
Acta Univ. Sapientiae, Informatica 8, 1 (2016) 5–15

DOI: 10.1515/ausi-2016-0001

Distance-constrained grid colouring

László ASZALÓS
Faculty of Informatics
University of Debrecen

email: aszalos.laszlo@inf.unideb.hu

Mária BAKÓ
Faculty of Economics

University of Debrecen
email: bakom@unideb.hu

Abstract. Distance-constrained colouring is a mathematical model of
the frequency assignment problem. This colouring can be treated as an
optimization problem so we can use the toolbar of the optimization to
solve concrete problems. In this paper, we show performance of distance-
constrained grid colouring for two methods which are good in map colour-
ing.

1 Introduction

The problem of graph colouring is a very active research field nowadays, with
very long history. There are different research directions. Some are interested
in the theory, namely what the chromatic number of a particular type graph is,
i.e. finding the minimum number of colours to colour the nodes of the graph,
such that no edge connects nodes of the same colour. Others are interested in
practical things, hence invent algorithms that generate colouring with minimal
numbers of colours for any, given type of graphs. As the three-colouring is NP-
hard problem, we cannot require any algorithm to give a quick solution for
every graph.

Computing Classification System 1998: G.1.6
Mathematics Subject Classification 2010: 05C15
Key words and phrases: min-conflicts method, constraint logic programming

5

http://www.inf.unideb.hu/~aszalos
http://www.inf.unideb.hu
http://www.inf.unideb.hu
mailto:aszalos.laszlo@inf.unideb.hu
http://www.econ.unideb.hu
http://www.domain.edu
http://www.domain.edu
mailto:bakom@unideb.hu

6 L. Aszalós, M. Bakó

Figure 1: Triangular, square and hexagonal grids of size 4× 4

If the graph is fixed, then its colouring with minimal number of colours can
be treated as an optimization problem. It is not surprising that almost all of
the optimization method have a variant to solve colouring problems [2].

The most elementary method is the exhaustive search for a colouring. This
does not mean, that we need to try all the assignment of colours to nodes. If
a partial colouring violates any constraint, there is no reason to continue, we
can backtrack and start another colouring. Fifth chapter of [1] contains several
heuristics to speed up this search by eliminating cases which cannot lead to
solutions. This chapter contains an example where the 4-colouring of the map
of USA uses around 60 steps instead of 450, by applying most of the heuristics.

The method of minimal conflicts was introduced in [6]. To solve the 4-
colouring of USA map, this method needs about 60 steps too.

Both methods work well for colouring real world maps, but what about
colouring other type of graphs? Previously we examined random graphs, so for
us their colouring is interesting, but for the sake of reproduction and scalability
we will examine very simple graphs: grids. Although the degrees of the nodes
are much smaller than in an ordinary random graph, we hope to get interesting
results.

If the number of colours is big, then we use numbers instead of colours.
Hence a k-colouring of a graph G = 〈V, E〉 mathematically is a function c :
V → {1, . . . , k}.

The original graph colouring problem has many variants, which are actively
researched. One of them is the distance-constrained colouring problem raised
from the frequency assignment [3]. In this case given an n-tuple of integers, let
say 〈x1, x2, . . . , xn〉 and if d(u, v) = i then |c(u) − c(v)| ≥ xi, where 1 ≤ i ≤ n,
xj > xj+1 for 1 ≤ j < n, u and v ∈ V, and d is the graph-distance of the nodes.
This distance constrain is denoted by Lx1...xn in the literature. Namely at L21
colouring the nodes at distance 2 need to be different; and at adjacent nodes
the difference of the colour codes is at least 2. Figure 2 shows L1, L21 and

Distance-constrained grid colouring 7

Figure 2: L1, L21 and L321 colourings

L321 colourings of the 3× 3 square grid. On the left, two colours were enough,
because only the adjacency counts. At the centre we used seven colours, such
that the L21 constraints would be satisfied. One could think that less colours
might be enough, but no. As we shall see in the following, it is a reasonable
step to colour the central node to 1. The central node is adjacent to four nodes,
so all of them is 3, or more. These four nodes are second neighbours to each
other, so they need to be different. Therefore we need to use at least 6 colours.
The nodes in the corner are second neighbours of the central node, so none of
them could be 1. As some of them are second neighbour of each others, they
cannot be equal. We left to the reader to check the cases and prove, that 6

colour is not enough in this case. Finally on the right there is a 10-colouring,
which satisfies L321 constraints.

