DE DE GRUYTER
Ol

G PEN ActA UNIV. SAPIENTIAE, INFORMATICA 8, 1 (2016) 1640

&

DOTI: 10.1515/ausi-2016-0002

A survey of the all-pairs shortest paths
problem and its variants in graphs

K. R. UDAYA KUMAR REDDY

Department of Computer Science and Engineering
NMAM Institute of Technology
Nitte-574 110, India.
email: krudaykumar@nitte.edu.in

Abstract. There has been a great deal of interest in the computation
of distances and shortest paths problem in graphs which is one of the
central, and most studied, problems in (algorithmic) graph theory. In this
paper, we survey the exact results of the static version of the all-pairs
shortest paths problem and its variants namely, the Wiener index, the
average distance, and the minimum average distance spanning tree (MAD
tree in short) in graphs (focusing mainly on algorithmic results for such
problems). Along the way we also mention some important open issues
and further research directions in these areas.

1 Introduction

1.1 Motivation

The problem of finding the shortest distance between two vertices of a graph
and finding a path that causes it are classic problems in graph algorithms.
It appears in countless practical applications and is an important concept
in transportation (and communication) engineering, computer science, net-
work routing, network analysis [63], image processing [37, 61], operation re-
search [19, pages 657], VLSI design [66], DNA analysis [70], bio-informatics

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 68R10

Key words and phrases: algorithms, all-pairs shortest paths, average distance, graph
algorithms, MAD tree, spanning tree, Wiener index.

16

http://nmamit.nitte.edu.in
http://nmamit.nitte.edu.in
http://nmamit.nitte.edu.in
mailto:krudaykumar@nitte.edu.in

A survey of the APSP problem and its variants in graphs 17

[39], chemical compounds [6, 31], computational geometry and robotics [33],
to mention few central areas of interest. Because of its rich in applications,
the work on such problems are deep and vast (in all kinds of classic graphs,
directed or undirected, weighted or unweighted), in both the scientific com-
munity and engineering community. In addition, shortest path algorithms also
have applications as a subroutine in other combinatorial optimization algo-
rithms such as network flows [19, pages 708-709]. One of the basic and key
problem in transportation and network analysis is the computation of the
shortest paths between any two locations on a network. In computer network,
the transportation could be routing messages. For instance, given a road map
(or network) on which the distance is marked between every pair of adjacent
cities (or nodes), find the shortest possible route between every such pair of
cities (or nodes). For such a road map, we can model the graph by representing
cities as vertices, road segments between cities as edges, and road distances as
edge weights.

1.2 Preliminaries and notations

Let G = (V(G),E(G)) be a connected and simple (i.e., without loops and
multiple edges) graph on [V(G)| = n and |[E(G)| = m. The graph G may be
directed or undirected, and edges of G may be weighted or unweighted.
If G is weighted, then the edge weights may be real-valued or integers, of
either negative or nonnegative. For a weighted graph, the weight of a path
is the sum of the weights of its edges on that path. For an unweighted graph,
the weight of an edge is taken to be one. A shortest path between two vertices
u and v is a path of minimum weight. For u,v € V(G), the distance between
two vertices u and v, denoted by d(u,V) is defined as follows. (i) Graph G is
unweighted: The distance d(u,v) = 1, if uv € E(G), and d(u,v) = the length
of a shortest path joining u and v (or smallest number of edges connecting u
and v), otherwise. (ii) Graph G is weighted: Here the distance d(u,v) = the
sum of the weights of the edges along the shortest path joining u and v.

The single-source shortest distance (SSSD) problem is to compute d(s, V)
from a given source vertex s to all other vertices v in the graph. The single-sou-
rce shortest path (SSSP) problem is to compute the shortest paths from a
given source vertex s to all other vertices in the graph. The all-pairs shortest
distance (APSD) problem is to compute d(u,v) between all pairs of vertices
u, v in the graph. The all-pairs shortest path (APSP) problem is to com-
pute the shortest paths between all pairs of vertices in the graph.

Given an unweighted undirected graph G, the Wiener index W(G) of G is

18 K.R. UK Reddy

defined as

Z > d(u,v) (1)

uGV(G) vEV(G)

The Wiener index comes under various names such as transmission, total
status, gross status, graph distance, and sum of all distances.

For an unweighted undirected graph G, the average distance p(G) of G is
defined by

_ 2W(G)
MO =ty 2 2 dwvi= o (2)

ueV(G) veV(G)

From (2), we see that the quantity p(G) is closely related to W(G). For a con-
nected undirected graph G, with a nonnegative edge weight, the Minimum
Average Distance (MAD) spanning tree of G (MAD tree in short) is a span-
ning tree of G with minimum average distance.

The Wiener index of vertex-weighted graphs was introduced in [54]. If G is
a graph with weight function w : V(G) — N7, then the Wiener index W(G, w)
of a vertex-weighted graph (G,w) is defined as

Z Z d(u,v). (3)

ueV(G) veV(G

Notice that if all weights of vertices in the graph are unit (or one), then
W(G,w) = W(G).

It is well known that there are many variants of shortest paths problem.
Typically it is categorized into the SSSP problem and the APSP problem. In
this short survey we consider only the APSP problem and their related prob-
lems in graphs.

A survey by Zwick [90], the exact and approximate distances in graphs are
considered. In particular, the paper gives a survey on both SSSP and APSP
algorithms and the related distances such as spanners (a sparse subgraph that
approximates all the distances between every pair of vertices) and approximate
distance oracles (concise representation of approximate distances together with
quick means of extracting these approximations). Although [90] gives a survey
on the APSP problem and mentions some open problems, we revisit this prob-
lem in detail and in addition we survey the recent results on general graphs as
well as on restricted family of graphs. Furthermore we also give the survey on
the variants of APSP problem defined above mostly focussing on the results
of algorithmic computation.

We begin with the all-pairs shortest paths problem.

A survey of the APSP problem and its variants in graphs 19

2 All-pairs shortest paths problem

2.1 Background

The APSP problem is undoubtedly one of the most fundamental and classical
problem in graph algorithms and is well known in the research community,
yet, the complexity of this problem has remained open to date even though it
runs in polynomial time. Recall that the significance of the APSP problem and
each of its variants defined above are rich in applications. Almost all known
shortest path algorithms are computed based on the following two types of
computational models:

e Comparison-addition model: The shortest path algorithms in this
model assumes the input to be real-weighted graphs, where the only op-
erations allowed on reals are comparisons and additions and no other
operations are allowed. These operations are assumed to take O(1) time.
The comparison operation finds the larger of two real numbers, whereas
the addition operation generates a new real number from the existing
two real numbers. Clearly, in this model, based on the outcome of pre-
vious comparisons, the algorithm chooses the next operation. Moreover,
since this model fits with the assumption of real numbers which are ar-
bitrary values, it cannot distinguish between reals and integers—hence no
integer can be produced from a real variable.

e Random Access Machine (RAM) model: Here the shortest path algo-
rithms assume the input to be integer-weighted graphs, where integers
are manipulated by additions, subtractions, comparisons, shifts, and var-
ious logical bit operations on machine words (see [1]). These operations
take O(1) time. In this model, each word of memory is assumed to be
w-bit wide, capable of holding an integer in the range {—2"7' ...,
2%=1-1}. Usually, it is assumed that w = ©(logn), which is the stan-
dard realistic assumption, where n is the input size.

Note that most of the intricate algorithms solving shortest paths problem,
work in RAM model. Given the APSP problem, it is important for us to
consider the implementation of this algorithm in practice. But unfortunately,
some of the algorithms are far from being practical. So, there is a great deal of
interest in obtaining faster algorithms in solving the APSP problem on general
graphs in practice. The progress on the APSP problem have focused mostly
on the following two approaches:

20 K.R. UK Reddy

e Combinatorial approach: Combinatorial algorithms are good in prac-
tice because they rely on the efficient computation of small subproblems,
but unfortunately these algorithms are typically worse in theoretical
bounds. However these algorithms can give better asymptotic bounds
for sparse graphs.

e Algebraic approach: Algebraic algorithms are far from being practical
because they suffer from large hidden constants in the running time
bound and large overhead of fast matrix multiplication since they rely
on matrix multiplication over a ring, but fortunately these algorithms
achieve good theoretical bounds. Hence these algorithms may be viewed
of only theoretical interests.

