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Abstract.
The Yang-Mills fields plays important role in the strong interaction,

which describes the quark gluon plasma. The non-Abelian gauge the-
ory provides the theoretical background understanding of this topic.The
real time evolution of the classical fields is derived by the Hamiltonian
for SU(2) gauge field tensor. The microcanonical equations of motion is
solved on 3 dimensional lattice and chaotic dynamics was searched by
the monodromy matrix. The entropy-energy relation was presented by
Kolmogorov-Sinai entropy. We used block Hessenberg reduction to com-
pute the eigenvalues of the current matrix. While the purely CPU based
algorithm can handle effectively only a small amount of values, the GPUs
provide enough performance to give more computing power to solve the
problem.

1 Introduction

In particle physics there are more fundamental questions which demand the
GPU, both of theoretical and experimental point of view.
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In the CERN NA61 collaboration one of most important research field is
the quark-gluon examination. The aspects of theoretical physics includes the
next current topics in the lattice field theory using GPU: strongly interacting
Higgs sector, QCD hadron spectrum (eigenvalue distribution of he overlap
Dirac operator).
We present a parallel algorithm, which enables to study the chaotic be-

haviour as Lyapunov spectrum of SU(2) Yang-Mills fields and the entropy-
energy relation utilizing the Kolmogorov-Sinai entropy. We uses this method
for large number of element of matrices to apply the CUDA platform particu-
larly the eigenvalue of the monodromy matrix, which is an fx×f sparse matrix
(f = 24N).
The first step the non-Abelian gauge fields equation of motions is written by

the lattice Hamiltonian SU(2) [2]. This system was solved by lattice process
developed on the GPU [5]. The algorithm satisfies the constraint of the total
energy and the unitarity, orthogonality of the suitable link variable on the 3
dimensional space.
In the next step we use the block Hessenberg reduction [11] to compute the

required eigenvalues to determine the chaotic behaviour [8]. As it is described
in [10] we are working with a hybrid system, that utilizes both the CPU and
GPU for the most optimal performance. Thanks to this system it is possible
to reach 2-3 times higher performance compared to the simple CPU based
implementation of the same block Hessenberg reduction.
In the section 2 we introduce the basic concept of the non-Abelian gauge

field. We describe the lattice regularization of Yang-Mills fields and SU(2)
Hamiltonian to achieve the equations of motion in the section 3. We consider
the chaotic description of the dynamics in the section 4, which contains chaos
in the Hamiltonian systems and the lattice monodromy matrix method. The
Hessenberg method is introduced in the section 5 to determine the eigenval-
ues of the monodromy matrix. The parallel hyprid Hessenberg algorithm is
investigated in the section 6. The eigenvalue spectrum is determined by this
parallel method and the numerical result is summarized in this section.

2 Gauge fields

The non-Abelian gauge[13] field plays important role in the theoretical particle
physics. This theory based on principles of gauge invariance, which is derived
from the Abelian gauge field to consider the principle of invariance under local
gauge transformation.
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In the electrodynamics field of charge e undergoes the local gauge transfor-
mation but derivative of this field does not transform like as the field itself,
therefore we must introduce a field Aμ(x) (μ = 0, 1, 2, 3) with gauge trans-
formation property Aμ(x) → Aμ(x) + ∂μΛ(x), with arbitrary Λ(x) then we
use it to construct a gauge invariant derivative of the original field of e, which
transform just like this field. The gauge-invariant Lagrange can be constructed
by these quantities. A dynamics for the gauge field is introduced by means of
the Yang-Mills action:

SYM =
1

4

∫
d4xFaμνF

a
μν, (1)

where the Faμν form is a component of an antisymmetric gauge field tensor in
Minkowski space:

Faμν = ∂μA
a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν, (2)

where μν = 0, 1, 2, 3 are space-time coordinates, the symmetry generators are
labeled by a, b, c = 1, 2, 3 and g is the bare gauge coupling constant and fabc

are the structure constants of the continuous Lie group. The generators of
this group fulfill the following relationship [Tb, Tc] = ifbcdTd. The equation of
motion can be expressed by covariant derivative in the adjoint representation:

∂μFaμν + gfabcAbμFcμν = 0. (3)

The Yang-Mills action contains cubic and quartic self-interaction terms. The
original article[14] was published by Yang and Mills in 1954.

