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Abstract. The known fact that coloring of the nodes of a graph improves
the performance of practical clique search algorithm is the main motiva-
tion of this paper. We will describe a number of ways in which an edge
coloring scheme proposed in [8] can be used in clique search. The edge
coloring provides an upper bound for the clique number. This estimate
has a limitation. It will be shown that the gap between the clique number
and the upper bound can be arbitrarily large. Finally, it will be shown
that to determine the optimal number of colors in an edge coloring is
NP-hard.

1 Introduction

Let G = (V, E) be a graph. Here V is the set of nodes of the graph G and E
is the set of edges of the graph. In this paper we will be dealing exclusively
with finite graph, that is, it will be assumed that the sets V and E are finite.
We further narrow the class of graphs we consider throughout this paper by
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excluding the graphs that have either loops or double edges. In other words
we will be working with finite simple graph.

Let k be a fixed positive integer. A subgraph ∆ of G is called a k-clique
in G if each two distinct nodes of ∆ are adjacent in G and ∆ has k nodes.
The number of edges in ∆ is equal to k(k − 1)/2. We refer to k as the size
of the clique ∆. Sometimes we call ∆ a clique of size k instead of a k-clique.
A k-clique ∆ in G is called a maximal clique if ∆ is not a subgraph of any
(k + 1)-clique in G. A k-clique ∆ in G is called a maximum clique if G does
not contain any (k + 1)-clique. A graph may have several maximum cliques.
All maximum cliques in G have a well defined common size. This well defined
number is referred as the clique number of G, and it is denoted by ω(G).

The expression “clique search problem” refers to a number of problems
related to finding cliques in a given graph. One may look for maximal cliques
or maximum cliques. One might be interested in listing all maximal cliques
or listing all maximum cliques. We maybe content with locating only one
maximum clique. Or we maybe satisfied with just learning the clique size of
G without exhibiting any maximum clique. We describe some relevant clique
search problems more formally.

Problem 1 Given a finite simple graph G and given a positive integer k.
Decide if G contains a k-clique.

Problem 1 is a decision problem and it is well-known that it belongs to the
NP-complete complexity class. (See [7].)

Problem 2 Given a finite simple graph G and a positive integer k. List all
k-cliques in G.

Problem 2 is not a decision problem. It is clear that Problem 2 cannot be
computationally less demanding than Problem 1.

Determining the clique number ω(G) of G is not a decision problem either.
It is an optimization problem. But again it must be clear that finding ω(G)
is computationally at least as challenging as Problem 1.

Clique search problems have many practical applications and there is a
considerable amount of research devoted to them. For details see for example
[1], [3], [4], [5]. Many practical clique search algorithms utilize the coloring the
nodes of a graph. We color the nodes of a given finite simple graph G with k
colors satisfying the following conditions.

(1) Each node receives exactly one of the colors.
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(2) Adjacent nodes never receive the same color.

This is the most commonly encountered coloring of the nodes of a graph. It is
referred as a legal or a well or a proper coloring of the nodes of G. In connection
with each finite simple graph G there is a number of colors k such that the
nodes of G have a legal coloring with k colors and the nodes of G do not have
any legal coloring with k − 1 colors. This well defined number k is called the
chromatic number of G and it is denoted by χ(G). Coloring of graphs is a vast
subject on its own. In this paper we take a rather narrow view of coloring.
We are interested in coloring only from one reason. Coloring provides upper
estimates for ω(G). Namely, ω(G) ≤ χ(G).

One can devise further coloring schemes to get new upper bounds for ω(G).
For example we may color the edges of a graph G with k colors in the following
way.

(1) Each edge receives exactly one color.

(2) If x, y, z are distinct nodes of a 3-clique in G, then the edges {x, y}, {y, z},
{x, z} must receive three distinct colors.

(3) If x, y, u, v are distinct nodes of a 4-clique in G, then the edges {x, y},
{x, u}, {x, v}, {y, u}, {y, v}, {u, v} must receive six distinct colors.

We call this type of coloring of the edges of G a legal or well or proper edge
coloring.

