisation we needed to find the decay points to develop an
algorithm, which can solve the original problem of this article.

Three types of decay point were introduced Children case, Parent-child cases
and Undetected parent. We study, when two or more orbits create from the
same points, it means the Children case. The Parent-child case continues the
building ChildStraights, then we study the energy dominant particle case to
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construct a more complicated tree graph. At the end we need take into account
that situation, when a particle is not measured. In the experimental particle
physics there are a few particle which we can not detected by this type of the
calorimeter (i.e. γ). Then we apply that the energy is conservation during this
process.

The experiment consists of a beam (direction of the shoot is parallel with
Z axis). It interact with target due to result electromagnetic shower

In [1] a graph based trajectory reconstructing method was introduced. As
all reconstruction algorithms, this is also very computation intensive, where
even if the input dataset isn’t very large, the combination of those inputs can
generate a lot of work. As these ideas were proposed a couple of years ago,
the originally used architecture for the computation may not be so efficient
now. Back then a grid cluster was used to run the algorithm, but now the
GPUs have outgrown the performance of smaller CPU clusters with their much
more efficient design and seriously parallel architecture. Hence our current
implementation involves CPUs, running the algorithm in parallel and GPUs,
doing the computation in massively distributed manner, as they can effectively
speed up the process as we already shown it in [5].

4.2 Implementation

The machine used for implementation has a GeForce GTX 980M with ”com-
puting capability” 5.2 [10] and an Intel Core i7-4710HQ CPU (Table 1).

4.2.1 CUDA memory hierarchy

The threads running on a CUDA capable GPU can access data from multiple
memory spaces (Figure 2) [10]. Each thread has its own private local memory.
The blocks containing the threads has access to a shared memory that is visible
from all the contained threads. During the execution the whole set of threads
launched in the grid have access to the same global memory. Additionally
there are two read-only memory spaces, that can also be accessed by all the
threads. These are the constant and texture memories. The global, constant,
and texture memories are optimized for different usage scenarios.
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GeForce GTX 980M

Technical Specifications Compute Capabiliting 5.2

Transistors (Million) 5200

Memory (GB) 4

Memory Bandwidth (GB/s) 160

GFLOPs 3189

TDP (watts) 125

i7-4710HQ

Transistors (Million) 1400

Connected memory (GB) 24

Memory Bandwidth (GB/s) 25.6

GFLOPs 422

TDP (watts) 47

Table 1: GeForce GTX 980M and Core i7-4170HQ technical specifications

Figure 2: CUDA capable GPU’s memory hierarchy
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4.2.2 Design choices

From the memory hierarchy (Section 4.2.1) our solution uses the global, shared
and local memory. For initialization we move the array storing the original de-
tected points to the GPU’s global memory. We process on this input to gener-
ate the required triplets, that will build up the trajectories. As for the triplets
we have to match the points of three consecutive detector layers, we can map
this to a 3 dimensional block to process on the GPU. As the maximum length
in the Z coordinate can be only 64, we decided to set it to it’s maximum value
and align the rest accordingly. As one block can have 1024 threads maximum,
we make our blocks to be (x = 4, y = 4, z = 64) in size. Because we would like
to check all points from one layer to all the others in the next and also on the
third one, this process will generate a huge number of read operations (1024
comparisons by each block) on the device’s global memory. While caching is
available [10] on the GPU used for implementation, it is still time consuming
to fetch all the data from the device memory. Hence at the beginning of the
computation we further push the data from the global memory into shared
memory, drastically decreasing the required time to proceed, considering it
can be 100 times faster [10] compared to the global memory. This is because
the global memory is on the card, while the shared memory and the registers
are on the chip. As a result of this, the triplets will be the generated online
and will be stored on the device. An example of block assignment is shown on
Figure 3.

The triplets stored in device memory contains a pointer to the possible next
part, the child element and there is also a pointer to the previous chunk, the
parent element, basically making a linked list at the end. The process on the
triplets is similar to the point matching done before in terms of block settings.
In this case we only need a two dimensional block as we only need to check the
triplets with each other, so we set the size of the block in the number threads
to be (x = 32, y = 32).

4.2.3 Algorithm

Following the stated principles in 4.2.1 and 4.2.2 the host side of the final
algorithm for the triplet generation is in Figure 4.



178 R. Forster, Á. Fülöp

Figure 3: The detector layers as they are represented in a three dimensional
CUDA block.

1: procedure makeTriplets(P, L,NP)
2: CudaMalloc(T)
3: DT,DP,DNP ← CudaMemcpyToDevice(T, P,NP)
4: start← 0

5: for each i ∈ 0..L− 2 do
6: x, y, z← NP[i]/4+ 1,NP[i+ 1]/4+ 1,NP[i+ 2]/64+ 1
7: threads(4, 4, 64)
8: blocks(x, y, z)
9: makeTripletsKernel(DT,DP,DNP, i, start)

10: start← start+NP[i]
11: end for
12: end procedure

Figure 4: The host part of the triplet generation, inputs are the points, the
number of layers and the number of points per layers.
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The implemented kernel function, which needs to be called from the host side
to initiate the computations on the GPU is detailed in Figure 5. As this is the
most time consuming kernel, it incorporates the shared memory to compute
the triplets as fast as possible.

1: procedure makeTripletsKernel(DT,DP,DNP, i, start)
2: j← blockIdx.x ∗ blockDim.x+ threadIdx.x
3: k← blockIdx.y ∗ blockDim.y+ threadIdx.y
4: l← blockIdx.z ∗ blockDim.z+ threadIdx.z
5: SP ←Memcpy DP to shared memory

6: if Line found on (SP[j], SP[k], SP[l]) then
7: T [start+ j]← (SP[j], SP[k], SP[l])
8: end if
9: end procedure

Figure 5: Device kernel to generate triplets, inputs are the array for the triplets,
the detected points, the number of points per detector layer, the index of the
first layer being tested and the index, where the triplets are starting in the
array for the given layer.

