
Acta Univ. Sapientiae, Informatica 8, 1 (2016) 41–62

DOI: 10.1515/ausi-2016-0003

Contralog: a Prolog conform

forward-chaining environment and its

application for dynamic programming and

natural language parsing

Imre KILIÁN
University of Dunaújváros

Dunaújváros, Hungary
email: kilian.imre@uniduna.hu

Abstract. The backward-chaining inference strategy of Prolog is ineffi-
cient for a number of problems. The article proposes Contralog: a Prolog-
conform, forward-chaining language and an inference engine that is imple-
mented as a preprocessor-compiler to Prolog. The target model is Prolog,
which ensures mutual switching from Contralog to Prolog and back. The
Contralog compiler is implemented using Prolog’s de facto standardized
macro expansion capability. The article goes into details regarding the
target model.

We introduce first a simple application example for Contralog. Then
the next section shows how a recursive definition of some problems is exe-
cuted by their Contralog definition automatically in a dynamic program-
ming way. Two examples, the well-known matrix chain multiplication
problem and the Warshall algorithm are shown here. After this, the in-
ferential target model of Prolog/Contralog programs is introduced, and
the possibility for implementing the ReALIS natural language parsing
technology is described relying heavily on Contralog’s forward chaining
inference engine. Finally the article also discusses some practical ques-
tions of Contralog program development.

Computing Classification System 1998: Computing methodologies–Logic programming
and answer set programming
Mathematics Subject Classification 2010: 68T27
Key words and phrases: logic programming, mechanical theorem proving, forward chain-
ing, dynamic programming, natural language parsing

41

http://www.uniduna.hu
http://www.uniduna.hu
mailto:kilian.imre@uniduna.hu

42 Imre Kilián

1 Pro-Contra-Log: a two way street for inference

Robinson’s resolution principle proved to be strong enough to build a whole
language, and quite a programming school upon it. The backward chaining
resolution strategy, together with the left to right and top down rule firing
strategies have provided the Prolog language with well known, easily per-
ceivable operational semantics, which in addition, resemble the traditional
sequential languages, with the extra flavor of backtracking added [2] .

The other direction however, the forward chaining strategy has never opened
such a clear way to follow, though several attempts were made. Though their
motivations must have been quite different, spreadsheets, the event driven
working mechanism of modern graphical user interfaces, and some CASE tools
follow seemingly similar ways.

The most important reason for Prolog’s success, as a programming lan-
guage, could be that its resolution strategy is somehow an extension of the
old-fashioned and well-known procedure-call semantics. At the same time, as a
theorem prover, we consider it rather weak. Beside many factors, the deepest
reason of this might be, that its strategy to manage implications contradicts
common human sense. Instead of deducing new facts from existing facts in the
direct way, Prolog tries to prove certain facts by applying implications in the
inverse direction, i.e. from consequence to conditions.

On the other hand, similarly to the ”divide et impera” strategy of algorith-
mic thinking, Prolog’s strategy may also be inefficient. Proven facts are not
stored; therefore if a similar fact should be proved later, then the inferential
operations are performed again, sometimes causing thereby a significant loss
of performance.

Since Prolog, as a language appeared and has proven its strength to certain
problems, the need of integrating it with other programming languages and
other software tools, was always a burning issue. Similarily, the integration
with another logical programming language, i.e. with a language that imple-
ments another subset or another inference strategy for the same subset of logic,
remained only a theoretical possibility.

The present article proposes a programmer controlled tight integration of the
two approaches. Tight integration means that the two languages are syntacti-
cally conform, their target models are compatible, and their software packages
can be integrated with each other. The integration is called programmer con-
trolled, because by means of declarations and/or modularization the program-
mer is able and is supposed to influence and control the actual code generation
strategy for the different code segments.

Pro-Contra-Log 43

The programming languages in the present proposal are Prolog and its coun-
terpart: Contralog. They are syntactically compatible, and their declarative
semantics are the same. Their procedural semantics however, since they im-
plement different resolution strategies, are different, and they also implement
different non-logical controls. Since Contralog’s target model is Prolog, a trans-
lator program is implemented, which compiles Contralog modules to Prolog.
The connection between the two segments is implemented through exports
and imports, and it is triggered in a programmer defined way. The common
Prolog target model makes the transition between the two segments very easy,
and it also allows the easy use of Prolog built-in predicates from Contralog
clauses.

Contralog, as an extension of Prolog, maps Horn-clauses to a Prolog code
so, that an incremental compiler transforms Contralog rules to Prolog. The
resulting code thereby can be executed in a normal Prolog runtime environ-
ment. This also ensures that Contralog and Prolog codes can be mixed and
invoked from each other. This composite system is called Pro-Contra-Log, or
simply PC-Log.

2 The Contralog target model

In the Contralog runtime-model everything works in the inverse way than we
are familiar with:

• Inference starts not by goals, but by facts.

• If there is a rule with a condition matching the new fact, then the rest of
the condition literals are also checked. If we could already have proven
the conditions earlier, the rule is told to fire. In such case the conclusion-
fact is told to have been inferred.

• The term: recently proven conclusion means a new resolvent fact. This
is stored in the blackboard (in dynamic Prolog clauses), and we always
continue inferencing using this fact.

• Inference stops when goal statements are reached. These don’t have any
consequence side, thus inference operations need not be continued.