For a given finite simple graph G there is a number of colors k such that
the edges of G has a legal coloring with k colors and the edges of G does not
admit any legal coloring using k− 1 colors. This minimum number of colors is
called the edge chromatic number of G and it is denoted by χ(e)(G).

The reader can observe that the inequality

ω(G) (ω(G) − 1) /2 ≤ χ(e)(G)

must hold. So coloring the edges of a graph G can be used to establish an
upper bound for ω(G).

The edge coloring scheme described here was proposed in [8]. It was men-
tioned that a large scale numerical experiment indicates that typically edge
coloring provides better bounds for the clique number than the node coloring.
On the hand the edge coloring is computationally more expensive than the
node coloring. In Tables 1, 2, and 3 we presented some of the numerical re-
sults. These results were not reported earlier. The graphs we used are related
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to the construction of certain codes. The captions of the tables simply refer to
the related codes.

In the tables the columns labeled by |V | and |E| contain the numbers of the
nodes and the edges of the graphs, respectively. Using the simplest sequential
node and edge coloring procedures give the number of colors listed in the
columns labeled by the words “node” and “edge”, respectively. Finally, the
column labeled by the word “estimate” lists the upper estimate of the clique
size computed from the number of colors of the edges.

Let G = (V, E) be a finite simple graph. Using G we construct a new auxiliary
graph Γ = (W,F). We set W = E and the distinct edges {u, v}, {x, y} of G will
be adjacent nodes of the graph Γ if each of the unordered pairs

{u, x}, {u, y}, {v, x}, {v, y}

is an edge of the graph G. The reader can verify that a legal coloring of the
nodes of the auxiliary graph Γ corresponds to a legal coloring of the edges of
the original graph G. We may refer to Γ as the derived graph of G.

2 Applications of edge coloring

In this section we discuss the relevance of edge coloring to clique search algo-
rithms.

The edge coloring can be used as a preconditioning technique.
Suppose that the edge coloring of the graph G = (V, E) is given by the

function f : E → {1, . . . , t}. Here f({x, y}) = c means that the edge {x, y}

receives color c. The function f can be stored conveniently as a matrix M.
The typical entry m(x, y) of M is defined by

m(x, y) =

{
f({x, y}), if {x, y} ∈ E,
0, if {x, y} /∈ E.

The number of the colors used for coloring the neighbors of the node x is equal
to the number of the distinct colors appearing in row x of the matrix M. We
may call this number the color degree of the node x in the graph G.

If x is a node of a k-clique ∆ in G, then the color degree of the node x must
be at least k−1. Therefore, if the color degree of the node x is less than k−1,
then node x can be deleted from the graph G without loosing the clique ∆. In
other words, when we are looking for a k-clique in the graph G we can delete
safely each node whose color degree is less than or equal to k− 2.
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There is further way to exploit the edge coloring for preconditioning. The
greedy sequential coloring of the edges of the given graph G as a side result
provides us with the adjacency matrix or the linked lists representation of the
derived graph Γ of G. An inspection can help to delete nodes or edges of Γ .

The edge coloring can be used as a pruning rule. One simply can add an
edge colored graph to the Carraghan-Pardalos [2] clique search algorithm.

The Carraghan-Pardalos algorithm at a particular stage of its execution
maintains two sets of nodes. The first one is the set of nodes U which consists
of the nodes of an r-clique ∆. The second one is the set of nodes L which
contains the nodes of G that have a chance to extend the clique ∆. We restrict
the graph G to the set L. Let H be the graph spanned by the set L in G. The
edges of H are colored as H inherits a coloring from G.

One can count the number of the distinct colors appearing as edge colors
in H. Let this number be s. Using s one can estimate the clique size of H.
Namely, if ω(H) = t, then t(t − 1)/2 ≤ s must hold. This means that t ≤(
1+
√
1+ 8s

)
/2 must hold.

Suppose we are looking for a k-clique in the given graph G. It is clear that if
ω(∆)+ω(H) ≤ k− 1, then choosing nodes from the set L the clique ∆ cannot
be extended to a k-clique. Thus, if

r+
(
1+
√
1+ 8s

)
/2 ≤ k− 1,

then at this node of the search tree one can terminate the search. In other words
at this node we can prune the search tree. One can record the edge coloring
of G using the matrix M described earlier. One can easily store two different
edge colorings of G in the matrix M. Using two edge colorings enhances the
efficiency of the pruning.