Finding the APSP problem in a graph has received a considerable attention
from the research community and have been studied extensively in both theory
and practice. Although the APSP problem is solvable by repeated applications
of SSSP algorithms, the APSP problem can be solved efficiently for arbitrary
graphs as well as for other classes of problems. The various class of problems in-
clude: algorithms for restricted families of graphs, such as interval graphs (see
[3, 57, 68, 75]), circular arc graphs (see [3, 75]), strongly chordal graphs (see
[5, 20, 44]) etc.; algorithms for dynamic versions of the problems (see [28, 53]);
parallel algorithms (see [16, 17]). For certain applications, computing exact
distances (respectively shortest paths) over all pairs of vertices of a graph
may be quite expensive. Also the algorithms computing exact distances using
fast matrix multiplication technique are impractical since it suffers from large
hidden constants. In the last decade many researchers considered all-pairs
approximate shortest paths (APASP) problem [74] where a number of sub-
cubic algorithms have been designed using a simple and novel combinatorial
ideas, and also designing an optimal (quadratic) algorithms for some restricted
graph classes using simple and efficient approach. Optimal algorithms for some
restricted graph classes are discussed in Section 2.4. Often in practice, instead
of computing exact distance (respectively shortest paths) between any pair
of vertices of a graph, computing near distance (respectively shortest paths)
is good enough. An algorithm computing approximate distance (or shortest
path) for any given pair of vertices may have some kind of error associated with
the distance (or shortest path) and this error can be additive (also known as
surplus) or multiplicative (also known as stretch). That is, approximate
distances (or shortest paths) are longer than the actual distances (or shortest
paths). The all-pairs surplus-a length, a > 0, is to compute the length of
at least d(u,v) and at most d(u,v) + a for all pairs of vertices u,v € V(G).

A survey of the APSP problem and its variants in graphs 21

The all-pairs stretch-t length, t > 1, is to compute the length of at least
d(u,v) and at most t - d(u,v) for all pairs of vertices u,v € V(G).

Statement of the APSP problem: Given an input graph G = (V(G), E(G)),
the goal is to compute the distances, and construct their corresponding short-
est paths between all pairs of vertices in the graph. The output is thus a
distance matrix and the shortest paths that causes it.

In the following subsections, only the exact results of the static version
of the APSP problem are considered.

2.2 Arbitrary weighted graph

Suppose the problem needs to report the distances (respectively shortest paths)
between all pairs of vertices of the graph. Then the time complexity for such a
problem must be at least Q(n?) since there are (TZL) = O(n?) pairs of vertices. It
is well known that the straightforward approach to solve the APSP problem is
to run the SSSP problem for each vertex (as source) of the graph. The classical
results of SSSP problems are Bellman-Ford and Dijkstra’s algorithms. Using
Bellman-Ford SSSP algorithm n times [19, 651-654], the APSP problem for
arbitrary graphs with real-edge weights can be solved in time O(n?m). Using
Dijkstra’s SSSP algorithm n times [27], and using a Fibonacci-heap imple-
mentation Fredman and Tarjan [40] (with Johnson’s [51] preprocessing step
if negative weights are allowed), the APSP problem (on nonnegative edge
weights) can be solved in time O(n?logn 4+ mn). Then Pettie [64] has shown
that the first term can be reduced to O(n?loglogn) time. As m can be as high
as Q(n?), the running time of the above algorithms can be as bad as Q(n?).
However, the APSP problem can be solved efficiently without the application
of SSSP algorithms. It may be noted that all of the algorithms aforementioned
in this subsection work in comparison-addition model.

2.2.1 Dense real-weighted graphs

The classical Floyd-Warshall algorithm [19, 693-697] solves the APSP problem
using dynamic programming technique in time O(n3). It is one the notable
algorithms that is too short, simple to implement, well understood, and works
better on adjacency matrices than adjacency lists. Also note that this algo-
rithm work in comparison-addition model. Let A = (ajj) and B = (by;) be two
n x n matrices. Then the distance matrix multiplication (DMM) C = AB

22 K.R. UK Reddy

is an n x n matrix C = (cyj) with ¢y = ming_;{ay + by} for 1 < i,j < n.
The distance matrix multiplication (also known as the min-plus matrix
multiplication) can be naively computed using O(n?) additions and compar-
isons. It is well known that the APSP problem is closely related to the prob-
lem of computing distance product of matrices. That is, the time complexity of
DMM is asymptotically equal to that of the APSP problem for a graph with n
vertices (see [1]). Fredman [41] was the first to find the possibility of obtaining
a subcubic algorithm for computing the distance product of two n x n matrices
using only O(n??) comparisons and additions. But there is no clear specifica-
tion about as to which comparisons should be made nor how to infer the result
from the outcome of these comparisons; however, Fredman was able, to use his
observation to obtain an explicit subcubic algorithm for the distance product,
and hence for the APSP problem. His approach was based on the construction
of decision tree whose depth is O(n??) to solve certain small-sized subprob-
lems. However there is no known polynomial-time implementation of his algo-
rithm. Fredman [41] somehow was able to show that the APSP problem can be
solved in O(n3log'3logn/log'3n) time. Takaoka [77] presented much sim-
pler and efficient algorithm in O(n? log]/ Zlogn/ logl/ 21) time based on simi-
lar ideas but using table look-up. Dobosiewiczs [30] obtained O(n3/log'/?n)
time algorithm by exploiting a different approach bit-level parallelism (i.e.,
simultaneous operations on log n bits contained in a single machine word). Han
[46], Takaoka [78], and Zwick [92] obtained, respectively, O(n3log®”logn /
log®” 1), O(n3log?logn /logn) and O(n3log'/?logn / logn) time algorithms
and they all involved even more complicated combinations of approaches. Chan
[10] obtained O(n3/logn) time algorithm by using somewhat different ap-
proach. The speedup of his algorithm is obtained by using a simple geometric
approach. Han [47] obtained O(n3log®*logn/log®*n) by using a more so-
phisticated word-packing tricks. Chan [12] obtained O(n?log?logn/log?n)
time algorithm using the approaches from the previous algorithms by Chan
[10] and by Han [47]. That is, his algorithm combines the geometric approach
by Chan [10] and more sophisticated word-packing tricks by Han [47]. The pa-
per also gives the results for APSP problem on a large class of geometrically
weighted graphs, where the weight of an edge is a function of the coordinates
of its vertices. His approach also extends to the case of small-integer-weighted
graphs which is not as good as Zwicks algorithm [91]. However, his approach
more generally extends to the case where weights are taken from small set of
real values yielding the first truly subcubic result (O(n?3*) time) for APSP
in real vertex-weighted graphs, as well as an improved result (O(n?®8) time)
for the all-pairs lightest shortest path (among all shortest paths connect-

A survey of the APSP problem and its variants in graphs 23

ing u and v, the lightest shortest path is a shortest path that uses smallest
number of edges) problem for small integer-weighted graphs. As Tong-Wook
Shinn and Tadao Takaoka mentions in [72], currently the best known upper
bound is O(n?loglogn/log?n) due to Han and Takaoka [48].

2.2.2 Dense integer-weighted graphs

Matrix multiplication is one of the most basic problems in mathematics and
computer science. For a long time, the fastest algorithm for multiplying two
n X n matrices was O(n®) time bound, where w < 2.376 [18]. Recently,
Vassilevska Williams [84], improved this long-standing bound to O(n®) time
bound, where w < 2.3727. Very recently, Le Gall [56] achieved a faster algo-
rithm which is better than all known algorithms for rectangular matrix multi-
plication. Thanks to Le Gall [56] for his achievement in rectangular matrix mul-
tiplication. The results obtained in [56] are a generalization of Coppersmith-
Winograds approach [18] to the rectangular setting. Moreover the algorithms
presented in [56] gives an improvement for computing the product of two sparse
square matrices but for the product of dense square matrices. Thus we assume
that the fastest algorithm for multiplying two n x n matrices in general is
O(n?3?7) time due to [84]. In the last decade, many researchers have shown
that matrix multiplication over rings [18, 76] can be used to obtain faster al-
gorithms (i.e., subcubic algorithms) for solving the APSP problem in dense
graphs with small integer edge weights, where the weights lie in the range
{1, ..., M} for some constant M. In this case, Galil and Margalit [42] gave
an O(M(@t1)/2n@) time algorithm for undirected graphs, and Alon et al. [2]
gave an O(nBT®)/2) = O(n2688) time algorithm for directed graphs. Then a
series of subcubic algorithms [42, 71, 73, 91] have been developed. Currently,
the best known algorithm for the APSP problem over directed graphs with
small integer weights is in time O(n?>3°2) due to [56] (since it relies on rect-
angular matrix multiplication), improving over O(n?573) time by Zwick [91].
For undirected graphs, currently the best known APSP algorithm using fast
matrix multiplication technique is O(Mn%) time bound due to Shoshan and
Zwick [73].

2.2.3 Sparse graphs

Johnson [51] observed that the APSP problem can be solved efficiently on
sparse graphs. That is, if the graph has negative edge weights with no negative-
weight cycles, then the new set of nonnegative edge weights allows to pre-

24 K.R. UK Reddy

serve shortest paths by reweighting technique (see [19, pages 700-704]) in
time O(mn). Johnson’s algorithm uses the Bellman-Ford and Dijkstra’s al-
gorithms as subroutines yielding an APSP algorithm for arbitrary weighted
graphs in time O(mn+mn?logn). Later, Pettie [64] has shown that the second
term can be reduced to O(n?loglogn) time for directed graphs, and Pettie
and Ramachandran [65] has shown that the second term can be reduced to
O(n?a(m,n)) time for undirected graphs, where o is slow growing inverse-
Ackermann function.