• Upon reaching a goal, or when by any reason, inference cannot be con-
tinued along the actual chain, the system backtracks and searches for an
earlier open alternative in the inference chain.

44 Imre Kilián

The Prolog-Contralog transition can be activated in the following ways:

• In the precondition side of Contralog rules, literal ”{}/1” results an
immediate call to a Prolog goal.

• Imports in Contralog are those facts which are taken from somewhere
else. Such facts start an inference chain, therefore Contralog imports are
mapped to Prolog exports of the corresponding firing rules.

• On the other hand, Contralog exports are mapped to firing predicates of
freshly deduced facts. Those predicates are either imported from another
Contralog module, thus they are defined there, or simply are imported
from another Prolog module of the runtime environment. Contralog ex-
ports become Prolog imports (even though Prolog standard does not
know this lingual construct).

The basic problem in forward chaining inference is that a rule might refer to
more than a single condition. In case when not all of them can be satisfied,
we must wait until the rest becomes true, and the rule can be fired only after-
wards. We are solving this by storing the inferred facts in dynamic predicates.
Furthermore, for each Contralog condition literal we construct a Prolog rule
that checks if the other preconditions are already satisfied.

Let us regard the following Contralog rule, as a simple example!

a:-b, c, d.

If b or c or d conditions have already been satisfied, then the resulting facts
are stored in the corresponding b/0, or c/0 or d/0 dynamic predicates. Besides
those, we map each precondition literal to a fire NAME and a test NAME Prolog
predicate.

The fire FACT Prolog calls test, whether the rest of conditions (each but
NAME) have already been inferred. If they have, the rule triggers the evalua-
tion of the consequence part.

The store FACT Prolog calls serve to store the recently inferred fact, and
finally they call the firing predicate. The actual implementation takes into
account the declarations for fact withdrawal, and performs the necessary ac-
tions. For predicates blocking the resolution chain, the call of firing the rule is
missing.

Pro-Contra-Log 45

In the case above, the following Prolog code is constructed:

fire_b:- assert(b), test_b.

fire_c:- assert(c), test_c.

fire_d:- assert(d), test_d.

test_b:- c, d, fire_a.

test_c:- b, d, fire_a.

test_d:- b, c, fire_a.

2.1 Backtracking

As it was already hinted, this target model uses backtracking strategy for
searching, like Prolog itself does. Upon entering a new Contralog fact, the
inference process produces newer and newer consequence facts. During this
process there are some choice-points. If the straight line of inference described
above cannot be followed further, we say, the evaluation has reached a dead
end. In case of a dead end, the inference engine looks back in the evalua-
tion stack, searches for the last open choice-point, takes the next alternative
solution, and continues the interpretation from this point.

The following cases may produce a choice-point:

• If a condition literal is referred to by more than a single Contralog rule,
then a Prolog definition is constructed consisting of the same number of
Prolog fire rules. Their ordering to follow is the textual ordering.

• If a condition literal is satisfied several times, we store the same number
of dynamic facts – provided they are not in the scope of the non logical
declarations described later.

Trying new open choice points is called backtracking. Finding dead-ends in
the inference chain may happen in several ways:

• If any condition does not hold in the given time. This may be either
the failure of a Contralog condition, or, using the {}/1 construct, any
immediate Prolog call.

• If, upon reaching a Contralog goal, we force the system to backtrack by
any Prolog means.

46 Imre Kilián

2.2 Facts and goals

Facts and goals play somewhat an opposite role in Contralog, than in Prolog.
Facts are basic information sources, which start the data driven resolution,
therefore they are compiled to goals.
fact. a Contralog fact.

:-fire fact. a Prolog goal.

Many Prolog systems do not handle the presence of several logical goals cor-
rectly, i.e. in case one of them fails, they do not call the next one. Because of
this the actual implementation constructs a single predicate (goal/0) that in-
vokes the firing predicate of each fact in the current module in an alternative se-
quence:

fact1. a Contralog fact1.

fact2. a Contralog fact2.

The example above generates the following predicate:

goal:-fire_fact1.

goal:-fire_fact2.

2.3 Interface elements

Similarly to the overall opposite nature of Contralog, interfaces in the compiled
Prolog code also play an opposite role. For the sake of explanation the interface
is predicate-based, and exports but also imports(!) are allowed.

A Contralog export means a consequence part of a clause, which is shared
with the outside world. Therefore the corresponding firing Prolog call must
be implemented outside of the module and is thus imported. For convenience
the generated predicate name is slightly different from the firing predicate.
Contralog imports mean some input of more basic data, which, seen from the
view of the target model, would be again considered to be calls from outside,
which transfer the information, and launch the corresponding forward chaining
inference process. This means, the corresponding fire auxiliary predicate is
implemented inside, and thus must be exported.

Pro-Contra-Log 47

2.4 Non-logical means to control inference

In order to control the overwhelming amount of consequence facts, the pure
logic language must be provided with means to control. Similarly to Prolog,
for the sake of practical programming, Contralog introduces some non-logical
means to influence the resolutional strategy. The language therefore imple-
ments certain declarational forms for this purpose.

In each target module a predicate (clean/0) is generated that cleans the
module-specific part of the blackboard (the dynamically generated facts) com-
pletely.

A predicate P is told to block the inference chain, if, whenever any successful
application of resolution steps yields a fact p, matching P, then the fact p does
not cause to search for matching conditions. That is, though its immediate
consequences are not evaluated, the new fact still remains available for further
resolution. In such a case the new fact is stored in the blackboard, but the
corresponding firing predicate is not invoked. Such an operation is performed
for predicates denoted by the :-lazy NAME/ARITY. declaration.