When the largest color class is very large compared with the others, then
the edge coloring offers a new opportunity to estimate the clique size.

Let ∆ be a maximum clique in the given graph G. Suppose that the color
classes of the edges in G are C1, . . . , Ck and |C1| ≥ · · · ≥ |Ck| holds. If we
delete the edges appearing in C1, then we get a new graph G′ from G. If ∆
does not contain any edge from C1, then ∆ is a maximum clique in G′ too.
In this case ω(G) = ω(G′). If ∆ does contain an edge from C1, then it may
happen that ω(G) = ω(G′) + 1. In either case ω(G) ≤ ω(G′) + 1. Since G′

has fewer edges than G computing or estimating ω(G′) can be simpler than
computing or estimating ω(G). In this way we may collect some information
about the clique size of G.

The edge coloring can be used as a branching rule to devise a parallel clique
search algorithm.
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Let us assume that we are interested in deciding if the given graphG contains
a k-clique. Here k is a given positive integer. Suppose that the edges of G are
legally colored with t colors. Let C1, . . . , Ct be the colors classes of the edges
such that |C1| ≥ · · · ≥ |Ct|. The edges of k-clique ∆ in G can be colored with
r = (k(k− 1)) /2 colors and cannot be colored with fewer colors. If t < r, then
clearly G cannot contain any k-clique. For the remaining part of the argument
we assume that t ≥ r. Let

e1 = {x1, y1}, . . . , es = {xs, ys} (1)

be all the edges in the color classes Cr, . . . , Ct. Let Gi be the subgraph of G
spanned by the set of nodes N(xi) ∩ N(yi) in G for each i, 1 ≤ i ≤ s. Here
N(x) denotes the set of neighbors of the node x in the graph G. If Gi contains
a (k− 2)-clique for some i, 1 ≤ i ≤ s, then G contains a k-clique. In this case
our problem is solved.

For the remaining part we may assume that Gi does not contain any k-
clique for each i, 1 ≤ i ≤ s. It means that we can delete the edge ei = {xi, yi}

form G without removing any k-clique from G. (When we delete the edge ei
we do not delete any of the nodes xi and yi.) Deleting the edges (1) from G

we end up with a graph G′ whose edges are legally colored with r − 1 colors.
Consequently, this graph G′ cannot contain any k-clique.

The summary of our consideration is that locating a k-clique in G can be
reduced to locating a (k − 2)-clique in the graphs G1, . . . , Gs. We replaced
the original clique search problem by a large number of smaller clique search
instances. These smaller problems can be attacked independently of each other
and we can solve them using a number of processors simultaneously. In this
sense the edge coloring can form the base of a parallel clique search algorithm.

When the number of the nodes is overly large, then we can divide the set of
nodes of the graph into two disjoint sets. The clique sizes of the smaller sub-
graphs induced by these sets provide lower and upper bounds for the clique size
of the original graph. Using edge coloring the upper bound can be improved.

Let G be a finite simple graph. We divide the set of nodes V into two disjoint
subsets U and W. Let H, K be the subgraphs of G induced by the subsets U
and W, respectively. We consider a bipartite subgraph L of G induced by the
subsets U and W. Note that

max{ω(H),ω(K)} ≤ ω(G) ≤ ω(H) +ω(K)

holds. Setting h = ω(H), k = ω(K) the upper estimate is ω(G) ≤ h + k.
Coloring the edges of the bipartite graph L provides a correction term r to
modify the estimate to ω(G) ≤ h+ k− r.
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Suppose G contains a (h + k)-clique. In this case ω(G) = h + k and the
bipartite graph L must contain a (h, k)-biclique. Note that this biclique has
hk edges and the colors of these edges are pair-wise distinct. In other words,
if the edges of L can be colored legally using less than hk colors, then the
equation ω(G) = h+ k cannot hold.

Suppose that the edges of L can be colored legally using s colors. If s is
small compared to hk, then the upper estimate for ω(G) can be lowered. For
the sake of definiteness let us assume that h ≥ k. Choose an integer r such
that

(k− r)h ≤ s < (k− r+ 1)h.