There are also results for solving the APSP problem on integer-weighted
graphs. The existing implementations of Dijkstra’s algorithm on APSP [45,
81] for integer-weighted graphs run in time O(min{mn (loglogn)'/2, mn +
n?loglogn}). Then Thorup [80] gave bounds on APSP problem using hierar-
chy-based approach for undirected graphs in time O(mn). Later Hagerup
[43] was able to show the bounds on APSP problem for directed graphs using
hierarchy-based approach in time O(mn + n?loglogn). The author general-
ized Thorup’s approach that gave a new approach to view the commonalities
between all hierarchy-type algorithms and in particular, it gives a one-line
characterization for all hierarchy-type algorithms. This characterization leads
to prove lower bounds on their complexities in the comparison-addition model.

2.3 Arbitrary unweighted graph
2.3.1 Dense graphs

For a weighted graph G, let the edge weights of G be a unit weight. Then,
the APSP problem can be solved by the simple Floyd-Warshall algorithm [19,
pages 693-697] in time O(n?). Improved results show that it runs in O(mn +
n?logn) time (Dijkstra’s algorithm [19, pages 658-662], Johnson [51], Fred-
man and Tarjan [40]). Using Pettie algorithm [64] the APSP problem can be
solved in time O(n?loglogn + mn). Taking G to be an unweighted graph,
the algorithm for APSP can be solved by running breadth-first search (BFS)
[19, pages 594-601] once from each vertex (as source) of G. This takes a time
O(n? + mn). As m can be as high as Q(n?), the running time of the above
algorithms can be as bad as Q(n3?). Again all of the algorithms aforementioned
in this subsection work in comparison-addition model.

For unweighted undirected graphs, Galil and Margalit [42] and Seidel [71]
showed that fast matrix multiplication algorithms can be used to obtain im-
proved algorithms for the APSP problem for graphs with small integer weights.
The running time of their algorithms is O(n®) (it may be noted that O(n)

A survey of the APSP problem and its variants in graphs 25

= O(nlogtn; that is, O(n) = O(n) with logarithmic factors ignored). The
Seidel’s algorithm is simple and elegant. However, there seems to be no simple
way of using Seidel’s elegant technique on weighted graphs. The algorithm
of Galil and Margalit [42], on the other hand, can be extended to handle on
weighted (small integer weights) graphs.

There are also results for unweighted directed graphs for solving the APSP
problem that use fast matrix multiplication algorithms when the edge weights
are small integers. In this case, Alon et al., [2] were the first to obtain a
O(n?*88) algorithm. The authors first give a simple version of the APSP prob-
lem for directed graphs with edge weights taken from the set {—1, 0, +1}. Then
they have extended their algorithm to the case of edge weights which are inte-
gers with a small absolute value. Later Zwick [91] obtained a running time of
O(n?57). Recently, Le Gall [56] has improved the result to obtain a running
time of O(n?302),

By exploiting graph compression technique, a new combinatorial idea,
Feder and Motwani [38] obtained O(mn log (%)/logn) time, an improved al-
gorithm that achieves log-factor speedups for solving APSP in the unweighted
undirected graphs. Generally, log-factor speedups may be possible when there
is some amount of redundancy or repetition in the input or computational
process. As mentioned in [38], the compressed graph G* of a graph G encodes
some aspects of the structure of G and has the following properties: (i) G*
is a graph with m* edges, where m* < m. (ii) It is computationally easy to
convert G into G*, and vice versa. Therefore, the compression may be viewed
as a data structure for representing the graph G.

2.3.2 Sparse graphs

Recall that the straightforward approach for solving APSP problem is to run
BF'S once from each vertex (source) of G which takes a time O(n? + mn).
The algorithms of Galil and Margalit [42], and Seidel [71] do not improve over
the naive approach O(n? 4+ mn) algorithm when m = o(n®~'). As mentioned
above, Feder and Motwani [38] obtained O(mn log (%2) /logn) time algorithm
which is an improvement over O(mn). Then, Chan [11] gave bounds that
runs in o(mn) time for undirected graphs. This analysis is based on one cru-
cial parameter, m, the number of edges in the graph. That is, the results for
small values of m. In [11] the time bounds of the algorithms improves over time
bounds including the naive bound, Seidel’s [71] algorithm, and Feder and Mot-
wani’s [38] algorithm, for all m < n'37®. Later, Blelloch et al. [7] presented a
new combinatorial data structure method that beats Feder and Motwani’s and

26 K.R. UK Reddy

Chan’s result. The running time of their algorithm is O(mnlog (“—ni)/log2 n).
The ability of this new data structure lies in computing sparse vector products
quickly and tolerate matrix updates. Using their data structure, the authors
give best running time bounds for four fundamental graph problems: transi-
tive closure, APSP on unweighted graphs, maximum weight triangle, and all
pairs least common ancestors. The authors also point out that by using the
data structure gives the first asymptotic improvement over O(mn) for all pairs
least common ancestors on directed acyclic graphs.

2.4 Restricted family of graphs

When dealing with special graph classes, it is well known that the algorithmic
computation of the given problem on such graph classes can be solved more effi-
ciently. These algorithms are good enough for many practical applications since
graph classes are more structured than just being general graphs. Computing
exact distances (respectively shortest paths) over all pairs of vertices of a graph
may be quite expensive on general graphs. So, many researchers started con-
sidering the APSP problem on special graph classes. The results on some of
the restricted classes of graphs are truly overwhelming because of some opti-
mal O(n?) algorithms are known for solving the APSP problem. These include:
interval graphs, circular arc graphs, planar graphs (see [49]), permutation
graphs, bipartite permutation graphs, strongly chordal graphs, chordal
bipartite graphs, distance-hereditary graphs, and dually chordal graphs.
The results of APSP problem for such graph classes [33] may be consulted.

The work by Han et al. [44], presents an optimal O(n?) time algorithm for
solving the APSP problem on chordal graph if G (G2 = (V,E’), where {u,v}
€ B if and only if 1 < d(u,v) < 2) is known. The authors claims that com-
puting G? for chordal graphs is as hard as for general graphs. They also point
out that G% can be computed more efficiently for special classes of chordal
graphs such as planar chordal, k-chordal, and strongly chordal giving rise to
optimal algorithms for the APSP problem on these classes of graphs in a more
natural way than the previous results. An optimal parallel algorithm for the
APSP problem on chordal graphs are also presented.

The author in [33], gives a simple and efficient approach to solve all-pairs
approximate shortest paths (APASP) problem on the class of weakly chordal
graphs and its subclasses. Moreover, the work in [33] presents a unified ap-
proach to solve APASP and APSP problems on graph classes including chordal,
strongly chordal, chordal bipartite, and distance-hereditary graphs. A few open
problems related to the distances are also suggested. Later, Mondal et al. [59]

A survey of the APSP problem and its variants in graphs 27

and Saha et al. [69] obtained optimal algorithms for solving APSP on the class
of trapezoid graphs and circular arc graphs respectively. For the definition
of various families of graphs [8, 33] may be consulted.

An important observation: For each of the graph classes aforementioned,
the APSP problem is solved using a simple and efficient approach which are
important from the practical point of view.

2.5

Concluding remarks and open issues of APSP problem

Based on the results aforementioned, we conclude this section with few open
issues and remarks on computing the APSP problem.

Whether in general there exists a truly sub-cubic algorithm for the APSP
problem in the comparison-addition model that runs in time O(n37¢),
for some constant ¢ > 07

On an arbitrary unweighted graphs, the fact that the fastest combina-
torial algorithm for APSP problem (despite aforementioned fast non-
combinatorial algorithms based on matrix multiplication) is by running
BFS [19, pages 594-601] once from each vertex (as source) of a graph.
Obtaining a faster combinatorial algorithm for APSP problem on such
graphs in fact will be a major breakthrough.

Recall that the APSP problem is closely related to the problem of com-
puting distance product of matrices. Thus the most important open issue
in algebraic complexity, is finding the optimal value of the exponent of
square matrix multiplication. For further information on square matrix
multiplication we refer [56] and references therein.

The author in [43] gave the bounds on APSP problem for directed graphs
in the word RAM model that runs in time O(mn+n?loglogn). It would
be desirable to obtain the bound O(mn).