A predicate P is told to withdraw its earlier results, if, whenever any success-
ful application of resolution steps yields a fact p, matching P, then some, or
all of earlier resolved p1,...,pn facts, all matching P, are excluded from further
resolution. In Contralog the following withdrawal schemes are implemented.

• Full withdrawal. The predicate P withdraws all of its earlier results. The
behavior is similar to that of a normal global variable, that is upon infer-
ring certain facts, other facts with the same signature are deleted from
the blackboard. To reach such effect the declaration :-var NAME/ARITY

can be used.

• Key controlled withdrawal. Certain arguments of the predicate are told
keys. The predicate P withdraws only those earlier results, whose keys
are matching those of the recently inferred fact, p. (The behavior is
similar to that of a table in a relational database, where unique keys are
defined, i.e. elements with same keys are simply overwritten.) This can be
reached by the :-key(NAME(KEYVECTOR)) declaration, where NAME is
the name of the predicate, KEYVECTOR is a list of argument patterns.
Pattern ”+” in KEYVECTOR denotes that the argument belongs to a
(composite) key, pattern ”–” denotes the opposite.

48 Imre Kilián

3 Contralog programming examples

3.1 Pythagoras’ triads

Generating Pythagoras’ triads can be among the first examples of beginners’
Prolog courses. Let’s see, how it works with Contralog. Peano’s axiom is ex-
pressed by a predicate of two clauses, similarly to Prolog:

natural(1).

natural(X):- natural(X1), {X is X1+1}.

A Contralog recursion may also start an endless inference chain: stating
the first fact launches the rule application that launches it again and again.
This can be avoided by placing the recursive clause as the last among the
referring clauses. This means when natural/1 fires, each other firing procedure
attached to natural/1 is called before the rule above. Among these, those
procedures which generate Pythagoras’ triads are also fired. Firing natural/1

for its own recursive rule occurs only when the generated triads do not satisfy
Pythagoras’ condition, or, when upon finding a perfect triad, the user asks for
a new result, thus forcing the system to backtrack.

One feasible strategy to generate integer pairs of a quarter-plane is to visit
them in a diagonal way. For one diagonal, the sum of its x and y coordinates is
invariant. (For convenience we allow here the X=0 value too.) The Contralog
predicate, implementing this, is the following:

natural2(0,SUM,SUM):- natural(SUM).

natural2(X,Y,SUM):-

natural2(X1,Y1,SUM),

{X1<SUM, X is X1+1, Y is Y1-1, X<Y}.

Predicate natural/1 produces the invariant sum of both (X and Y) coor-
dinates. This, with X=0 value, also gives the first integer pair. The sum is
passed on through the third parameter of natural2/3. Given the actual pair,
the recursive second clause takes care to produce the next pair. Endless in-
ference is blocked by referring to natural2/3 in another predicate: it is also
a precondition in predicate natural3/4 that generates integer triads. On the
other hand the arithmetical tests in natural/2 ensure that numbers remain
not only in the given quarter-plane (X1<SUM), but also in an eighth-plane
(X<Y).

Visiting integer triads happens slightly differently. The last two (Y and
Z) coordinates are generated by natural2/3, but the first coordinate (X) is

Pro-Contra-Log 49

generated using the (0<X, X<Y) conditions, by a simple scanning of the (0;Y)
integer range. Conditions (X>0,Y>0,Z>0) allow to search only in an eighth
of the three-dimensional space, while (X<Y<Z) conditions part it to halves
twice further on. A 32-fold reduction of the total searching space is a significant
result in time, while we don’t lose any characteristic results.

natural3(X,Y,Z,SUMXZ):-

natural2(Y,Z,SUMXZ), {X is Y-1, X>0}.

natural3(X,Y,Z,SUMXZ):-

natural3(X1,Y,Z,SUMXZ), {X is X1-1, X>0}.

Once we can generate integer triads, checking for Pythagoras’ triads is an
easy job by the following clause:

pyth3(X,Y,Z):-

natural3(X,Y,Z,_),

{SUM2 is X*X+Y*Y, SUM2 is Z*Z}.

There are several possibilities to make this program run:

• The most suitable way to start the program is to call :-p3:goal., which
is an automatically generated procedure in module p3. But if we leave
the clause above in the present implicational form so, that no clause
refers to pyth3/3 in the condition side, then a reference is generated to
its firing predicate, which remains unsatisfied, thus we get an undefined
procedure Prolog error. If we declare :-export([pyth3/3])., then, in-
stead of a firing predicate, the Contralog translator generates a call to
the Contralog-exported predicate exp pyth3/3. For this we must pro-
vide a testing environment, a module to use our original module, and to
define the missing predicate somehow like the following:

exp_pyth3(X,Y,Z):-

write([X-Y-Z]), nl.

• If we call thereby a simple goal, then it will generate triads, but for the
first triad, matching Pythagoras’ condition, the inference will stop. The
generated results are displayed by the exp pyth3/3 predicate above. To
get subsequent results the system must be forced to backtrack by the
following way: :-p3:goal, fail., or simply by pressing ”;” in the SWI-
Prolog environment.