It follows that

k− (s/h) ≤ r < k− (s/h) + 1.

This r is the correction term to improve the estimate for ω(G).
The edge coloring can be used to construct cuts in the linear programming

reformulation of the maximum clique problem.
The maximum clique problem can be reformulated in terms of a 0-1 linear

program. Let G = (V, E) be a finite simple graph with V = {v1, . . . , vn} and let
∆ be a clique in G such that U is the set of nodes of ∆. To the clique ∆ we
assign an n-dimensional vector xT = [x1, . . . , xn] such that

xi =

{
1, if vi ∈ U,
0, if vi /∈ U.

We may call x the characteristic vector of the clique ∆.
We consider the following 0-1 linear program P. Maximize the objective

function x1+· · ·+xn subject to the constraints xi+xj ≤ 1, where the unordered
pair {vi, vj} is not an edge ofG. Replacing the condition xi ∈ {0, 1} by 0 ≤ xi ≤ 1
for each i, 1 ≤ i ≤ n we get the real relaxation P′ of the 0-1 linear program P.
An optimum solution of P′ provides an upper bound for the clique size ω(G)
of G.

Feeding the program P′ into a linear program solver we typically get the
optimum solution [1/2, . . . , 1/2]T which leads to the estimate ω(G) ≤ n/2.

The polyhedron of the program P′ may have many vertices with non-integer
components. There are inequalities in the form a1x1 + · · · + anxn ≤ b that
slices down non-integer solutions from the polyhedron but not slicing down
any integer solutions. Such inequalities are called cuts and they can be added
to the constraints of the program P′ to improve the estimate for ω(G).
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Suppose that the edges of G are legally colored using t colors and C1, . . . , Ct
are the color classes of the edges of G such that

e1 = {a1, b1}, . . . , es = {as, bs}

are the edges in the color class Ci. Let vi(1), . . . , vi(r) be all the distinct nodes
of G among a1, b1, . . . , as, bs. Note that the set {vi(1), . . . , vi(r)} cannot contain
the nodes of any 3-clique in the graph G. Consequently, the inequality

xi(1) + · · ·+ xi(r) ≤ 2

can be added, as a cut, to the linear program P′.

3 The gap phenomenon

In 1955 J. Mycielski [6] has proved the next result.

Theorem 3 For each positive integer k there is a graph G such that χ(G) = k
and G does not contain any 3-clique.

Since G does not contain any triangle, the edges of G have a proper coloring
with exactly 1 color. On the other hand, as χ(G) = k the nodes of this graph
do not have any legal coloring with k + 1 colors. In other words, the upper
estimates for the clique size ω(G) provided by the coloring of edges of G
coincides with ω(G) and the upper bound of the clique size provided by the
coloring of the nodes can be arbitrarily large. This makes the edge coloring
looking very good in comparison with the node coloring.

In this section we will construct a family of graphs for which the gap between
the clique number and the edge chromatic number can be arbitrarily large.

Theorem 4 Let us choose an integer k with k ≥ 3. There is a graph L(k) such
that ω(L(k)) ≤ 4 and χ(e)(L

(k)) ≥ k.

Proof. Let M(k) be the Mycielski graph with parameter k. Let u1, . . . , un be
the nodes of M(k). The graph L(k) will have 2n nodes x1, . . . , xn, y1, . . . , yn.
The unordered pair {xi, yi} is an edge of L(k) for each i, 1 ≤ i ≤ n. Further if
the unordered pair {ui, uj} is an edge of M(k), then we add the edges

{xi, xj}, {xi, yj}, {yi, xj}, {yi, yj}

to L(k). Figure 1 shows the construction in the special case k = 3.
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Figure 1: The construction in the proof of Theorem 4 when k = 3.

We claim that ω(L(k)) ≤ 4.
In order to prove this claim let us assume the contrary that ω(L(k)) ≥ 5. Let

∆ be a 5-clique in L(k). Note that a set {xi, yi} may contain at most 2 nodes of
the clique ∆. It follows that there must be at least 3 distinct values of i such
that the set {xi, yi} contains at least one node of the clique ∆. For the sake of
definiteness let us suppose that each of the sets

{xα, yα}, {xβ, yβ}, {xγ, yγ}

contains a node of the clique ∆ and zα, zβ, zγ are the nodes of the clique ∆
for which

zα ∈ {xα, yα}, zβ ∈ {xβ, yβ}, zγ ∈ {xγ, yγ}.