The host side of the algorithm used to generated the lines in the trajectories
can be found in Figure 6.

1: procedure makeTriplets(T,NT)
2: x, y, z← NT/32+ 1, x, 1
3: threads(32, 32, 1)
4: blocks(x, y, z)
5: makeLinesKernel(T)
6: end procedure

Figure 6: The host side algorithm for the line generation, inputs are the triplets
in the device memory and the number of them.

The device function required for the line generation on GPU is in Figure 7.
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1: procedure makeLinesKernel(T)
2: i← blockIdx.x ∗ blockDim.x+ threadIdx.x
3: j← blockIdx.y ∗ blockDim.y+ threadIdx.y
4: if T[j].next == NULL then
5: if could fit line on (T[j], T[i]) then
6: T [j].next← T [i]
7: return
8: end if
9: end if

10: end procedure

Figure 7: The device function to generate the lines, input is the array allocated
in the device memory for the triplets.

4.3 Results

Because the problem at hand requires the comparison of all the possible com-
binations of the points in three consecutive layers and later the triplets are
checked in a similar fashion, there is plenty of room for parallelization. Also
the memory bound properties of the algorithm makes good use of the shared
memory on the GPU. As we will see, the GPUs memory hierarchy (Section
4.2.1) makes them more suitable for these kind of applications. First, we take
a look at the triplet generation using a CPU based parallel implementation
and the GPU specific solution, comparing how they fair to each other. Then
we do the same for the line generation.

The system used for development and testing is described in Table 2.

CPU GPU OS Compiler
CUDA
version

Intel Core
i7 4710HQ

GeForce
GTX 980M

Windows
10 Pro

Visual
C++ 2013

7.0

Table 2: The test system

To evaluate the performance of our algorithms running on both CPU and
GPU, we generated a dataset by simulating 2000, 4000, 8000, 16000 events
using Geant4, running it with 100 MeV as the energy. The number of detected
points were 19500, 38855, 77474, 154905 respectively (Figure 8). The simulated
detector had 9 layers, giving us 3 batch of layers containing points to check
for triplets.
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Figure 8: Number of detected points on the different number of events

Evaluating the same dataset on a version of the implementation, that does
not use any of the shared memory on the GPU, the runtime is 5 times faster
compared to the parallel CPU implementation. By changing the algorithm
just slightly with moving the data to shared memory, we gain 27 times faster
performance compared to the previous GPU results, which means compared to
the CPU implementation the computation is up to 168 times faster in triplet
generation and 223 times faster in line generation.

The runtime (Figure 9) on CPU was timeTcpu = 226.627s, the same compu-
tation took timeTgpu = 44.083s on the GPU, while using the shared memory
it was just timeTgpush = 1.607s.

In the following we will keep using the GPU implementation using the shared
memory. In Figure 10 we can see as we increase the number of iterations the
difference between the CPU’s and GPU’s runtime is increasing, while the CPU
can take hours in some cases the GPU runs only for minutes.

As we already saw the results for 2000 events, here we describe the num-
bers for the other ones. As such on 4000 events the runtime on CPU was
timeTcpu4000 = 1817.95s, the same computation took timeTgpush4000

= 10.387s
on the GPU. On 8000 events the times were the following: on CPU we finished
in timeTcpu8000 = 13647.3s, while on the GPU in timeTgpush8000

= 80.998s.
For 16000 events on the CPU we could not finish in a reasonable time. The
computation was running for more than 15 hours and it still couldn’t finish. On
the other hand the GPU could give back results in timeTgpush16000

= 644.446s.
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Figure 9: Triplet generation time on 2000 events

Figure 10: Triplet generation time on CPU and GPU
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In Figure 11 we can see that the performance difference is also very clear in
the generation of the lines. In this case while the CPU takes minutes to finish,
the GPU can be done in seconds. Also here we have a runtime value for CPU
under 16000 events, thanks to the lower number of combinations, that needs
to be computed.

Figure 11: Line generation time on CPU and GPU

Taking a closer look on the Figure: on 2000 events, the runtime on the
CPU is timeLcpu2000 = 12.685s and on the GPU timeLgpu2000 = 0.02s. While
on 4000 events the runtime on CPU was timeLcpu4000 = 26.027s, the same
computation took timeLgpu4000 = 0.071s on the GPU. On 8000 events the
times were the following: on CPU we finished in timeLcpu8000 = 53.566s, while
on the GPU in timeLgpu8000 = 0.247s. For 16000 events on the CPU we got
timeLcpu4000 = 204.694s, while on the other hand the GPU could give back
results in timeLgpu16000 = 0.916s.
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One reconstructed event can be seen on Figure 12.

Figure 12: Reconstructed event on the Geant event. Black crosses with the
noisy tail are the calculated points, while the full black parts are the Geant
generated points.

5 Summary

As the GPUs are evolving, introducing new, more efficient architectures, it be-
comes easier to modify the existing applications and algorithms to be parallel.
In this paper we were able to achive a 168 fold speed up compared to the CPU
version, while computing the triplets of the trajectories. When calculating the
full lines of the trajectories the system shows a 223 fold speed up in favor of
the GPU.

In all cases the performance was definitely better on the GPU. On triplets
timeTgpushi

<< timeTcpui and also for the lines timeLgpui << timeTcpui , i ∈
[2000, 4000, 8000, 16000].
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The performance of the GPUs make it possible to reconstruct a high volume
of trajectories in parallel, finishing it in just a fraction on the runtime of the
CPU.
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