The theoretical results about distant-constrained colouring are surveyed in
[4, 5]. In this article we use practical view-point. In the next two section we
present the methods we use, and next we discuss our experimental results.
Finally we propose new directions.

2 Constraint satisfaction problems

Many problems can be expressed as a constraint satisfaction problem (CSP).
Here given an n-tuple of variables: 〈X1, . . . , Xn〉, the tuple of domains of the
variables 〈D1, . . . , Dn〉, and a set of constraints which are predicates—boolean
valued function of these variables.

Our task is to select values of the variables from the corresponding domains
in a such way that all the predicates become true. As the problem SAT could
be transformed into CSP, the solution of CSP is NP-hard.

The simplest solution may be gained by using the backtrack method. It

8 L. Aszalós, M. Bakó

does not use the information given in the problem, so it is usually slow. The
4-colouring of USA map takes more than 106 steps. By using variable and
value ordering heuristics (minimum remaining values, degree heuristic, least
constraining value, forward checking) we can dramatically reduce the number
of steps [1].

Many software were built for solving CSP, some of them are stand-alone,
while others are modules or libraries and enable us to include the solver in our
programs. For its simplicity we have chosen the SWI-Prolog system, and its
CLPFD library. Figure 3 contains the source of L21 constraints for the coloring
of the 3× 3 square grid.

Here in the first line we signal the system that we want to use the CLPFD
library. Next we define a new predicate (grid) which is the counterpart of the
function in Prolog. This predicate takes a number as an input and returns a
colouring L, which is a list of natural numbers. The third line denotes, that
the colouring is a 9 long list. The members of this list are our variables (from
X0 to X8). The forth line states, that these variables can have N different
values, the natural numbers from 1 to N. The last line of the source starts the
systematic search, which determines the values in the list L. The word inside
the brackets in this line (ffc) is a search strategy. The CLPFD library has five
different strategies, and this one fits our needs and aims the best. The other
lines not mentioned yet contains the constraints. As we need an L21 colouring,
in the case of adjacent variables (e.g. X0 and X1) the difference of the values
is at least 2, so we need to use the absolute value function. Moreover, as the
variables have no value at the beginning, instead of relation ≥ we need to use
the corresponding constraint #>=. In case of second neighbours we could use
constraint #\= (not equal), but for the sake of easier generation of problems,
and for the more general Lpq constraints we have used #>=, again.

Now we are ready to run this code. After loading this file we need to ask the
system: grid(6,L). The answer arrives immediately: false, denoting that
there is no solution using six colours. If we ask a 7-colouring with grid(7,L).

then the answer is one solution. If the solution is too long, the system shows
only its beginning. We can ask for the whole solution with a print statement:
grid(7,L), write(L).

We believe this example shows that in case of constraint logic programming
we only need to precisely state the problem, and the solver produces the solu-
tion. Moreover, it searches for solutions in a clever way—using the heuristics.
If there exists at least one solution, then it determines it; and if not, then after
an exhaustive search the system indicates this.

Distance-constrained grid colouring 9

:- use_module(library(clpfd)).

grid(N,L) :-

L = [X0, X1, X2, X3, X4, X5, X6, X7, X8],

L ins 1..N,

abs(X0-X1) #>= 2, abs(X0-X2) #>= 1, abs(X0-X3) #>= 2,

abs(X0-X4) #>= 1, abs(X0-X6) #>= 1, abs(X1-X2) #>= 2,

abs(X1-X3) #>= 1, abs(X1-X4) #>= 2, abs(X1-X5) #>= 1,

abs(X1-X7) #>= 1, abs(X2-X4) #>= 1, abs(X2-X5) #>= 2,

abs(X2-X8) #>= 1, abs(X3-X4) #>= 2, abs(X3-X5) #>= 1,

abs(X3-X6) #>= 2, abs(X3-X7) #>= 1, abs(X4-X5) #>= 2,

abs(X4-X6) #>= 1, abs(X4-X7) #>= 2, abs(X4-X8) #>= 1,

abs(X5-X7) #>= 1, abs(X5-X8) #>= 2, abs(X6-X7) #>= 2,

abs(X6-X8) #>= 1, abs(X7-X8) #>= 2,

labeling([ffc],L).