50 Imre Kilián

• If we declare :-lazy pyth/3., and we make the system backtrack, then
it will generate Pythagoras’ triads in and endless loop and it will collect
the results in dynamic predicate pyth3/3, until some system limit is
reached.

If we do all this, except the lazy declaration, then we get the first famil-
iar result, and if – in the SWI-Prolog environment – we force the system to
backtrack, than we may also get the rest of them.

?- p3:goal.

[3-4-5]

true ;

[6-8-10]

true ;

[5-12-13]

true ;

[9-12-15]

true

3.2 Dynamic programming: Optimization of matrix chain mul-
tiplication

Matrix chain multiplication is a typical example for dynamic programming
[1]. Matrix multiplication is an associative, but not commutative operation.
The actual parenthesization, however, influences the efficiency of the entire
operation considerably.

When trying to find the optimal parenthesization, the classical ”divide et
impera” approach leads to an exponential time complexity, while the data
driven dynamic solution remains polynomial. The reason of the combinatorial
explosion is that ”divide et impera” divides the problem two (or sometimes
more) parts, which are presumed to be independent from each other. That is,
a solution of one part cannot overlap with the solution of any other part. The
approach may work even so, but in such cases it forgets the corresponding
sub-results, and calculates them again and again multiple times. This causes
the loss of efficiency.

The dynamic solution uses a triangle-matrix to store the intermediate re-
sults. One element, m(i,j) stores the optimal number of scalar multiplications
necessary to compute the i to j (i<=j) subsection of the entire chain. For single
element subchains the following supposition holds obviously.
m(i, i) = 0

Pro-Contra-Log 51

For longer subchains (when j>i), the m(i, j) optimum value can be calcu-
lated by breaking the chain at index k (i<=k<=j), and reducing the problem
to the optimums of the left part (m(i,k)) and the right part (m(k+1,j)). Opti-
mizing means to find the k index when the derived sum is the cheapest. This
is described by the following equation:

m[i, j] = mini<=k<j(m[i, k] +m[k+ 1, j] + row(i) ∗ column(k) ∗ column(j))

Here rows and columns denote the horizontal and vertical size of the i-th
matrix in the chain. The algorithm uses another matrix c(i, j), to store the
index of optimal parenthesization in the i to j subchain. This is also called
cutting matrix.

If we try to program the recursive equation above by a recursive computer
program, then the solution will follow the ”divide et impera” principle. This is
also the case for Prolog predicates. We have already hinted that the Contralog
solution turns the original backward-chaining interpretation of Prolog to the
opposite: data items, as already proven facts, are stored in dynamic predicates,
and implications are interpreted in their natural way: from precondition to
conclusion. We expect Contralog to allow the programs to be as simple, as the
equation above, while it can also manage all the technical details of forward-
chaining and/or dynamic programming.

The m(i, j) and c(i, j) matrices are stored in a single Contralog predicate
matrix(I,J,M,C). Parameters I and J are matrix indices, while M and C are
the values of the optimum and cutting matrices.

At the start of the algorithm, the m(i, i) = 0 initializations are performed
by the following Contralog code.

size(6).

matrix(SIZE,SIZE,0,0):-

size(SIZ), {SIZE is SIZ-1}.

matrix(I,I,X,C):-

matrix(I0,I0,X,C), {I is I0-1, I>=0}.

The role of asserting the fact size(6) is to launch an inference burst out.
This, in the first step asserts only the matrix(0,0,0,0) fact, but in the follow-
ing steps all consecutive m(i, i) values are generated in a cycle. Filling up the
lowest and simplest layer (the m(i, i) = 0 values) itself is enough to start infer-
ence yielding the optimum for more complicated cases (longer matrix chains).

52 Imre Kilián

This is done by help of the following Contralog clause.

matrix(I,J,X,J1):-

matrix(I,J1,Y,_), matrix(I1,J,Z,_),

{I1 =:= J1+1, mxyz(I,I1,J,MULT),

X is Y+Z+MULT,

(matrix(I,J,X0,_)->X<X0;

true)}.

The curly bracketed part of the clause is a direct Prolog call. We use this to
perform simple arithmetic operations. The Prolog call mxyz(I,K,J,M) cal-
culates the number of scalar multiplications necessary to multiply the re-
sult of the optimized (i,k) and (k+1,c) matrix subchain products so, that
M = row(i) ∗ column(k) ∗ column(j) holds.

The predicate says: if there are two consecutive subchains, then a scalar
multiplication number can be calculated for their concatenated chain. Then,
according to the principle of gradual approximation, if we have found a value
for the concatenated chain that is cheaper than we stored until now, then the
more expensive value is replaced by the cheaper one.

The replacement of old optimum value with the new, cheaper one is solved
by Contralog’s :-key(matrix(+,+,-,-)). declaration. This declares the first
two parameters (matrix indices) as keys, i.e. for a given (i,j) index pair only a
single clause is allowed. The actual retracting of the old clause and asserting
of the new one is done by the generated Prolog code in the background.

The Contralog program can be started by calling :-goal. The program will
fail, which means there is no goal in the program, and there is no other, untried
way for inference either. The result is the generated content of the matrix/4

predicate. To display this, we must implement a simple cyclic procedure. Tak-
ing the example in [1], we get the following result. The first triangle is that of
optimums, the latter is the cutting matrix. For a (30x35, 35x15, 15x5, 5x10,
10x20, 20x25) matrix chain, the total number of necessary multiplications can
be read in the top-leftmost corner.