For undirected graphs, currently the best known APSP algorithm us-
ing fast matrix multiplication technique is C)(Mn“’) time bound due to
Shoshan and Zwick [73]. As mentioned in [90], the authors in [73] show
that the APSP problem for undirected graphs with edge weights taken
from {0, 1,..., M} is harder than the problem of computing the distance
product of two n x n matrices with elements taken from the same range
by at most a logarithmic factor. Thus on undirected graphs a challenging
problem for the APSP problem could be, by considering larger values of
M, and obtaining truly sub-cubic algorithm for it.

28 K.R. UK Reddy

e A great variety of optimal (O(n?)) algorithms were developed for solving
the APSP problem on restricted family of graphs as mentioned in sec-
tion 2.4. It would be interesting to know for which other greater graph
classes the APSP problem can be solved in O(n?) time.

Next we consider the Wiener index or average distance problem.

3 Wiener index or average distance

3.1 Background

The Wiener index (or Wiener number) problem is a well-known distance
based graph invariant in mathematical chemistry. The work on the theory
of Wiener indices is deep and vast, in both the biochemical community and
mathematical community. In chemical graph theory, the structure of a chem-
ical compound is usually modeled as a polygonal shape—paths, trees, graphs,
etc., which is often called the molecular graph of this compound, where each
vertex represents an atom of the molecule, and covalent bonds between atoms
are represented by edges between the corresponding vertices (see [4, 67, 82]).
In chemistry, much of the problems have influenced the development of graph-
theory-based molecular structure-descriptors called the topological indices.
Among all the topological indices, Wiener index W(G) is the most important
one (from middle 1970s), thoroughly studied and frequently used (see [87]).
The Wiener index have been studied in both the mathematical and chemical
literature. The majority of chemical applications lie in the study of Wiener
index of acyclic (molecular) graphs. Most of the prior work on Wiener indices
deals with two types of problems: Wiener index problem for graphs and the
inverse Wiener index problem. The Wiener index problem deals with the ef-
ficient computation of the index, the upper and lower bounds on the index
values, and the relation of the Wiener index to other quantities of the graph.
The inverse Wiener index problem is: Given a positive integer k, does there
exist a graph whose Wiener index is k. If so, can we compute it efficiently?
For more information on the Wiener index especially for trees see [31] and
references therein.

The average distance is one of the important parameter in metric graph
theory. As mentioned in [55], it has numerous applications in many areas
including computer science, cheminformatics, mathematics, and recent ap-
plication in phylogenetics (see [88]). One of the fundamental parameter in
computer science is to measure the cost of communication in a computer net-

A survey of the APSP problem and its variants in graphs 29

work. In a network model, the time delay or signal disgradation in sending a
message between any two points is often proportional to the distance a mes-
sage must travel. When G represents a network, the average distance u(G)
problem can be viewed as a tool in analyzing networks since it is a measure
on the time needed to traverse the messages between two randomly chosen
points in the average-case performance of a network as opposed to the di-
ameter (maximum of all shortest-path distances), which indicates the worst-
case performance time [23]. Therefore, the quantity p(G) play a significant
role in analyzing communication networks and has been studied widely in
[9, 23, 24, 25, 26, 29, 62, 88]. For more information on the average distance
see [9, 62] and references therein.

3.2 Computation of Wiener index or average distance

The previous and ongoing work related to Wiener index or average distance
are: Wiener index problem for graphs and the Inverse Wiener index problem.
As a result, the research findings on such problems include obtaining upper
and lower bounds, determining relationships to other quantities, determining
inverse Wiener index problem, obtaining closed form expressions, and algorith-
mic determination of the Wiener index. In this short survey we discuss only
a few important closed form expressions and the algorithmic determination of
the Wiener index or the average distance.

One motivation comes from the following problem posed by F. R. K. Chung
[15]: Is there an asymptotically faster algorithm for computing average dis-
tance than computing all distances between vertices of the graph?

S. Klavzar at el. [55], mentions that the average distance can be studied
equivalently as the Wiener index (or the network distance)-hence the funda-
mental task would be the computation of the average distance or the Wiener
index efficiently. For a general graph G, one way of computing W(G) or p(G)
algorithmically is to run the APSD problem; that is it can be computed in poly-
nomial time, [58]. Thus the results of APSP problem for unweighted undirected
graphs including arbitrary graphs and restricted classes of graphs follows for
computing W(G) or u(G). Besides, more efficient algorithms (i.e., linear or
even sub-linear algorithms) have been developed for its computation on some
restricted classes of graphs. In [13] a linear algorithm were proposed for the
Wiener index of benzenoid graphs, while in [14] a sub-linear time algorithm
for the same problem were proposed. Some of the results on restricted classes
of graphs are mentioned below.

As Dobrynin et al. mentions in [31], the early work by Entringer et al.

30 K.R. UK Reddy

[34], closed form expressions for W(G) for large classes of trees are given.
Among all trees of order n, the best known are W(P;,) = (“;r]) and W(S,,)
= (n — 1)?, where P,, and S, denote the path and star of a graph of order
n respectively. It is easy to see that among all trees of order n, the Wiener
indices of P, and Sy, respectively, are maximum and minimum. In [34] it has
been showed that for any tree T of order n that is different from P,, and S;,
W(S,) < W(T,) < W(Py). Dobrynin et al. [31], gives a detailed survey on the
results known for the Wiener index of different class of trees. For example, the
authors outlines computational methods of W(G), combinatorial expressions
for W(G), connections between W/(G) and the center and centroid of a tree,
and connections between W(G) and the Laplacian eigenvalues. Results on the
Wiener indices of line graphs of trees, on trees extremal w.r.t. W(G), and on
integers which cannot be Wiener indices of trees are also given. The related
theory and applications are also mentioned.

Hexagonal systems (HS’s) are a special type of plane graphs in which all
interior regions (faces) are bounded by hexagons; that is, the two hexagons ei-
ther have one common edge or have no common vertex, and no three hexagons
share a common edge. HS’s have applications in chemistry since they provide a
graph representation of benzenoid hydrocarbons. In [32], the authors outlines
the results known for Wiener index W of the HS: method for computation of
W (W of a HS can be computed in time O(n) and a sublinear time algorithm
for simple HS’s), expressions relating W with the structure of the respective
HS, results on HS’s extremal with respect to W, and on integers that cannot
be the W-values of HS’s.

An interesting conjecture on Wiener index of trees: It states that except for
some finite set of integers, every integer n is the Wiener index of some tree.
Ban et al. [6], showed that enumerating all possible trees to verify this con-
jecture is not required. They show that searching in a small special family of
trees known as caterpillars (a tree is a caterpillar if the deletion of all its end
vertices produces a path) suffices and hence achieving the first polynomial time
algorithm up to integer n to verify the conjecture. They also provide many
efficient algorithms for computing trees with given Wiener indices, and imple-
mentation results show that their performance is asymptotically better than
their theoretical worst-case upper bound. The authors also point out that the
approaches in their paper can be used as general techniques for tree construc-
tion problems in combinatorial biology and chemistry when it is necessary to
deal with tree classes.

In [24], a sharp upper bound for u(G) of a graph is given depending on the
order of a graph and the independence number (maximum size of an inde-

A survey of the APSP problem and its variants in graphs 31

pendent (pair-wise nonadjacent) set of vertices of G). The author answers the
question posed by Erdos asking for bounds on the independence number of a
graph with a given u(G). The author also gives the upper and lower bounds on
1(G) depending on the matching number (maximum size of an independent
(pair-wise nonadjacent) set of edges of G).

Dankelmann [23], gives an algorithm for computing p(G) on an interval
graph of size o(n?) in time O(m) (recall that m denote the number of edges in
a graph). This implies that for such a graph and size, W(G) can be computed
in time O(m). In [23], apart from computing 1(G) of an interval graph, it is
also argued that when G is a tree instead of interval graphs, u(G) of a tree of
order n can be computed in time O(n) which is optimal. Thus when G is a
tree, W(G) can be computed in time O(n).

Iyer and Reddy [85] obtained a closed-form expression for Wiener index of
binomial tree. They also provide efficient algorithms for computing the Wiener
indices of Fibonacci trees and binary Fibonacci trees with Fy (k-th Fibonacci
number) vertices in time O(logFy). This bound is an improvement over the
bound obtained in [23]. That is, in [23] for any tree T with n vertices, W(T)
can be computed by an algorithm in time O(n).

Although algorithms are available for average distance on strongly chordal
graphs based on the APSP problem which runs in time O(n?), the author in
[83] obtained a new algorithm that is not dependent on the APSP problem for
average distance on strongly chordal graphs which runs in O(n?). Though the
time bound is same, but the algorithm in [83] runs better than the previous
algorithms on an average.