Here α, β, γ are pair-wise distinct elements of the set {1, . . . , n}.
The unordered pair {zα, zβ} can be an edge of the graph L(k) only if the

unordered pair {uα, uβ} is an edge of the graph M(k). From this observation it
follows that the nodes uα, uβ, uγ are the nodes of a 3-clique in M(k). But the
Mycielski graph M(k) does not contain any 3-clique since ω(M(k)) ≤ 2.

This contradiction completes the proof of the claim.
Next we claim that χ(e)(L

(k)) ≥ k.

In order to prove the claim let us assume on the contrary that χ(e)(L
(k)) ≤

k− 1. Let E be the set of edges of L(k). Further let f : E→ {1, . . . , k− 1} be the
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n |V | |E| node edge estimate

3 27 189 6 10 5

4 64 1296 12 37 9

5 125 5500 20 113 15

6 216 17550 30 273 23

7 343 46305 42 565 34

8 512 106624 56 1063 46

9 729 221616 72 1807 60

10 1000 425250 90 2922 76

11 1331 765325 110 4477 95

12 1728 1306800 132 6602 115

13 2197 2135484 156 9390 137

14 2744 3362086 182 12998 161

15 3375 5126625 210 17600 188

Table 1: Monotonic matrices. The 2nd and 3rd columns contain the number
of nodes and edges of the graphs. The estimates of the clique size are in the
4th and 6th columns.

map which defines a legal coloring of the edges of L(k) using at most k−1 colors.
Guided by the map f we construct a coloring of the nodes of the graph M(k).
Let us set U = {u1, . . . , un} and let us consider the map h : U→ {1, . . . , k− 1}
defined by h(ui) = f({xi, yi}) for each i, 1 ≤ i ≤ n.

At this point we should observe that the map h defines a legal coloring of
the nodes of the graph M(k). The only thing which needs verification is that
if ui and uj are distinct adjacent nodes of the graph M(k), then the inequality
h(ui) 6= h(uj) must hold.

Since ui and uj are adjacent nodes in the graph M(k), the nodes xi, yi, xj,
yj are the nodes of a 4-clique in the graph L(k). As the map f defines a legal
coloring of the edges of the graph L(k), it follows that f({xi, yi}) 6= f({xj, yj}).
Using

h(ui) = f({xi, yi}) and h(uj) = f({xj, yj})

we get h(ui) 6= h(uj), as required.
Therefore the map h describes a legal coloring of the nodes of the graph

M(k). In this coloring at most k− 1 colors occur. But this is not possible since
χ(M(k)) ≥ k.

This contradiction completes the proof of the claim. �
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n |V | |E| node edge estimate

3 8 9 2 1 2

4 16 57 4 6 4

5 32 305 8 17 6

6 64 1473 14 60 11

7 128 6657 26 221 21

8 256 28801 50 875 42

9 512 121089 101 3406 83

10 1024 499713 199 13081 162

11 2048 2037761 395 49268 314

12 4096 8247297 782 186246 610

Table 2: Deletion error detecting codes. The 2nd and 3rd columns contain the
number of nodes and edges of the graphs. The estimates of the clique size are
in the 4th and 6th columns.

n |V | |E| node edge estimate

6 15 45 4 3 3

7 35 385 10 23 7

8 70 1855 20 107 15

9 126 6615 35 391 28

10 210 19425 56 1131 48

11 330 49665 84 2754 74

12 495 114345 120 5918 109

13 715 242385 165 11610 152

14 1001 480480 220 21172 206

15 1365 900900 286 36514 270

16 1820 1611610 364 60054 347

17 2380 2769130 455 95038 436

18 3060 4594590 560 145441 539

Table 3: Johnson codes. The 2nd and 3rd columns contain the number of nodes
and edges of the graphs. The estimates of the clique size are in the 4th and
6th columns.
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4 A complexity result

In this section we will be interested in the computational complexity of the
following problem.