[15125,10500,5375,3500,5000,0]

[11875,7125,2500,1000,0]

[9375,4375,750,0]

[7875,2625,0]

[15750,0]

[0]

[2,2,2,4,4,0]

Pro-Contra-Log 53

[2,2,2,3,0]

[2,2,2,0]

[0,1,0]

[0,0]

[0]

When examining the actual order of matrix/4 facts, we can observe another
interesting feature of Contralog. Namely: the inference is eager, or depth-
first, like Prolog itself. An implication fires immediately as soon as the last
precondition item has arrived. Contralog implements therefore a bottom-up
(data-driven) and depth-first strategy for discovering the resolution graph of
the problem. In our case this means that the lowest layer (m(i, i) elements)
could not have been generated yet, when the first inference steps are already
done. This is because the first rule application to calculate the optimum for
a chain of two matrices, (the 3-rd matrix/4 clause) is performed as soon as
the first two consecutive matrix-subchains (m(5, 5) and m(4, 4)) are already
generated.

3.3 Dynamic programming: Floyd-Warshall algorithm

Similarly to matrix chain multiplication, the problem of shortest paths in
weighted graphs can also be solved quicker by dynamic programming approach
than by recoursive programming. According to this principle we first give the
recoursive definition of the problem, and then we create the sequential program
to deliver partial results in a bottom-up manner. In the following example we
shall show that if we transcribe the recoursive definition to Horn-clauses – or
to Contralog, then Contralog’s execution mechanism automatically generates
the results of dynamic programming.

In the recoursive definition of the problem dkij denotes the shortest path
between vertices i-j so, that intermediate vertices can be chosen only from
the first k vertices of the graph (the actual ordering of vertices is irrelevant).
The trivial alternative of the recoursion is case k = 0, when no intermediate
vertices may be used. In such a case the shortest path is equivalent to the
corresponding i-j item of the graph’s weight matrix. Otherwise the shortest
path using at longest the first k vertices, is equal to the shortest path using
k-1 vertices, or it contains vertex k.
d0ij = wij

dkij = min(d
k−1
ij , dk−1ik + dk−1kj)

54 Imre Kilián

The Horn-clause (Contralog) transcription of the definition above is the
following:

wm(0,I,J,W,SIZE):- w(LL),

{length(LL,SIZE),between(1,SIZE,I),

nth1(I,LL,L), between(1,SIZE,J),

nth1(J,L,W)}.

wm(K,I,J,W,S):- wm(K1,I,J,K1IJ,S),

wm(K1,I,K,K1IK,S),wm(K1,K,J,K1KJ,S),

{K is K1+1, K1=<S},

{W is min(K1IJ, K1IK+K1KJ)}.

Parameters K,I and J in definition wm/5 are obvious. Here, W means the
functions value dkij, while SIZE is the size of the graph (the number of its
vertices). This parameter is passed along in order not be calculated it again
and again at each step. Definition wm/5 is the three dimensional matrix itself
that consists of dynamic facts. Instead of a sequential cycle, the Contralog
execution it is built up by the forward chaining inference mechanism.

The clue of the algorithm lies in the second statement. The three wm/5

conditions refer to the three dkij values in the arguments of min function.
Subsequent Prolog calls are calculating the index-relations, they stop the cycle
or perform the actual calculation of minimal value.

The Contralog program, introduced above, implements the evaluation strat-
egy of dynamic programming perfectly with one difference. Namely: partial
results are not produced layer-by-layer, not in a breadth-first, but rather in a
depth-first way.

Definition wm/1 contains the weight matrix in a single fact. The first state-
ment of three wm/5 produces the first element of the 0-th layer first, and upon
backtracking it produces also the rest. After the production of each element
the second statement of three wm/5 also starts, and if there are elements in the
previous layer for which the preconditions are met, then it also produces an
element from the next layer. This may also produce an element of the second
next layer and so on

Depth-first execution means, that one corner of wm/5, the three dimensional
matrix is built up as high is possible, and only in case of no further steps, we
backtrack and try to build the lower layers forward. But any element is inserted
in a lower layer, building up the higher layers is immediately tried.

Pro-Contra-Log 55

4 Applying Contralog for ReALIS natural language
parsing

The basic principles of ReALIS (Reciprocal And Lifelong Interpretation Sys-
tem) research project, targeting natural language processing techniques, is
described in many conference articles, and even in a book [6, 4]. From the
aspect of a Contralog natural language parser, its most important principles
are the following:

• Total lexicality : each kind of lingual information is stored in the lexi-
con (in the vocabulary) [5]. Lexical items basically follow the feature
structured method, whereas each item may demand certain other lin-
gual context, and it also may offer certain services. Parsing, according
to this approach, means the exact discovering and unveiling the offer-
demand relationship. This also means: there is no special repository for
lingual rules; lexical items describe all relevant information to perform
parsing and/or generating natural language texts.

• Modal logical framework : interpreters are modelled in the world, and
worlds are modelled in the brain of interpreters. The world-model in
the background is a hierarchical structure of world-contexts. The root-
world corresponds to the objective, outside world, that contains objects,
and also contains subjects, i.e. agents, being able to interpret sentences
and to store their own world-model. The content of interpreters internal
world-model may also contradict the root world model. On the other
hand interpreters store an own internal world structure – different modal
contexts are stored in a different worldlets (for seen, heard, read, believed
information, etc.) The internal world model of interpreters is empty when
born, and the content of their world model gradually increases during
their life – not necessary monotonically, certain information pieces may
also be mistaken, and can later be corrected or even erased.