Figure 3: Prolog program to solve the L21-colouring of 3× 3 square grid.

3 Min-conflicts

The n-queens problem is well-known: we need to arrange n queens on a n×n

board, that no one queen can attack any of the others. This problem was a
benchmark for a long time, because it was hard to solve, since it contained
many constraints: the figures cannot be in the same row, nor in the same
column, and neither in the same diagonal. Suddenly, this problem became
easy, a 106-queens problem could be solved within seconds with the method
of minimal conflicts [6].

This method counts the violations of the constraints (conflict), and selects
randomly chosen variables with such values for which the number of conflict
is minimal. If the solutions are distributed uniformly within the search space,
then this method quickly finds a solution, where the number of conflicts is
zero.

We wrote in the introduction, that at map colouring problems this method
works well. At the usual implementation the starting state is random, i.e. all
nodes are assigned a colour randomly and independently from the colours of
the other nodes. Next the program randomly select nodes and tries to reduce
the number of conflict by recolouring the selected node.

The following question arises: does it works for distance-constrained colour-
ing problems? The first column—with head random/node—of Table 1 shows,

10 L. Aszalós, M. Bakó

that this method works poorly except for a few cases. In most of the cases it
cannot solve the problem during hundreds of tests. The numbers in the rubrics
denote the rate of the cases when the starting-state and the final-state—after
the optimization—satisfied all the constraints.

Naturally the probability of randomly generating a solution is negligible. But
the recolouring of the nodes according to the conflicts does not give solution, by
our experiments. So it is worth to change the method of recolouring. Originally
we recoloured only one node. At the variant we could recolour the whole
neighbourhood. For this, at first we uncolour the selected node, and next we
check all of its neighbours—if we have Lx1...xk colourings, then all nodes whose
distance is k or less from the selected node—, and if the colour of this neighbour
can be decreased (without introducing conflicts), then we decrease. Finally we
choose a colour for the selected node, for which the number of conflicts is
minimal. If this whole step increases the number of conflicts, we restore the
previous state.

[6] uses the 3-colouring of graphs as an example, and presents a method
(Brelaz algorithm) which gives a good starting state. This method uses several
considerations, which could be known from solving CSP.

The method begins with an uncoloured graph, and chooses a central node
(with the most neighbour), and assigns the minimal colour to it. Next, the
method repeatedly chooses an uncoloured node which has the minimum num-
ber of conflict-free (possible) colours. In case of a tie the maximal number
of uncoloured neighbours determines the winner, or if this gives a tie again,
then we can choose randomly from the best nodes. The selected node gets its
minimal conflict-free colour.

The last columns in Table 1 denotes the minimal number of colours needed
with this method without any constraint on number of colours and hence
without conflicts. We typeset with bold the cases when it gives the chromatic
number. As in this method a tie is very common, randomness has an important
effect. The last columns show the rate of achieving this colouring.

4 Discussion

The second column (with head random/neighbour) of Table 1 contains bigger
numbers than the preceding column. Hence the neighbour recolouring is ad-
vanced according to node recolouring. Unfortunately these numbers are small,
even at bigger grids.