Very recently S. Klavzar at el. [55], proposed the average distance in in-
terconnection networks via reduction theorems for vertex-weighted graphs.
Their idea is to first shrink the original graph into smaller weighted graphs
called quotient graphs. Then shrink this quotient graphs further into smaller
weighted graphs called reduced graphs. During this shrinking process, a part
of the Wiener index of the bigger graph is added as a corresponding weight
to the smaller graph. Finally, the Wiener index of the original graph is calcu-
lated by the way of the Wiener index of the weighted reduced graphs. They
have also demonstrated the significance of this technique by computing the
average distance of butterfly and hypertree architectures. For other results on
the average distance see [55] and references therein.

32 K.R. UK Reddy

3.3 Concluding remarks and open issues of Wiener index or
average distance

The problem of finding Wiener index and average distance of a graph are stud-
ied extensively in the literature. For general graphs, obtaining asymptotically
faster algorithm for Wiener index (or average distance) directly without the
application of APSD problem of a graph was not so obvious. So, researchers
have explored on restricted family of graphs to obtain a better algorithm for
computing Wiener index (or average distance) than the APSD problem. Based
on the results aforementioned, we conclude this section with few open issues
and future research in algorithmic computation of Wiener index (or average
distance) of a graph:

e [s there a genuinely asymptotically faster algorithm for computing aver-
age distance in general than computing all distances between vertices of
the graph [15]?

e Dankelmann [23] gave an algorithm for computing n(G) of an interval
graph G of size o(n?) in time O(m). Thus it would be interesting to
know for which other graph classes u(G) can be computed in O(m)
time. One of the possible candidate could be strongly chordal graphs. In
[83], an algorithm for w(G) on strongly chordal graphs obtained O(n?)
time bound. An interesting problem is, whether a similar technique can
be extended to obtain that runs in linear time in the size of input graph.

e In [85], the results on Fibonacci trees and binary Fibonacci trees with Fy
(k-th Fibonacci number) vertices, algorithms are obtained for comput-
ing their Wiener indices in time O(log Fy). For definitions of Fibonacci
trees and binary Fibonacci trees and their applications we refer [85].
It would be desirable to obtain a closed form expression for computing
their Wiener indices.

e Zmazek and Zerovnik [89] gave a linear time algorithm for weighted
Wiener index on weighted cactus graphs (a graph is cactus if every
edge lies on at most one cycle). The authors in [55], gave the result by
introducing a new technique for computing the weighted Wiener index
of butterfly networks and hypertree networks. But their method is ap-
plicable only to those families of graphs that partitions the edge set of a
network into components using transitive closure which in turn enables
their weighted Wiener index to compute efficiently. Thus it would be in-
teresting to determine a unified way that is applicable on different graph

A survey of the APSP problem and its variants in graphs 33

classes. In addition, using the newly introduced technique in [55], the
open issue is, the computation of other topological indices.

Finally we consider the minimum average distance spanning tree problem.

4 MAD trees

In addition to average distance of a network, suppose if one is interested
in designing a tree subnetwork of a given network such that the delay in
sending a message between any two nodes of the network is minimum on
the average, then such a tree can be modeled by finding the minimum
average distance spanning tree (MAD) trees (MAD trees are also known as
minimum routing cost spanning trees) [22]. Thus MAD trees also play an
important role in communication networks [52]. It is well known that finding a
minimum-cost spanning tree is one of the classic problem in algorithmic graph
theory. Also there is an interest in finding the best spanning tree with impor-
tant parameters such as minimum radius, minimum diameter, and minimum
average distance (see [21]). In this section the following problem is considered:
Statement of the problem: Given a connected, undirected graph G, the goal
is to simply find a spanning tree of G whose average distance is minimum.

4.1 Computation of MAD trees

The problem of finding a MAD tree in general is NP-hard [52]. So the natural
question that arises is, for which special graph classes a MAD tree can be found
in polynomial time. As mentioned in [21], Entringer et al. [36] showed that
there is a spanning tree whose average distance is less than twice the average
distance of the original, and that such a tree can be found in polynomial
time. Later, a polynomial time approximation scheme for minimum routing
cost spanning trees has been developed by Wu et al. [86]. For further results
on MAD trees can be found in [35, 36]. In [21], an linear time algorithm is
exhibited for computing a MAD tree of a given distance-hereditary graph. In
[22] the average distance p(G,w) of vertex-weighted graph (G, w) is defined
as follows. If G is a graph with weight function w : V(G) — R™, then

W(V)>—‘

1(G,w) = ()

S wiwwmd(u,v),

UEV(G) veV(G)

where w(V) is the total weight of the vertices in G. Dahlhaus et al. [22], show
that for a given interval graph G a MAD tree can be computed in time O(m).

34 K.R. UK Reddy

If an interval representation of an interval graph G with n vertices is given and
the left and the right boundaries of intervals are sorted, then a MAD tree of G
can be computed in O(n) time. Dobrynin et al. [31] conjectured the following
problem: the binomial tree is a MAD tree of the hypercube Hy. Tchuente at
el. [79] made a step towards the proof of this conjecture by showing that the
binomial tree By is a local optimum with respect to the 1-move heuristic (A
1-move consists of adding to a tree H, an edge e and removing an edge e’ from
the unique cycle created by e).

Recently, Jana and Mondal [50], and Mondal [60], obtained efficient algo-
rithms for computing MAD tree on permutation graphs and trapezoid graphs
respectively in O(n?) time bound based on breadth-first tree.

4.2 Concluding remarks and open issues of MAD trees

Although the problem of finding a MAD tree is NP-hard in general, but for-
tunately there is a possibility of obtaining a polynomial time algorithm for
restricted family of graphs. Based on the results aforementioned, we conclude
this section with few open problems and future research in computing a MAD
tree:

e [s there a polynomial time algorithm to find a MAD tree of a vertex
weighted interval graph [21]7 The authors in [21] point out that using
their existing technique, the possible candidates for future research could
be strongly chordal graphs.

e It would also be interesting to know for which other restricted graph
classes a MAD tree can be computed in polynomial time. Because the
result on distance-hereditary graphs is known in polynomial time, so
apart from the strongly chordal graphs, the other possible candidate
could also be chordal bipartite graphs.

e Hypercube is a well known and popular interconnection network for mul-
ticomputers. The question whether the binomial tree is a MAD tree of
the hypercube remains open (see [31]) even though Tchuente at el. [79]
made a step towards this open problem.

5 Conclusions

In this paper, we reviewed studies on the all-pairs shortest paths problem and
its variants namely, the Wiener index, the average distance, and the minimum

A survey of the APSP problem and its variants in graphs 35

average distance spanning tree (MAD tree) problem in graphs. Each of these
problems are undoubtedly fundamental and classical problems in graph algo-
rithms and is well known in the research community. The significance of such
problems are rich in applications. From the perspective of all-pairs shortest
paths problem, the discussions are focused on the exact results of the static
version. From the perspective of Wiener index, average distance, and MAD
trees, the discussions are focused mostly on the algorithmic computation of
such problems. Finally, under each section, some of the major open issues
and future research are discussed on algorithmic determination and obtaining
closed form expressions for each of such problems.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesely, Reading, 1974. =19, 22
[2] A. Alon, Z. Galil, O. Margalit, go , J. Comput. Sys. Sci 54, 2 (1997) 255-262.
—23, 25
[3] M. J. Atallah, D. Z. Chen, D. T. Lee, An optimal algorithm for shortest paths
on weighted interval and circular arc graphs, with applications, Proc. European
Sympos. on Algorithms, Lecture Notes in Computer Science 726 (1993) 13-24.
=20
[4] A.T. Balaban, Applications of graph theory in chemistry, J. Chem. Inf. Comput,
Sci. 25, 3 (1985) 334-343. =28
[5] V. Balachandhran, C. Pandu Rangan, All-pairs-shortest length on strongly
chordal graphs, Discrete Appl. Math. 69, 1-2 (1996) 169-182. =20
[6] Y. A. Ban, S. Bereg, N. H. Mustafa, A conjecture on Wiener indices in combi-
natorial chemistry, Algorithmica 40, 2 (2004) 99-117. =17, 30
[7] G. E. Blelloch, V. Vassilevska, R. Williams, A new combinatorial approach for
sparse graph problems, Proc. International Colloguium on Automata, Languages
and Programming 35 (2008) 108-120. =25
[8] A.Brandstiadt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr.
Disc. Math. Appl. 1999. =27
[9] R. M. Casablanca, Average distance in the strong product of graphs, Util. Math.
94 (2014) 31-48. =29
[10] T. M. Chan, All-pairs shortest paths with real weights in O(n3/logn) time, Proc.
9th Workshop Algorithms Data Struct., Lecture Notes in Computer Science 3608
(2005) 318-324. Also available in Algorithmica 50, 2 (2008) 236-243. =22
[11] T. M. Chan, All-pairs shortest paths for unweighted undirected graphs in o(mn)
time, Proc. ACM-SIAM Sympos. Discrete Algorithms 17 (2006) 514-523. =25
[12] T. M. Chan, More algorithms for all-pairs shortest paths in weighted graphs, In
Proc. 39th ACM Symposium on Theory of Computing (STOC) (2007) 590-598.
=22