Problem 5 Given a finite simple graph G and given a positive integer k.
Decide if the edges of G admit a legal coloring using k colors.

We will show that for k ≥ 6 Problem 5 is NP hard. The intuitive meaning
of this result is that finding the optimal number of colors in the edge coloring
of a given graph is computationally hard. Thus in practical computations we
should approximate the edge chromatic number of a graph instead of exactly
computing it.

We will show that Problem 5 can be reduced to the following problem which
is known to be NP-complete. (See [7].)

Problem 6 Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a legal coloring using k colors.

The reduction of Problem 5 to Problem 5 can be accomplished using an
algorithm which runs in polynomial time and uses polynomial size memory.

Let M(k) be the Mycielski graph with parameter k and let e = {x, y} be an
edge of M(k). We delete the edge e from M(k) but we do not delete any of the
end points of the edge e. We denote the resulting graph by N(k).

Lemma 7 For the graph N(k) defined above the following holds.

(1) The nodes of the graph N(k) can be colored legally using k− 1 colors.

(2) In each legal coloring of the nodes of the graph N(k) using k − 1 colors
the nodes x and y must receive the same color.

Proof. The Mycielski graph M(3) is a circle consisting of 5 nodes and 5 edges.
After deleting an edge from M(3) the nodes of the remaining graph can be
colored legally with 2 colors. The end points of the deleted edge must receive
the same colors since otherwise one puts back the deleted edge and the nodes
of the graph M(3) could be legally colored with 2 colors. Thus the special case
k = 3 is settled.

The Mycielski graph M(4) has 11 nodes v1, . . . , v5, u1, . . . , u5, w. The set of
nodes {v1, . . . , v5} induces a subgraph H in M(4) such that H is isomorphic to
M(3). Figures 2 and 3 illustrate this step of the proof.
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Figure 2: The Mycielski graph M(4).

The node ui is adjacent to the neighbors of vi for each i, 1 ≤ i ≤ 5. The
node w is adjacent to ui for each i, 1 ≤ i ≤ 5. After deleting the edge {v1, v5}

from H the nodes of the resulting graph H′ can be legally colored with 3 colors.
To exhibit a legal coloring of the nodes let us color the nodes u1, . . . , u5 with
colors 1. The nodes v1, . . . , v5 can be colored with the colors 2, 3. Finally, we
color the node w with color 3. We have ended up with a legal coloring of the
nodes of the graph N(4) using 3 colors. This settles the case k = 4.

The Mycielski graph M(5) has 23 nodes v1, . . . , v11, u1, . . . , u11, w. The set
of nodes {v1, . . . , v11} induces a subgraph H in M(5) such that H is isomorphic
to M(4). The node ui is connected by an edge to each of the neighbors of the
node vi for each i, 1 ≤ i ≤ 11. Finally, we connect the node w to the node ui
by an edge for each i, 1 ≤ i ≤ 11. The graph H has an edge e such that after
deleting e from H the nodes of the resulting graph H′ can be colored legally
with 3 colors.

We assign color 1 to node ui for each i, 1 ≤ i ≤ 11. The nodes v1, . . . , v11
can be colored legally with 3 colors. We will use the colors 2, 3, 4. Finally, we
assign color 4 to node w. This provides a legal coloring of the nodes of the
graph N(5) using 4 colors. Therefore the case k = 5 has been settled.

After working out the k = 5 special case we are well prepared to settle the
general case using an induction on k.
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Figure 3: The graph N(4) with colored nodes.

Set V = {v1, . . . , vn} and U = {u1, . . . , un}. Let U ∪ V ∪ {w} be the set of
nodes of the Mycielski graph M(k). The set of nodes V induces the subgraph H
which is isomorphic toM(k−1). Note that N(w) = U and N(ui)∩V = N(vi)∩V
for each i, 1 ≤ i ≤ n.

By the inductive assumption H has an edge e such that after deleting e from
H the nodes of the resulting graph H′ can be colored legally using k−2 colors.

We color each node in U with color 1. The nodes in V can be colored legally
using the colors 2, . . . , k − 1. The node w can be colored with color k − 1. In
this way we ended up with a legal coloring of the nodes of Nk using k − 1
colors.