• Discourse representation theory, integrated in the interpreter’s world
model. Parsing is not restricted to a single sentence, but is extended to
all the sentences of a discourse (several sentences in the same thematic
or situational context). These sentences are usually also in a certain re-
lationship with each other (e.g. antecedent, consequent, argument, etc.).
These are called rhetoric relations. In addition to simply taking over
similar structures of earlier discourse-representation schools [7], we im-
prove them slightly. First, they are not necessarily independent, so we

56 Imre Kilián

are using a minimal/canonical set of rhetoric relations. Second they are
not necessarily objective hence they are not stored in the objective root
world, but in the interpreter’s subjective world model.

According to ReALIS, instead of calculating a parse tree, the primary goal
of parsing is to produce the following four mathematical relations:

• α: the entity anchoring relation is an equivalence relation that connects
equivalent entities in a discourse.

• κ: the cursor cluster that describes global contextual information (Here,
Now, Ego, There, Then, You, etc.). Some of its elements (place, time,
influence) act as cursors; i.e. in a real discourse they are automatically
advanced sentence by sentence.

• λ: the level relation that relates rhetorical contexts and/or modal logic
relationships [7]. The level structure shows a self-embedding nature, and
it also specifies the availability scope of discourse object references.

• σ: the eventuality relation, that maps lexical items to logical expression
fragments, and finally maps sentences and/or larger textual units to
complete logical expressions.

Total lexicality means that beyond mere textual elements (words and/or mor-
phemes), lexical items also contain their eventuality function (a logical ex-
pression), instructions for entity anchoring, and the rhetorical and/or modal
anchoring instructions. Furthermore a very important piece of a lexical item
is its offer-demand relationship. This is used to describe morphological and/or
syntactical bindings, along with the strength and the direction of the bind-
ings. According to these principles, parsing is nothing more than a sort of
domino-game; each syntactical element has certain offers, and may demand
certain other elements in the neighborhood. The calculation of the relations
mentioned above is done by the underlying unification-based means of finding
matching demands and offers.

The mentioned parsing strategy of ReALIS is suitable for any languages,
but in practice we recommend it especially for languages, like Hungarian, with
variable or free word order. The application of traditional parsing methods for
free word order languages produce inefficient results because of the frequent
need of backtracking.

Pro-Contra-Log 57

4.1 Prolog target models

The most obvious and usual target model for designing Prolog programs is
the relational target model. According to this, the program calculates the
<input,output> relation, which, if we program carefully, enables calculating
the relationship in both directions. That is, for a parsing project, the same
program can calculate the parse tree for a sentence, and may also calculate
the sentence for a given parse tree at the same time.

Relational target model, on the other hand, performs a depth-first search
on the resolution graph that depicts the inference process. The efficiency of
backtracking programs can be strongly reduced by the frequency and the depth
of backtracking, and we guess, natural language parsing may well involve deep
and frequent backtracking.

Instead of the relational target model we propose the inferentional target
model for natural language parsing. Instead of the <input,output> relation,
the inferentional model tries to calculate the input → output implication. That
is, the program must be reformulated so that it can prove that output data in
some sense is the logical consequence of input data.

Both for relational and inferentional target models a key expression is non-
determinism. That means: Prolog programs in general may deliver more than
a single equivalent result. The set of results are propagating further on, while
other constraints in the calling programs may filter out certain non-applicable
results, and in a fortunate situation the end-result is already definite.

Prolog programs, in general, implement a deductive inference model. De-
ductive inference means that, for a given set of basic facts, the set of logical
consequences is calculated. From this point of view the direction of inference
(forward or backward chaining) is completely irrelevant.

The other strategy is called abductive inference model. For abductive infer-
ence we are aware of the consequences and the basic rules for inference, and
we are searching for the possible facts, based on which the consequences can
be inferred.

Though Prolog programs are basically implementing deduction, with a very
easy extension we can also apply them for abduction. In case of abduction
usually not the entire set, but only a subset of possible facts is unknown. To
implement abduction in Prolog, instead of programming fixed set of facts, an
implementation of backtrackable assert operation is to be programmed, that
asserts each possible value for a given fact in a backtrackable way, and at last it
retracts the fact completely. This, for the first run asserts certain facts. These
may be deleted (and/or reasserted with other values) upon backtracking. The

58 Imre Kilián

simplest implementation of backtrackable asserts is the following:

assertb(FACT):-

(assert(FACT);

retract(FACT), fail).

Speaking about inference, its strategy can be crucial. We have already men-
tioned: in a number of cases Prolog’s backward-chaining is not efficient enough.
In case of forward-chaining, inference rule application burst-outs (inference
chains) are started in a data-driven way, upon the arrival of certain facts.
They may however arrive at any time, in an asynchronous way; delayed or
even in a changed order. One inference step is performed when each precondi-
tion holds, and the corresponding facts are accessible. Although it is possible
to prune the branches of the inference tree, consequences are produced in their
entire richness, but if any of them matches any goal, then the program stops.

One obvious advantage of forward chaining is that already proven facts are
stored in the blackboard, and they may be referred later on, for any times.

4.2 Inferential target model for parsing

If we apply the inferential target model to lingual parsing, the input sentence
must be stored in a series of facts. Program clauses can be derived from the
offer-demand relation of lexical elements, and certain general goals are the
constructs to stop (or to start?) the inference.