3 Lattice Yang-Mills fields

We will describe the lattice regularization on the Euclidean continuum to the
hyper-cubic lattice [9].
The shortest non-zero distance on a hyper-cubic lattice is the lattice spacing

a.
These are group elements which are related to the Yang-Mills potential Ac

i :

Ux,i = exp(aAc
i (x)T

c), where Tc is a group generator. (4)

For SU(2) symmetry group these links are given by the Pauli matrices τ,
where Tc = −(ig/2)τc. The indices x, i denote the link of the lattice which
starts at the 3 dimensional position x and pointing into the nearest neighbour
in direction i, x+i. We consider the collection of all link variables as the lattice
gauge field.
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3.1 Wilson action

We consider the construction of a gauge invariant action for the gauge field.
The non-Abelian gauge field strength can be expressed by the oriented pla-

quette i.e. product of four links on an elementary box with corners (x, x+ i,

x+ i+ j, x+ j):

Ux,ij = Ux,iUx+i,jUx+i+j,−iUx+j,−j, (5)

where Ux,−i = U
†
x−i,i and we will use this notation Up ≡ Ux,ij.

The Wilson action is defined for pure lattice gauge theory [4]

S[U] =
∑
p

Sp(Up) (6)

with the plaquette term:

Sp(U) = β(1−
1

N
ReTrU), (7)

for SU(2) and β is a constant. Here the sum over all plaquettes p is meant to
include every plaquette only with one orientation.
The Wilson action is gauge invariant since TrU ′

p = TrUp and it is real and
positive.
We consider the question, in which sense Wilson action for SU(2) is related

to the Yang-Mills action for gauge fields on the continuum. Because Aμ(x) a
Lie algebra values vector field. The expression (4) is extended by a, then the
Wilson action is the following:

S = −
β

4N

∑
x

a4TrFμν(x)F
μν(x) +O(a5). (8)

Thus the leading term for small ’a’ coincidences with the Yang-Mills action
if we set β = 2N

g2
, where g identifies the bare coupling constant of the lattice

theory.
The coupling on space-like and time-like plaquettes are no longer equal in

the action:

S =
2

g2

∑
pt

(N− tr(Upt)) −
2

g2

∑
ps

(N− tr(Ups)). (9)

The time like plaquette is denoted by Upt and space like Ups .
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Consider the path is a closed contour i. e. Wilson loop, it is invariant under
gauge changes and independent of the starting point. The product of such
group elements along the closed line is a gauge covariant quantity, the trace
over such products are invariant. Because the Upt can be series expansion by
at:

Upt = U(t)U†(t+ at) = UU† + atUU̇† +
a2
t

2
UÜ† + ... (10)

N− tr(Upt) = −
a2
t

2
tr(UÜ†) up to O(a3

t) correction, where UU† = 1.

Therefore the homogenous non-Abelian gauge action:

ΔSH =
2

g2

⎛
⎝a2

t

2

∑
i

tr(U̇iU̇
†
i ) −

∑
ij

(N− tr(Uij))

⎞
⎠ . (11)

The Scaled Hamiltonian was derived in the next form:

atH =
2

g2

⎛
⎝a2

t

2

∑
i

tr(U̇iU̇
†
i ) +

∑
ij

(N− tr(Uij))

⎞
⎠ . (12)

The indices x, i denotes the link of the lattice starting at the 3 dimensional
position x and pointing into the i-th direction.

3.2 SU(2) Hamiltonian

We study the real time classical evolution of the next Hamiltonian for SU(2)
[3] [2]:

H =
∑
x,i

(
1

2
〈U̇x,i, U̇x,i〉+

(
1−

1

4
〈Ux,i, Vx,i〉

))
. (13)

The complement variable Vx,l(U) is constructed from triple product of links,
which is complete to considere every link x, i to an elementary plaquette:

Vx,l =
1

4

∑
((l,s):{(i,j),(k,j),(−i,j),(−k,j)} )

Ux+l,sU
†
x+l+s,−lU

†
x+l,−l, where (14)
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i, j, k note the unit vectors of three dimensional lattice. The canonical variable
assigns by Px,i = U̇x,i. We will denote the single link Ux,i with U. Quaternion
representation (for one link):

U = u0 + iτaua U =

(
u0 + iu3, iu1 + u2

iu1 − u2, u0 − iu3

)
, (15)

where, τa is the Pauli matrix. The lattice equation of motion is derived by
canonical variable from this Hamiltonian.

3.3 Lattice equations of motion

The Hamiltonian equation of motion is solved with dt discrete time steps.
This algorithm satisfies the Gauss law and the constraint of total energy[1].
We will denote single link Ux,i in time t with Ut.

Ut+1 −Ut−1 = 2Δt(Pt − εUt)
Pt+1 − Pt−1 = 2Δt(V(Ut) − μUt + εPt), where

(16)

ε =
〈Ut, Pt〉
〈Ut,Ut〉 , μ =

〈V(Ut), Ut〉+ 〈Pt, Pt〉
〈Ut,Ut〉 (17)

The ε, μ means the Lagrange multipliers and the symmetry SU(N) is fulfilled
by the next expressions: 〈Ut,Ut〉 = 1 (unitarity) and 〈Ut, Pt〉 = 0 (orthogo-
nality).