The Brelaz algorithm provides a compact colouring, i.e. the colours are very

Distance-constrained grid colouring 11

random random Brelaz
size dist. node neighbour neighbour c. r.

square grid
3× 3 L21 0.00→0.51 0.00→0.64 1.00→1.00 7 1.00

L321 0.00→0.19 0.00→0.64 0.70→0.80 11 0.31
4× 4 L21 0.00→0.04 0.00→0.07 0.81→0.81 7 0.67

L321 0.00→0.01 0.00→0.06 0.18→0.18 13 0.15
5× 5 L21 0.00→0.00 0.00→0.002 0.00→0.00 8 0.21

L321 0.00→0.00 0.00→0.002 0.00→0.00 14 0.32

triangular grid
3× 3 L21 0.00→0.00 0.00→0.011 0.00→0.00 9 0.47

L321 0.00→0.00 0.00→0.002 0.00→0.18 17 0.05
4× 4 L21 0.00→0.00 0.00→0.017 0.00→0.00 11 1.00

L321 0.00→0.00 0.00→0.00 0.00→0.00 21 1.00

hexagon grid
3× 3 L21 0.00→0.06 0.00→0.13 0.00→0.00 6 1.00

L321 0.00→0.25 0.00→0.41 0.33→0.33 9 0.32
4× 4 L21 0.00→0.03 0.00→0.11 0.05→0.14 6 0.10

L321 0.00→0.02 0.00→0.11 0.39→0.43 10 0.35
5× 5 L21 0.00→0.00 0.00→0.01 0.32→0.32 6 0.26

L321 0.00→0.00 0.00→0.02 0.00→0.00 10 0.23

Table 1: Success rate of the different min-conflicts variants. The column-heads
denote the construction of the starting state (random/Brelaz) and the type of
recolouring (node/neighbour). The last columns show the number of colours
with Brelaz algorithm (c), and the rate of this colouring (r).

close to each other. There is some chance that the colouring will only use a
chromatic number of colours, but it makes it almost impossible to recolour
the nodes. Hence we can only see a few improvements in the third column of
Table 1.

The distance-constrained colouring is a typical combinatorial optimization
problem, at least in such sense that it has incredibly numerous local minima,
hence the local optimization methods do not perform well, as the table shows.
In case of optimization methods using crossover and mutation there is very
little chance that by combining two independent individuals we get better
individual with less conflicts. By our experiments the methods based on crowd
(particle swarm optimization, harmony search, etc.) gave acceptable solutions

12 L. Aszalós, M. Bakó

only for small grids, for bigger problem the crowd did not containe enough
individuals to cope with the huge number of different colourings.

The big drawback of the optimization methods is that at the best case sce-
nario it can only satisfy the existence of a k-colouring of the graph. Otherwise
if the optimization method does not give a k-colouring in a fixed time, we
cannot state, that for this k there does not exist a k-colouring.

The backtrack method gives more in this sense. It looks through the whole
state space of the problem systematically. If this search ends without a so-
lution, we can be sure, that the problem has no solution, i.e. the graph has
no suitable k-colouring for a given k. The backtrack search in a strict sense
is not an exhaustive search, because it does not check all the possible states.
But it does not omit any state that can be a solution. Of course the heuristics
are very important—because they can help to increase the number of states
omitted, even in several orders of magnitude—as they help to discover, that a
state is hopeless, i.e. cannot be a solution.

At finding the L21-colouring of the 10 × 10 hexagonal grid the SWI-Prolog
with the default setup found a solution in 311.2 seconds, and with the heuristics
ffc even 0.07 seconds were enough. Of course as the grid is bigger, the rate
of solving times becomes bigger, too.

The modern CPS systems contain many heuristics, so we can use them. If we
only have a few colours, then the minimum remaining values’ heuristic forces
the backtrack many times, because the actual state violates some constraint.
If we turn back from the blind alley early, then we perform faster, than if we
go up to the walls.

As the number of colours usable at colouring increases this heuristic becomes
weaker, it takes more steps and more hypotheses to determine unequivocally
the colour of a node, or realize the blind alley at searching. In case of a 5× 5

square grid we need to colour 25 nodes. To prove that 25 colours are not enough
for the L4321-colouring, the state space has 2525 nodes. By using heuristics we
can omit most of these states, but a huge number of them remain to be checked,
and this takes a lot of time.