http://www.cs.columbia.edu/~aho/
http://www.cs.cornell.edu/jeh/
http://infolab.stanford.edu/~ullman/
http://www.amazon.in/Analysis-Algorithms-Addison-Wesley-Information-Processing/dp/0201000296
http://www.tau.ac.il/~nogaa/
http://www.cs.columbia.edu/~galil/
http://researcher.watson.ibm.com/researcher/view.php?person=il-ODEDM
http://www.sciencedirect.com/science/journal/00220000
https://www.cs.purdue.edu/homes/mja/
http://link.springer.com/bookseries/558
http://www.tamug.edu/mars/Faculty%20Biographies/AlexandruTBalaban.html
http://pubs.acs.org/doi/abs/10.1021/ci00047a033
http://pubs.acs.org/doi/abs/10.1021/ci00047a033
http://www.cse.iitm.ac.in/~rangan/
http://publications.cse.iitm.ac.in/768/1/DAM96-II.pdf
http://utdallas.edu/~besp/wiener-journal.ps.gz
http://algorithmica.co.in/
http://cs.cmu.edu/~guyb/
http://web.stanford.edu/~rrwill/icalp08.pdf
http://web.stanford.edu/~rrwill/icalp08.pdf
http://informatik.uni-rostock.de/~ab/
http://epubs.siam.org/doi/book/10.1137/1.9780898719796
http://eng.scholar.cnki.net/result.aspx?q=AUTHOR%3A(R+M+Casablanca)
http://bkocay.cs.umanitoba.ca/utilitas/index.html
https://cs.uwaterloo.ca/~tmchan/
http://link.springer.com/bookseries/558
http://www.algorithmica.co.in/
https://cs.uwaterloo.ca/~tmchan/
http://dl.acm.org/citation.cfm?id=1109614
https://cs.uwaterloo.ca/~tmchan/
http://acm-stoc.org/stoc2007/

36

K.R. UK Reddy

[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]

V. Chepoi, S. Klavzar, The Wiener index and the Szeged index of benzenoid
systems in linear time, J. Chem. Inf. Comput. Sci. 37, 4 (1997) 752-755. =29
V. Chepoi, S. Klavzar, Distances in benzenoid systems: further developments,
Discrete Math. 192, 1-3 (1998) 27-39. =29

F. R. K. Chung, The average distance and the independence number, J. Graph
Theory 12, 2 (1988) 229-235. =29, 32

E. Cohen, Using selective path-doubling for parallel shortest-path computations,
J. Algorithms 22, 1 (1997) 30-56. =20

E. Cohen, Polylog-time and near-linear work approximation scheme for undi-
rected shortest paths, J. ACM 47, 1 (2000) 132-166. =20

D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions,
J. of Symb. Comput. 9, 3 (1990) 251-280. =23

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. =16, 17, 21, 24, 27

E. Dahlhaus, Optimal (parallel) algorithms for the all-to-all vertices distance
problem for certain graph classes, Proc. of the International Workshop Graph-
Theoretic Concepts in Comput. Sci., Lecture Notes in Computer Science 657
(1992) 60-69. =20

E. Dahlhaus, P. Dankelmann, W. Goddard, H. C. Swart, MAD trees and
distance-hereditary graphs, Discrete Appl. Math. 131, 1 (2003) 151-167. =
33, 34

E. Dahlhaus, P. Dankelmann, R. Ravi, A linear-time algorithm to compute a
MAD tree of an interval graph, Inf. Process. Lett. 89, 5 (2004) 255-259. =33
P. Dankelmann, Computing the average distance of an interval graph, Inform.
Process. Lett. 48, 6 (1993) 311-314. =29, 31, 32

P. Dankelmann, Average distance and independence number, Discrete Appl.
Math. 51, 1-2 (1994) 75-83. =29, 30

P. Dankelmann, Average distance and domination number, Discrete Appl. Math.
80, 1 (1997) 21-35. =29

P. Dankelmann, Average distance in weighted graphs, Discrete Math. 312, 1
(2012) 12-20. =29

E. Dijkstra, A note on two problems in connexion with graphs, Numerische
mathematik 1, 1 (1959) 269-271. =21

C. Demetrescu, G. F. Italiano, Fully dynamic transitive closure: breaking
through the O(n?) barrier, Proc. IEEE Sympos. on Found. Comput. Sci. 41
(2000) 381-389. =20

J. K. Doyle, J. E. Graver, Mean distance in a graph, Discrete Math. 17, 2 (1977)
147-154. =29

W. Dobosiewicz, A more efficient algorithm for the min-plus multiplication, Int.
J. Comput. Math. 32, 1-2 (1990) 49-60. = 22

http://www.fmf.uni-lj.si/~klavzar/
http://pubs.acs.org/doi/abs/10.1021/ci9700079?journalCode=jcics1
http://www.fmf.uni-lj.si/~klavzar/
http://www.fmf.uni-lj.si/~klavzar/preprints/distances-victor.pdf
http://onlinelibrary.wiley.com/doi/10.1002/jgt.3190120213/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jgt.3190120213/abstract
http://www.cohenwang.com/edith/
http://www.sciencedirect.com/science/article/pii/S0196677496908135
http://www.cohenwang.com/edith/
http://dl.acm.org/citation.cfm?id=331610
http://ethw.org/Don_Coppersmith
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://link.springer.com/bookseries/558
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.86.6022
http://contrib.andrew.cmu.edu/~ravi/mad.pdf
https://scholar.google.co.in/citations?user=jmeHpKUAAAAJ&hl=en
http://sciencedirect.com/science/article/pii/0020019093901748
http://sciencedirect.com/science/article/pii/0020019093901748
https://scholar.google.co.in/citations?user=jmeHpKUAAAAJ&hl=en
http://sciencedirect.com/science/article/pii/0166218X94900957
http://sciencedirect.com/science/article/pii/0166218X94900957
https://scholar.google.co.in/citations?user=jmeHpKUAAAAJ&hl=en
http://sciencedirect.com/science/article/pii/S0166218X9700067X
https://scholar.google.co.in/citations?user=jmeHpKUAAAAJ&hl=en
http://sciencedirect.com/science/article/pii/S0012365X11000586
http://cs.utexas.edu/~EWD/
http://link.springer.com/journal/211
http://link.springer.com/journal/211
http://www.dis.uniroma1.it/~demetres/
http://www.disp.uniroma2.it/users/italiano/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=892126&abstractAccess=no&userType=inst
http://sciencedirect.com/science/article/pii/0012365X77901443
http://www.mathstat.uoguelph.ca/people/457
http://www.tandfonline.com/doi/pdf/10.1080/00207169008803814
http://www.tandfonline.com/doi/pdf/10.1080/00207169008803814

A survey of the APSP problem and its variants in graphs 37

31]
[32]
[33]
[34]
[35]
[36]

[37]

[44]
[45]
[46]

[47]

(48]

[49]

A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and
applications, Acta Appl. Math. 66, 3 (2001) 211-249. =17, 28, 29, 30, 34

A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal
systems, Acta Appl. Math. 72, 3 (2002) 247-294. =30

F. F. Dragan. Estimating all pairs shortest paths in restricted graph families: a
unified approach. J. of Algorithms 57, 1 (2005) 1-21. =17, 26, 27

R. C.Entringer, D. E. Jackson, D. A. Synder, Distance in graphs, Czech. Math.
J. 26, 2 (1976) 283-296. =30

R. C. Entringer, Distance in graphs: trees, J. Combin. Math. Combin. Comput.
24 (1997) 65-84. =33

R. C. Entringer, D. J. Kleitman, L. A. Szekely, A note on spanning trees with
minimum average distance, Bull. Inst. Combin. Appl. 17 (1996) 71-78. =33
A. X. Falcao, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch,
R. A. Lotufo, User-steered image segmentation paradigms: Live wire and live
lane, Graphical Models and Image Process. 60, 4 (1998) 233-260. =16

T. Feder, R. Motwani, Clique patritions, graph compression and speeding-up
algorithms, J. Comput. Sys. Sci. 51, 2 (1995) 261-272. =25

A. M. Fitch, and M. B. Jones, Shortest path analysis using partial correlations for
classifying gene functions from gene expression data, Bioinformatics 25 (2009)
42-47. =17

M. Fredman, R. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM 34, 3 (1987) 596-615. =21, 24

M. L. Fredman, New bounds on the complexity of the shortest path problem,
SIAM J. Comput. 5, 1 (1976) 49-60. = 22

7. Galil, O. Margalit, All pairs shortest distances for graphs with small integer
length edges, Inform. Comput. 134, 2 (1997) 103-139. =23, 24, 25