Putting back the edge e gives back the graph M(k). The nodes of M(k) can
be colored legally with k colors but not with k − 1 colors. Consequently, the
end points of the edge e must receive the same colors in any legal coloring of
the nodes of Nk using k− 1 colors.

This completes the proof. �

Using the graph N(k) we construct a new graph L(k) by adding a new edge
{z, x} to N(k). Figure 4 depicts the graph L(k). The newly constructed graph
L(k) clearly has the following properties.

(1) The nodes of the graph L(k) can be colored legally using k− 1 colors.

(2) In each legal coloring of the nodes of the graph L(k) using k − 1 colors
the nodes z and y must receive distinct colors.
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r r r
z x y

N(k)

Figure 4: The graph L(k).

(3) If the nodes z and y are colored with distinct colors, then this partial
coloring of the nodes of L(k) can be extended to a legal coloring of the
nodes of L(k).

In order avoid notational difficulties first we will deal with the k coloring
problem in the special case when k = 6 and so we will use the graph L(7) as an
auxiliary graph. The reader can verify that the graph L(7) has 95 nodes and
640 edges.

Let G = (V, E) be a finite simple graph and let u1, . . . , un be the edges of
G. From the given graph G we construct a new graph G′.

Let Li,j be an isomorphic copy of the graph L(7). We assume thatwi,j,1, . . . , wi,j,95
are all the nodes of the graph Li,j and the node wi,j,1 of Li,j corresponds to
the node z of the graph L(7). Further we assume that the node wi,j,95 of Li,j
corresponds to the node y of the graph L(7).

From the given graph G = (U,E) we construct a new graph G′. Let the
unordered pair {ui, uj} be an edge of the graph G. We replace this edge of G
by Li,j. We identify the node ui of G with the node wi,j,1 of the graph Li,j
and we identify the node uj of G with the node wi,j,95 of the graph Li,j. In
the graph L(k) the roles of the nodes y and z are not symmetric. In order to
avoid ambiguity in the construction we assume that for the edge {ui, uj} the
condition i < j holds.

From the graphG′ we construct a new graph Γ . Let us suppose thatw1, . . . , wm
are all the nodes of G′. The graph G′ hasm nodes and the graph Γ will have 2m
nodes x1, . . . , xm, y1, . . . , ym. To the node wi of G′ we assign an edge {xi, yi}

of the graph Γ for each i, 1 ≤ i ≤ m. Next if the unordered pair {wi, wj} is an
edge of G′, then we add the edges

{xi, xj}, {xi, yj}, {yi, xj}, {yi, yj}

to Γ .
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The pivotal result of our consideration in pursuing the k = 6 particular case
is summarized in the following assertions.

Theorem 8 For the graph Γ defined above the following holds.

(1) If the edges of the graph Γ have a legal coloring using 6 colors, then the
nodes of the graph G have a legal coloring using 6 colors.

(2) If the nodes of the graph G admit a legal coloring with 6 colors, then the
edges of the graph Γ admit a legal coloring with 6 colors.

Proof. In order to prove claim (1) let us assume that the edges of the graph
Γ = (W,F) have a legal coloring using 6 colors. Let us suppose that the map
f : F→ {1, . . . , 6} describes this coloring. Using this coloring of the edges of the
graph Γ we construct a coloring of the nodes of the graph G. To the node ui
of G we assign the colors of the edge {xi, yi} of Γ . In other words we define a
map g : U→ {1, . . . , 6} by setting g(ui) to be equal to f({xi, yi}).

The map g describes a coloring of the nodes of the graph G using 6 colors.
We claim that g describes a legal coloring of the nodes of the graph G. In
order to verify the claim it is sufficient to show that if the unordered pair
{ui, uj} is an edge of the graph G, then g(ui) 6= g(uj) must hold. The node
ui of G corresponds to the node wi,j,1 of the graph G′ and the node uj of G
corresponds to the node wi,j,95 of the graph G′. The node wi,j,1 corresponds
to the edge {xi,j,1, yi,j,1} of the graph Γ . Similarly, the node wi,j,95 corresponds
to the edge {xi,j,95, yi,j,95} of the graph Γ .