We experimented with symmetry-breaking. As we are interested in the exis-
tence of the solution, and we need maximum one solution to present it, we can
omit the rotated and mirrored solutions. So we can add hypothesis that the
central node’s colour is a low number (less or equal to the half of the maximal
colour), among its neighbours the north one has the minimum value, etc. It
is surprising, that finding a solution usually takes more time with this type
of acceleration, than without it; the new constraints altered the direction of
the search. But the exhaustive search became faster as we reduced the state

Distance-constrained grid colouring 13

size L21 L321 L4321
3× 3 6:0.023 7:0.002 9: 0.040 10: 0.016 17: 1.574 18:0.544
4× 4 6:0.033 7:0.012 11: 0.443 12: 0.017 22:179.563 23:6.235
5× 5 6:0.051 7:0.023 11: 0.622 12: 0.036 25: ? 26:0.162
10× 10 6:0.081 7:0.048 11: 1.407 12: 0.090 31: ? 32:2.418
20× 20 6:0.183 7:0.187 11: 2.022 12: 0.354 35: ? 36:1.679
30× 30 6:0.357 7:0.468 11: 2.971 12: 0.885 38: ? 39:5.392
100× 100 6:3.398 7:8.009 11:21.673 12:11.819 -: - -: -

Table 2: Solving time: constraint logic programming for square grids

size L21 L321 L4321
3× 3 7:0.044 8:0.048 14: 1.147 15:0.461 21:9.544 22:3.179
4× 4 8:0.213 9:0.016 16:12.770 17:0.091 26: ? 27:0.167
5× 5 8:0.280 9:0.027 17:39.704 18:0.062 29: ? 30:2.511
10× 10 8:0.440 9:0.071 23: ? 24:0.169 41: ? 41:0.421
20× 20 8:0.727 9:0.282 23: ? 24:1.131 44: ? 45:2.763
30× 30 8:0.143 9:0.619 25: ? 26:4.685 46: ? 47:9.072

Table 3: Solving time: constraint logic programming for triangle grids

space to its one eighth in the case of square grids. For example 946 seconds
were enough to show that there is no L4321-colouring of 5× 5 square grid with
25 colours. This can extend our barriers, but the cases with many colours are
hopeless with this method.

The Tables 2–4 shows the time needed to prove that for number k there is
no k-colouring; and what the search time for a n-colouring is. One cell contains
k with proof-time, and n with search-time. If k+ 1 = n, then number n is the
chromatic number, because we proved that less colours are not enough.

At some cases—denoted with question mark—the time needed for the proof
is not known. If k is much smaller than the chromatic number of the graph,
then it is easier to violate the constraints, or with other words it is harder to
satisfy them. So we got into contradiction much earlier, and even the search
space is smaller, and we prove the uncolourability much faster. If n is slightly
bigger than the chromatic number, the search time increases as n increases.
As we have more and more opportunities to assign a colour to a node, it takes
more time to check more cases. If n is much larger than the chromatic number,

14 L. Aszalós, M. Bakó

size L21 L321 L4321
3× 3 4:0.009 5:0.009 8:0.022 9:0.009 13: 0.135 14:0.111
4× 4 5:0.013 6:0.011 9:0.126 10:0.012 17: 5.710 18:6.724
5× 5 5:0.015 6:0.010 9:0.114 10:0.014 19:71.029 20:1.251
10× 10 5:0.034 6:0.046 9:1.185 10:0.226 24: ? 25:4.094
20× 20 5:0.152 6:0.080 9:2.349 10:1.335 29: ? 30:1.212
30× 30 5:0.162 6:0.335 9:2.603 10:4.440 31: ? 32:4.431

Table 4: Solving time: constraint logic programming for hexagon grids

we need less backtracking because more numbers allow satisfying constraints
easily, but in the case of backtracking we need to check more cases. By the
experiments these two effects compensate each other, and the search times are
similar.

For big grids the source with constrains can even take megabytes. Interest-
ing, that for grids with small chromatic number the solving of the problem
takes less time than loading into memory and compiling. In the case of L4321-
colouring of the 100× 100 we did not have enough memory to run the search.

5 Conclusion and future work

In this article we have examined two methods for solving distance-constrained
colouring. As colouring in general is a hard task, it was expected that there
would be no royal road. The performance of constraint (logic) programming
is good for graphs with a small chromatic number. If the chromatic number is
high, we could get a solution within a short period of time for a nearby num-
ber, but we cannot be sure whether this number is equal with the chromatic
number, or not. If there are too many constraints, then the solver cannot solve
the problem, due to the shortage of the memory.