T. Hagerup, Improved shortest paths on the word RAM, Proc. International
Colloguium on Automata, Languages, and Programming (ICALP), Lecture Notes
in Computer Science 1853 (2000) 61-72. =24, 27

K. Han, C. N. Sekharan, R. Sridhar, Unified all-pairs shortest path algorithms
in the chordal hierarchy, Discrete Appl. Math. 77, 1 (1997) 59-71. =20, 26
Y. Han, M. Thorup, Integer sorting in O(n+/loglogn) expected time and linear
space, Symp. on Found. of Comput. Sci. 43 (2002) 135-144. =24

Y. Han, Improved algorithm for all pairs shortest paths, Inform. Process. Lett.
91, 5 (2004) 245-250. =22

Y. Han, An O(n3(loglogn/logn)5/4) time algorithm for all pairs shortest paths,
Proc. European Sympos. Algorithms, Lecture Notes in Computer Science 4168
(2006) 411-417. =22

Y. Han, T. Takaoka, An O(n?loglog n/log? n) time algorithm for all pairs short-
est paths, Proc. 13th SWAT, Lecture Notes in Computer Science 7357 (2012)
131-141. =23

M. R. Henzinger, P. Klein, S. Rao, S. Subramanian, Faster shortest-path algo-
rithms for planar graphs, J. Comput. System Sci. 55, 1 (1997) 3-23. =26

http://www.pmf.kg.ac.rs/gutman/
http://link.springer.com/article/10.1023%2FA%3A1010767517079
http://www.pmf.kg.ac.rs/gutman/
http://www.fmf.uni-lj.si/~klavzar/preprints/Wiener-survey.pdf
http://www.cs.kent.edu/~dragan/
http://www.cs.kent.edu/~dragan/WG01.pdf
https://www.researchgate.net/publication/265328694_Distance_in_Graphs
https://www.researchgate.net/publication/265328694_Distance_in_Graphs
http://www.combinatorialmath.ca/jcmcc/
https://www.researchgate.net/publication/244968351_A_note_on_spanning_trees_with_minimum_average_distance
https://scholar.google.com/citations?user=HTFEUaUAAAAJ&hl=da
http://www.sciencedirect.com/science/journal/10773169
http://theory.stanford.edu/~tomas/
http://www.journals.elsevier.com/journal-of-computer-and-system-sciences/
http://bioinformatics.oxfordjournals.org/content/early/2008/11/03/bioinformatics.btn574.full.pdf
https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/fibonacci%20heaps.pdf
https://www.researchgate.net/publication/220616408_New_Bounds_on_the_Complexity_of_the_Shortest_Path_Problem
http://www.cs.columbia.edu/~galil/
http://www.sciencedirect.com/science/article/pii/S0022000097913854
https://cosc.canterbury.ac.nz/tad.takaoka/url/tong/a.pdf
https://cosc.canterbury.ac.nz/tad.takaoka/url/tong/a.pdf
http://link.springer.com/bookseries/558
https://scholar.google.com/citations?user=nx6rSEwAAAAJ&hl=en
http://www.sciencedirect.com/science/article/pii/S0166218X96001035
http://sce.umkc.edu/directory/yijie-han/
http://www.diku.dk/~mthorup/
http://sce.umkc.edu/directory/yijie-han/
http://www.sciencedirect.com/science/article/pii/S0020019004001528
http://sce.umkc.edu/directory/yijie-han/
http://link.springer.com/bookseries/558
http://sce.umkc.edu/directory/yijie-han/
http://link.springer.com/bookseries/558
https://scholar.google.co.in/citations?user=NXbggxYAAAAJ&hl=en
http://theory.stanford.edu/~virgi/cs267/papers/planar-sssp.pdf

38

K.R. UK Reddy

[50]
[51]
[52]

[53]

B. Jana, S. Mondal, Computation of a minimum average distance tree on per-
mutation graphs, Annals of Pure and Appl. Math. 2, 1 (2012) 74-85. =34

D. Johnson, Efficient algorithms for shortest paths in sparse graphs, J. ACM
24,1 (1977) 1-13. =21, 23, 24

D. S. Johnson, J. K. Lenstra, A. H. G. Rinnooy-Kan, The complexity of the
network design problem, Networks 8, 4 (1978) 279-285. =33

V. King, Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs, Proc. IEEE Sympos. on Found. of Comput. Sci.
40 (1999) 81-89. =20

S. Klavzar, and I. Gutman, Wiener number of vertex-weighted graphs and a
chemical applications, Discrete Appl. Math. 80, 1 (1997) 73-81. =18

S. Klavzar, P. Manuel, M. J. Nadjafi-Arani, R. Sundara Rajan, C. Grigorious, S.
Stephen, Average distance in interconnection networks via reduction theorems
for vertex-weighted graphs, To appear =28, 29, 31, 32, 33

F. Le Gall, Faster algorithms for rectangular matrix multiplication, Proc. 53rd
FOCS (2012) 514-523. =23, 25, 27

P. Mirchandani, A simple O(n?) algorithm for the all-pairs shortest path problem
on an interval graph, Networks 27, 3 (1996) 215-217. =20

B. Mohar, T. Pisanski, How to compute the Wiener index of a graph, J. Math.
Chem. 2 (1988) 267-277. =29

S. Mondal, M. Pal, T. K. Pal, An optimal algorithm for solving all-pairs shortest
paths on trapezoid graphs, Int. J. Comp. Eng. Sci. 3, 2 (2002) 103-116. =26
S. Mondal, An efficient algorithm for computation of a minimum average distance
tree on trapezoid graphs, J. Scientific Research and Reports 2, 2 (2013) 598—611.
=34

E. N. Mortensen, W. A. Barrett, Interactive segmentation with intelligent scis-
sors, Graphical Models and Image Process. 60, 5 (1998) 349-384. =16

S. Mukwembi, Average distance, independence number, and spanning trees, J.
Graph Theory 76, 3 (2014) 194-199. =29

W. Peng, X. Hu, F. Zhao, J. Su, A fast algorithm to find all-pairs shortest paths
in complex networks, Procedia Comp. Sci. 9 (2012) 557-566. = 16

S. Pettie, A new approach to all-pairs shortest paths on real-weighted graphs,
Theoret. Comput. Sci. 312, 1 (2004) 47-74. =21, 24

S. Pettie, V. Ramachandran, A shortest path algorithm for real-weighted undi-
rected graphs, SIAM J. Comput. 34, 6 (2005) 1398-1431. =24

S. Peyer, D. Rautenbach, J. Vygen, A generalization of Dijkstras shortest path
algorithm with applications to VLSI routing, J. Discrete Algorithms 7, 4 (2009)
377-390. =16

M. Randic, Chemical graph theory-facts and fiction, Ind. J. Chem. 42A (2003)
1207-1218. =28

R. Ravi, M. V. Marathe, C. Pandu Rangan, An optimal algorithm to solve the
all-pair shortest path problem on interval graphs, Networks 22, 1 (1992) 21-35.
=20

http://www.researchmathsci.org/apamart/apam-v2n1-9.pdf
http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/Lec7-Johnson.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/SelectedTopics/Johnson-et-al.pdf
http://webhome.cs.uvic.ca/~val/resume13.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=814580&abstractAccess=no&userType=inst
http://www.fmf.uni-lj.si/~klavzar/
http://www.fmf.uni-lj.si/~klavzar/preprints/PHENYLEN.pdf
http://www.fmf.uni-lj.si/~klavzar/
http://www.francoislegall.com/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6375330&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6375330&abstractAccess=no&userType=inst
http://www.pitt.edu/~pmirchan/
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0037(199605)27:3%3C%3E1.0.CO;2-7/issuetoc
http://www.fmf.uni-lj.si/~mohar/Reprints/1988/BM88_JMC2_Pisanki_WienerIndex.pdf
http://www.fmf.uni-lj.si/~mohar/Reprints/1988/BM88_JMC2_Pisanki_WienerIndex.pdf
http://www.worldscientific.com/doi/abs/10.1142/S1465876302000575
http://sciencedomain.org/abstract/1916
https://scholar.google.co.in/citations?user=gPJrMu8AAAAJ&hl=en
http://courses.cs.washington.edu/courses/cse455/09wi/readings/seg_scissors.pdf
http://maths.ukzn.ac.za/StaffMaster/SimonMukwembi.aspx
https://www.researchgate.net/publication/261804476_Average_Distance_Independence_Number_and_Spanning_Trees
https://www.researchgate.net/publication/261804476_Average_Distance_Independence_Number_and_Spanning_Trees
https://www.msu.edu/~pengwei/
http://www.sciencedirect.com/science/article/pii/S1877050912001810
http://web.eecs.umich.edu/~pettie/
http://people.mpi-inf.mpg.de/~pettie/papers/tcs.pdf
http://web.eecs.umich.edu/~pettie/
http://web.eecs.umich.edu/~pettie/papers/undsp.pdf
http://www.or.uni-bonn.de/home/peyer.index.html
http://www.sciencedirect.com/science/article/pii/S1570866709000653
http://cmtpi-2015.web.auth.gr/speakers/milan-randic/
http://nopr.niscair.res.in/bitstream/123456789/20677/1/IJCA%2042A(6)%201207-1218.pdf
http://www.cse.iitm.ac.in/~rangan/
http://onlinelibrary.wiley.com/doi/10.1002/net.v22:1/issuetoc