As a drawback, the model cannot be used for generating text.
When performing ReALIS parsing, it is practical to define the following cuts

(layers) over the entire inference graph.

1. The layer of morphological analysis. The character stream on the input
channel is packed to words by the lexical parser. The stream of words
is parsed by a morphological parser. Although ReALIS also has a solu-
tion for morphology [5], for convenience we propose to use a commercial
solution. The result of morphological parsing is a Contralog sequence of
facts. To focus on syntactical parsing, in the following example we omit
to deal with the problem of morphological analysis. Let’s see the facts
resulting from the following Hungarian sentence: ”Petra vágyik arra a
magas német úszóbajnokra” (”Petra desires-3SG that the tall German

Pro-Contra-Log 59

swimming champion-SUB”) [6].

word(petra,1,1,noun(’Petra’,proper,nom,sing-3)).

word(petra,1,2,verb(’vágy’,[],decl, pres, sing-3)).

word(petra,1,3,noun(’az’,pro(point),sub,sing-3)).

word(petra,1,4,art(def,cons)).

word(petra,1,5,adj(’magas’)).

word(petra,1,6,adj(’német’)).

word(petra,1,7,adj(’úszó’)).

word(petra,1,7,noun(’bajnok’,common,sub,sing-3)).

The arguments of the facts above are the following: 1. a discourse iden-
tifier 2. sentence index in the discourse 3. word index in the sentence 4.
a Prolog structure describing the result of morphological analysis.

2. The layer of grammatical dependency relations. We are calculating the
regent-argument (bidirectional) and adjunct-argument- (one directional)
relations. The example below shows the regent-argument description of
verb ”vágyik” (desires). Hungarian verb ”vágyik” demands a nomina-
tive argument (the subject), and a sublative argument (the object). The
strength of the former binding is -7, of the latter is +7. The former an-
notation (-7) means, the subject may appear well before the verb in a
loose distance. The other means the opposite: the object may appear af-
ter the verb, and arbitrary other words may appear between them. Both
arguments should form a generalized quantifier determinant structure
(proper noun, determinate article, adjective, etc.).

regArg2(ID,S,XV,verb(’vágy’,[],MODE,VTIME,AGR),

XS,noun(SUBJ,SKIND,nom,AGR),-7,

XO,noun(OBJ,OKIND,sub,OAGR),7):-

verb(ID,S,XV,’vgy’,[],MODE,VTIME,AGR),

gqdet(ID,S,XS,SUBJ,SKIND,nom,AGR),order(XV,XS,-7,nei),

gqdet(ID,S,XO,OBJ,OKIND,sub,OAGR),order(XV,XO,7,nei).

3. The layer of eventuality relations. In this layer the logical form of regent-
adjunct structures is built up in a way, that their arguments logical form
is supposed to be built up before. In the example below the predicate
regArg2 builds up the grammatical structure (the regent-argument re-
lation), while sigma3 prepares the overall logical expression as a result.

60 Imre Kilián

(=../2 is a technical Prolog call that transforms time referent structure
to grammatical time notation.)

sigma3(ID,S,XV,TIME,SUB,OB,CLAUSE):-

regArg2(ID,S,XV,verb(’vágy’,[],MODE,VTIME,_AGR),

XS,SUBJ,_PRS,XO,OBJ,_PRO),

TIME =.. [VTIME,_],

sigma3(ID,S,XS,TIME,SUB,CLAUSE,

(desire(TIME,SUB,OB):-CONS)),

sigma3(ID,S,XO,TIME,OB,CONS).

As the logical form of the sentence above, we may get the following
clause. (The double implication can be transformed easily into a con-
junction on the precondition side)

CLAUSE=((desire(pres(T),SUB,OB) :- swim(T, OB),german(T, OB),

tall(T, OB),champion(T, OB)) :- name(T,SUB,’Petra’))

4. The layer of rhetorical and modal relations. In this layer, rhetorical and
modal logical relations are built up as described by the λ function. Al-
though there have been theoretical investigations completed [8], up to
the writing of the article we don’t have any concrete results to demon-
strate this.

5 Program development with Contralog

Contralog is available as a preprocessor for SWI-Prolog [9] that works on
the basis of its macro extension mechanism (term expansion/2) . This is
unfortunately only de facto standard, therefore the seamless operation with
other Prolog dialects is not guaranteed.

When developing Contralog programs, the Prolog module, defining the above
mentioned macro expansion predicate, must be consulted first. (clog.pl). It
is not enough only to load clog.pl in the application module, because in
the time of reading the first (module head) declaration of the module, the
Contralog pretranslator must already be active. The module declaration itself
is handled otherwise by Prolog, even its export list is understood as Prolog
exports.

To declare Contralog export, :- export(EXPLIST). declaration should be
used.

Pro-Contra-Log 61

In general, Contralog program clauses are to be placed in a Prolog program.
To switch between normal Prolog clauses, and preprocessed Contralog clauses,
the following two new directives can be used.
:- contra. that starts the processing of Contralog code

:- pro. that switches back to normal Prolog

Beside the Contralog to Prolog translator, at the moment there is no other
development tool available. It is a bit clumsy, for example, to debug Contralog
programs. Since there is no debugger, debugging is possible only by help of
the Prolog debugger, and it may work only for those, who are familiar with
the target model.