We know that the edges {xi,j,1, yi,j,1} and {xi,j,95, yi,j,95} receive distinct col-
ors, that is, f({xi,j,1, yi,j,1}) 6= f({xi,j,95, yi,j,95}). Consequently g(ui) 6= g(uj), as
required.

In order to prove assertion (2) let us assume that the nodes of G have a legal
coloring with 6 colors. We assume that the map g : U → {1, . . . , 6} describes
this coloring. Suppose that the unordered pair {ui, uj} is an edge of the graph
G and i < j holds.

When we constructed the graph G′ from the graph G we replaced the edge
{ui, uj} of G by Li,j which is an isomorphic copy of the graph L(7). Let xi,j, yi,j,
zi,j be the nodes of the graph Li,j that correspond to the nodes x, y, z of the
graph L(7) at the isomorphism.

The node zi,j of the graph G′ gets the color of the edge ui of the graph G.
The node yi,j of the graph G′ gets the color of the edge uj of the graph G.
The node xi,j of the graph G′ gets the color of the edge x of the graph G. We
know that this partial coloring of the nodes of the graph Li,j can be extended
to the coloring of all nodes of the graph Li,j.
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Figure 5: The 4-clique ∆ in the graph Li,j.

For the sake of a convenient notation we rename the nodes of the graph Li,j.
Let wi,j,1, . . . , wi,j,95 be the nodes of the graph Li,j. We will assume that

wi,j,1 = zi,j, wi,j,2 = xi,j, wi,j,95 = yi,j.

When we constructed the graph Γ from the graph G′ we have assigned an
edge {xi,j,α, yi,j,α} of Γ to the node wi,j,α of G′ for each i, j, α, 1 ≤ i < j ≤ m,
0 ≤ α ≤ 95. Now we assign the color of the node wi,j,α of the graph G′ to the
edge {xi,j,α, yi,j,α} of the graph Γ .

When the nodes wi,j,α and wi,j,β were adjacent in the graph G′, then we
added the edges

{xi,j,α, xi,j,β}, {xi,j,α, yi,j,β}, {yi,j,α, xi,j,β}, {yi,j,α, yi,j,β} (2)

to the graph Γ during the construction of the graph Γ from the graph G′. The
situation is shown by Figure 5. The edge {xi,j,α, yi,j,α} of the graph Γ receives
the color of the node wi,j,α of the graph G′ and the edge {xi,j,β, yi,j,β} of the
graph Γ receives the color of the node wi,j,β of the graph G′.

The nodes of G′ are colored using 6 colors. We intend to colors the edges
of Γ using these 6 colors. Out of the 6 colors we intend to use for the coloring
the edges of the graph Γ 4 colors are still available to color the edges (2). In
this way we get a legal coloring of the edges of the graph Γ . �

The main result of this section is the following theorem.
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Theorem 9 Problem 5 is NP hard for each integer k ≥ 6.

Proof. Theorem 8 settles the special case k = 6. For the remaining part of
the proof we assume that k ≥ 7. We start with the graph N(k+1) and follow a
reasoning analogous to the proof of Theorem 8.

A few elementary estimates are still missing to complete the argument. Let
G = (V, E), G′ = (V ′, E′), Γ = (W,F). It is clear that there is a positive constant
c1 such that |V ′| ≤ c1|V |. One can choose c1 to be the number of nodes of the
auxiliary graph L(k+1). There is a positive constant c2 for which |E′| ≤ c2|V |2.
Indeed,

|E′| ≤ (1/2)|V ′|2 ≤ (1/2)c21|V |
2 = c2|V |

2.

The computation

|W| ≤ 2|V ′| = 2c1|V | = c3|V |

shows that there is a positive constant c3 such that |W| ≤ c3|V |. Finally, there
is a positive constant c4 with the property that |F| ≤ c4|V |2. This can be seen
from

|F| ≤ 6|E′| ≤ 6c2|V |2 = c4|V |2.

The essential point is that the quantities |E|, |W|, |F| can be over estimated
by a polynomial in terms of |V |. As we can see the degree of this polynomial
is two. The leading coefficient can be very large. As a matter of fact it is
an exponential function of k. But for each fixed k the leading coefficient is a
constant. �
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