A survey of the APSP problem and its variants in graphs 39

[69]

[70]

[71]

[72]

[79]

[30]

[81]

A. Saha, M. Pal, T. K. Pal, An optimal parallel algorithm for solving all-pairs
shortest paths problem on circular-arc graphs, J. Appl. Math. and Computing
17 1 (2005) 1-23. =27

J. P. Schmidt, All highest scoring paths in weighted grid graphs and their ap-
plication to finding all approximate repeats in strings, SIAM J. Comput. 27, 4
(1998) 972-992. =16

R. Seidel, On the all-pairs shortest path problem in unweighted undirected
graphs, J. Comput. Sys. Sci. 51, 3 (1995) 400-403. = 23, 24, 25

T. Shinn, T. Takaoka, Combining all pairs shortest paths and all pairs bottleneck
paths problems, Lecture Notes in Computer Science 8392 (2014) 226-237. =
23

A. Shoshan, U. Zwick, All pairs shortest paths in undirected graphs with integer
weights, Proc. IEEE Sympos. on Found. of Comput. Sci. 40 (1999) 605-614. =
23, 27

C. Sommer, Approximate shortest path and distance queries in networks, PhD
thesis, The University of Tokyo, 2010. =20

R. Sridhar, D. Joshi, N. Chandrasekharan, Efficient algorithms for shortest dis-
tance queries on interval, directed path and circular arc graphs, Proc. Int’l. Conf.
on Comput. and Inf. 5 (1993) 31-35. =20

V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13, 4 (1969)
354-356. =23

T. Takaoka, A new upper bound on the complexity of the all pairs shortest path
problem, Inform. Process. Lett. 43, 4 (1992) 195-199. =22

T. Takaoka, A faster algorithm for the all-pairs shortest path problem and its
application, Proc. 10th Int. Conf. Comput. Comb., Lecture Notes in Computer
Science 3106 (2004) 278-289. =22

M. Tchuente, P. M. Yonta, J. Nlong II, Y. Denneulin, On the minimum average
distance spanning tree of the hypercube, Acta Appl. Math. 102, 2-3 (2008)
219-236. =34

M. Thorup, Undirected single-source shortest paths with positive integer weights
in linear time, J. ACM 46, 3 (1999) 362-394. =24

M. Thorup, Integer priority queues with decrease key in constant time and the
single source shortest paths problem, J. Comp. Sys. Sci. 69, 3 (2004) 330-353.
=24

N. Trinajstic, Chemical Graph Theory, CRC Press, Boca raton, FL, 1992. =28
K. R. Udaya Kumar Reddy, Computing average distance on strongly chordal
graphs, National J. Tech. 8, 1 (2012) 26-35. =31, 32

V. Vassilevska Williams, Multiplying matrices faster than Coppersmith-
Winograd, Proc. 44th ACM Symposium on Theory of Computing (to appear,
2012). =23

K. V. Iyer, K. R. Udaya Kumar Reddy, Weiner index of binomial trees and
Fibonacci trees, Int. J. Math. Engg. with Comp. 1 (2010) 27-34. Also available
at http://arxiv.org/abs/0910.4432. = 31, 32

https://www.researchgate.net/publication/226230200_An_optimal_parallel_algorithm_for_solving_all-pairs_shortest_paths_problem_on_circular-arc_graphs
http://epubs.siam.org/doi/abs/10.1137/S0097539795288489?journalCode=smjcat
http://www-tcs.cs.uni-sb.de/
http://duch.mimuw.edu.pl/~mucha/teaching/alp2006/seidel92.pdf
http://www.cosc.canterbury.ac.nz/tad.takaoka/
http://link.springer.com/bookseries/558
http://www.math.tau.ac.il/~zwick/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=814635&abstractAccess=no&userType=inst
http://www.sommer.jp/thesis.htm
http://www.ou.edu/coe/cs/people/sridhar.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=315407&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=315407&abstractAccess=no&userType=inst
http://www.math.uni-konstanz.de/~strassen/
http://dl.acm.org/citation.cfm?id=2722798
http://www.cosc.canterbury.ac.nz/tad.takaoka/
http://www.sciencedirect.com/science/article/pii/002001909290200F
http://www.cosc.canterbury.ac.nz/tad.takaoka/
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
https://www.researchgate.net/publication/225781251_On_the_Minimum_Average_Distance_Spanning_Tree_of_the_Hypercube
http://www.diku.dk/~mthorup/
http://dl.acm.org/citation.cfm?id=316548
http://www.diku.dk/~mthorup/
http://perso.ens-lyon.fr/eric.thierry/Graphes2009/thorup.pdf
http://www.amazon.com/Chemical-Theory-Edition-Mathematical-chemistry/dp/0849342562
http://nmamit.nitte.edu.in/?page_id=31
http://www.psgtech.edu/journal/Vol08_Mar201205.html
http://theory.stanford.edu/~virgi/
http://dl.acm.org/citation.cfm?id=2214056
http://www.nitt.edu/home/academics/departments/cse/faculty/kvi/
http://arxiv.org/pdf/0910.4432v1.pdf

40

K.R. UK Reddy

(86]

[87]
(83]

[89]

[90]
[91]

[92]

B. Y. Wu, G. Lancia, V. Bafna, K. M. Chao, R. Ravi, C. Y. Tang, A polynomial-
time approximation scheme for minimum routing cost spanning trees, STAM .J.
Comput. 29, 3 (2000) 761-778. =33

L. Xu, X. Guo, Catacondensed hexagonal systems with large Wiener numbers,
MATCH Commun. Math. Comput. Chem. 55, 1 (2006) 137-158. =28

S. J. Xu, R. Gysel, D. Gusfield, Minimum average distance clique trees, SIAM
J. Discrete Math. 29, 3 (2015) 1706-1734. =28, 29

B. Zmazek, J. Zerovnik, Computing the weighted Wiener and Szeged number on
weighted cactus graphs in linear time, Croat. Chem. Acta. 76, 2 (2003) 137-143.
=32

U. Zwick, Exact and approximate distances in graphs: a survey, Proc. European
Symp. on Algorithms 9 (2001) 33-48. =18, 27

U. Zwick, All-pairs shortest paths using bridging sets and rectangular matrix
multiplication, J. ACM 49, 3 (2002) 289-317. =22, 23, 25

U. Zwick, A slightly improved sub-cubic algorithm for the all pairs shortest paths
problem with real edge lengths, Proc. Int. Sympos. Algorithms and Computation,
Lecture Notes in Computer Science 3341 (2004) 921-932. =22

Received: February 13, 2016 * Revised: March 18, 2016

https://scholar.google.com/citations?user=a0wbKRAAAAAJ&hl=en
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1410&context=tepper
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1410&context=tepper
http://match.pmf.kg.ac.rs/electronic_versions/Match55/n1/match55n1_137-158.pdf
http://web.cs.ucdavis.edu/~gusfield/
http://epubs.siam.org/doi/abs/10.1137/15M1021052
http://epubs.siam.org/doi/abs/10.1137/15M1021052
https://www.researchgate.net/publication/279888723_Computing_the_Weighted_Wiener_and_Szeged_Number_on_Weighted_Cactus_Graphs_in_Linear_Time
http://www.math.tau.ac.il/~zwick/
http://dl.acm.org/citation.cfm?id=740642
http://dl.acm.org/citation.cfm?id=740642
http://www.math.tau.ac.il/~zwick/
http://arxiv.org/pdf/cs/0008011.pdf
http://www.math.tau.ac.il/~zwick/
http://link.springer.com/bookseries/558

	1 Introduction
	1.1 Motivation
	1.2 Preliminaries and notations

	2 All-pairs shortest paths problem
	2.1 Background
	2.2 Arbitrary weighted graph
	2.2.1 Dense real-weighted graphs
	2.2.2 Dense integer-weighted graphs
	2.2.3 Sparse graphs

	2.3 Arbitrary unweighted graph
	2.3.1 Dense graphs
	2.3.2 Sparse graphs

	2.4 Restricted family of graphs
	2.5 Concluding remarks and open issues of APSP problem

	3 Wiener index or average distance
	3.1 Background
	3.2 Computation of Wiener index or average distance
	3.3 Concluding remarks and open issues of Wiener index or average distance

	4 MAD trees
	4.1 Computation of MAD trees
	4.2 Concluding remarks and open issues of MAD trees

	5 Conclusions