6 Summary and future work

We have defined Contralog, which is a Prolog-conform language, but instead
of backward chaining, it uses forward-chaining inference. The language itself
is built-up on the same syntax: Horn clauses, only its declaration forms are
different from those in Prolog.

For this end we have developed a Prolog target model to perform forward
chaining inference. This enables to translate Contralog clauses directly to Pro-
log, and execute them by the Prolog software environment.

The Contralog to Prolog translator has been implemented by using Prolog’s
macro extension mechanism. This approach, and the Prolog target model it-
self enables various possibilities to integrate forward and backward chaining
inference in a programmer-controlled way.

To demonstrate these, the article introduces several examples: after the
simplest examples two dynamic programming problem and ReALIS natural
language parsing mechanism is described.

Future work may include extended Contralog program development possi-
bilities and tools.

The natural language parsing mechanism has been tested only for a handful
of sentences by translating the lingual information to Prolog (Contralog) man-
ually. Any future work must aim to collect lingual information, the mechanical
translation of these to the Contralog target model, and the development of the
overall ReALIS parsing environment.

62 Imre Kilián

Acknowledgements

The author is grateful for the Hungarian Research Fund TÁMOP 4.2.2.C-
11/1/KONV-2012-0005 (Well-being in the informational society) for the sup-
port of his research activities regarding natural language technologies, and also
for the Hungarian Research Fund TÁMOP 4.2.2.D. to cover the Mathinfo2015
conference participation expenses. Special thanks to colleagues: Gábor Alberti
and Márton Károly for their kind remarks and contribution.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. ⇒50, 52

[2] W. F. Clockshin, C. S. Mellish, Programming in Prolog, Springer Verlag Berlin,
Heiderlberg, New York, 1994. ⇒42

[3] G. Alberti, ReALIS: Interpretators in the world, worlds in the interpretator
(in Hungarian: ReALIS. Interpretálók a világban, világok az interpretálóban).
Akadémiai Kiadó, Budapest, 2011. ⇒55, 59

[4] G. Alberti, ReALIS. An interpretation system which is reciprocal and lifelong.
Akadémiai Kiadó, Budapest, 2011. ⇒55

[5] G. Alberti, K. Balogh, J. Kleiber, A. Viszket, Total lexicalism and GASGram-
mars: A direct way to semantics Proc. CICLing2003, NLCS 2588, pp. 37–48, (ed
Gelbukh, A.) Springer Verlag, Berlin 2003. ⇒55, 58

[6] G. Alberti, I. Kilián, Bipolar influence-chain families instead of lists of argu-
ment frames – the sigma function of ReALIS (In Hungarian: Vonzatkeretlisták
helyett polaritásos hatáslánccsaládok) Proc. MSzNyVII. Hungarian Conference
of Computer Linguistics, pp. 113–126, (ed: A. Tanács, V. Vincze) VII. Magyar
Számı́tógépes Nyelvészeti Konferencia, MSzNy pp. 113-126, SzTE Informatikai
Tanszékcsoport, Szeged. 2010. ⇒55, 59

[7] H. Kamp, J. van Genabith, U. Reyle, Discourse representation theory. Handbook
of Philosophical Logic, Vol. 15., 125394. Springer Verlag, Berlin, 2011. ⇒55, 56

[8] M. Károly, Interpretation and modality - towards the implementation of Re-
ALIS’ λ-function. (In Hungarian: Interpretáció és modalitás avagy a ReALIS
λ-fūggvényének implementációja felé.) (ed. V. Vincze, A. Tanács) VIII. Ma-
gyar Számı́tógépes Nyelvészeti Konferencia, MSzNy 284–296. SzTE Informatikai
Tanszékcsoport, Szeged. 2011. ⇒60

[9] J. Wielemaker: An overview of the SWI-Prolog programming environment, Proc.
13-th International Workshop on Logic Programming Environments, ed: F. Mes-
nard, A. Serebenik, Katholieke Universiteit Leuven, Belgium, 2003. 1–16 pp. ⇒
60

Received: February 9, 2016 • Revised: April 16, 2016

http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://clockshin.com/
http://www.springer.com
http://www.akademiai.com
http://www.akademiai.com
http://www.springer.com
http://www.inf.u-szeged.hu/projectdirs/mszny2010/
http://www.inf.u-szeged.hu/projectdirs/mszny2010/
https://www.inf.u-szeged.hu/
https://www.inf.u-szeged.hu/
http://www.springer.com
http://www.inf.u-szeged.hu/projectdirs/mszny2011/
http://www.inf.u-szeged.hu/projectdirs/mszny2011/
https://www.inf.u-szeged.hu/
https://www.inf.u-szeged.hu/
http://www.cs.vu.nl/en/research/business-informatics/People/dr-jan-wielemaker/index.aspx

	1 Pro-Contra-Log: a two way street for inference
	2 The Contralog target model
	2.1 Backtracking
	2.2 Facts and goals
	2.3 Interface elements
	2.4 Non-logical means to control inference

	3 Contralog programming examples
	3.1 Pythagoras' triads
	3.2 Dynamic programming: Optimization of matrix chain multiplication
	3.3 Dynamic programming: Floyd-Warshall algorithm

	4 Applying Contralog for ReALIS natural language parsing
	4.1 Prolog target models
	4.2 Inferential target model for parsing

	5 Program development with Contralog
	6 Summary and future work