Although the method of minimal conflicts has many nice results for solv-
ing optimization problems, we were not able to apply it for the distance-
constrained colouring. The method needs more fine-tuning, to make bigger
realignment of colours in one optimization step.

We are planning to test other optimization methods on this type of problems,
in hope of finding a more effective method.

The results of our experiments raise some questions. As Table 2 and 4 shows
in case of square and hexagon grids the chromatic number for colouring L21 and

Distance-constrained grid colouring 15

L321 is constant over a minimal size. Table 3 shows constant chromatic numbers
for L21-colourings. Does there exist a constant value in this case for L321 or
not? Moreover are there constant values for L4321-colourings for these kind of
grids? The tables in this column contain many question marks, denoting that
the exhaustive search needs a long time (and we had no patience, to wait for
the exact time). Our experiments are not enough to answer this question now.

It is obvious, that if we have a colouring of an n × m grid then we can
truncate from it a colouring of a k × l grid, where k ≤ n and l ≤ m. Can
we repeat the first row and column of a 608 different L21-colouring of the
3× 3 square grid to get the L21-colouring of the 4× 4 square grid? Or in more
general: can we rotate, mirror or translate one colouring of a small grid, or
combine several colourings of the same small grid to produce colouring of a
bigger grid?

Does there exist a circular colouring of the square grids (by treating them
as a torus), which can be extended into a colouring of an infinite grid? In this
case are the chromatic numbers different, or not?

Acknowledgements

Many thanks for Gábor Halász for valuable questions and remarks.

References

[1] S. J. Russel, P. Norvig, Artificial intelligence: a modern approach Pearson 2002.⇒6, 8
[2] P. Galinier, J. K. Hao, Hybrid evolutionary algorithms for graph coloring.

J. Comb. Optim., 3, 4 (1998) 379–397. ⇒5
[3] W. K. Hale, Frequency assignment: Theory and applications. Proceedings of the

IEEE 68, 12 (1980) 1497–1514. ⇒6
[4] P. Panigrahi, A survey on radio k-colorings of graphs AKCE Int. J. Graphs Comb.

6, 1 (2009) 161. ⇒7
[5] T. Calamoneri, The L(h, k)-labelling problem: A survey and annotated bibliog-

raphy. The Computer Journal 49, 5 (2006) 585–608. ⇒7
[6] S. Minton, et al. Minimizing conflicts: a heuristic repair method for constraint

satisfaction and scheduling problems. Artificial Intelligence 58.1 1992, 161–205.⇒6, 9, 10

Received: January 31, 2016 • Revised: March 8, 2016

https://www.cs.berkeley.edu/~russell/
http://norvig.com/
http://www.mypearsonstore.com/bookstore/artificial-intelligence-a-modern-approach-9780136042594?xid=PSED
http://www.polymtl.ca/recherche/rc/en/professeurs/details.php?NoProf=252
http://www.info.univ-angers.fr/pub/hao/
https://www.researchgate.net/profile/Jin-Kao_Hao/publication/225214687_Hybrid_Evolutionary_Algorithms_for_Graph_Coloring/links/0912f51080a485d52d000000.pdf
http://www.springer.com/mathematics/journal/10878
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1456167
http://ieeexplore.ieee.org/servlet/opac?punumber=5
http://www.iitkgp.ac.in/fac-profiles/showprofile.php?empcode=bTmdX
http://www.akcejournal.org/contents/vol6no1/pdf%20images/18.pdf
http://www.journals.elsevier.com/akce-international-journal-of-graphs-and-combinatorics/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.9684&rep=rep1&type=pdf
http://comjnl.oxfordjournals.org/
http://www.dcs.gla.ac.uk/~pat/cpM/papers/mintonAIJ.pdf
http://www.journals.elsevier.com/artificial-intelligence/

	1 Introduction
	2 Constraint satisfaction problems
	3 Min-conflicts
	4 Discussion
	5 Conclusion and future work