3.3.1 Implicit-Explicit-Endpoint algorithm

We apply these notions

P
′
= Pt+1 P = Pt.

The Implicit-Explicit-Endpoint recursion algorithm:

P
′

= P + (V − μU+ εP
′
) (18)

U
′

= U+ (P
′
− εU), (19)

where μ, ε are the Lagrange multipliers.
In the next section we study the nonlinearity of the Yang-Mills fields, which

is described by the chaotic theory[12]. Instead of the classical rescaling solution
we apply the monodromy matrix method, which can describe the gauge field
evolution, in this case the short and long time behaviour. The question of
ergodization is addressed via the Kolmogorov-Sinai entropy.
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4 Measurement of chaos

We consider the description of dynamical systems. One of these is the Poencare
map.

xi+1 = P(xi) i = 0, 1, 2 . . ., (20)

where we assign a hyper-surface n−1 dimension in the phase space n dimension
and the trayectories are cutting it. The successive points of intersection can
be given by this expression (20). Lyapunov exponent is defined by the next
form:

d

dt
xi = Fi(x1 . . . xn) i = 1 . . .N. (21)

Let us introduce the quantity δxi(t):

δxi(t) = xi − x̃i, (22)

where δxi(t) means the distance between the two paths. The evolution of this
notion is the following:

d

dt
(δxi) =

N∑
i=1

δxk(t)

(
∂Fi

∂xi

)
xi=x̃k(t)

. (23)

The value of the distance δxi(t) is calculated by this expression:

D(t) =

(
N∑
i=1

δ(xi(t))
2

) 1
2

. (24)

This quantity indicates the changing of the track distance δx̃i(t), where the
paths were near at the beginning (t = 0). The maximal Lyapunov exponent
follows:

L = lim
t→∞

lim
d(0)→0

1

t
ln

D(t)

D(0)
. (25)

If L > 0, then the motion becomes chaoticity. We mention the rescaling method
[7] briefly. Let us suppose there is a point q(0) in the phase space and the vec-
tors vi, i = 1 . . . νK in the tangent space Tq(0), we solve the equations of motion
in phase space. We obtain q(t) and vi ∈ Tq(t) under the parallel evolution
of the paths for a small perturbation of the initial condition in the tangent
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space. The Gram-Schmidt ortogonalisation is applied to determinate the tan-
gent vector vi on the interval kτ. The scaling vectors si are obtained by this
procedure to calculate the Lyapunov exponents:

Li = lim
n→∞

n∑
k=1

ln ski
τ

, (26)

where n is the number of iterations. One condition is to determine the tangent
space at different points of phase space in this procedure. It is easy in the
Euclidean space, but more difficult on the lattice gauge theory, because we
need to perform the rescaling frequently.
The monodromy matrix method follows only one gauge field path for a long

time evolution. This matrix is a linear stability matrix along a trayectory,
which is solved by classical equation of motion and it provides the Lyapunov
spectrum in the time evolution of field configuration on lattice.

4.1 Chaos in Hamiltonian system

An important part of the dynamical process is to provide the Hamiltonian
function. This depends on the coordinate of space and momentumH(qi, pi), i =
1 . . . n. The canonical conjugates variables are following

ṗi = −
∂H

∂qi

q̇i =
∂H

∂pi

. (27)

Let us given qi+νi, pi+ζi nearby trajectories up to the linear approximation.
Then the modified Hamilton function:

H
′
= H+

(
ζj
∂H

∂pj

+ νj
∂H

∂qj

)
. (28)

The canonical variables are introduced:

ζ̇i = −
∂

∂qi

(
ζj
∂H

∂pj

+ νj
∂H

∂qj

)
, (29)

ν̇i =
∂

∂pi

(
ζj
H

pj

+ νj
∂H

∂qj

)
. (30)

The equations of motion can be written in the next form:(
ζ̇

ν̇

)
=

(
−∂2pqH −∂2qH

∂2pH ∂2pqH

)(
ζ

ν

)
. (31)
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If there exist at least one positive eigenvalue of this stability matrix, then the
(ξ, ν) distance grows exponentially and the system is chaoticity.
The Lyapunov spectrum Li is expressed in terms of the monodromy matrix’s

eigenvalues Λi [6]:

Li = lim
T→∞

∫T
0
Λi(t)dt

T
, i = 1, . . . , f, (32)

where Λi(t) are the solutions of the characteristic equation:

det[Λi(t)1−M(t)] = 0.

(33)

at a given time t. Here M is the linear stability matrix, and f is the number
of degrees of freedom. The discrete definition of the Lyapunov spectrum:

L ′
i = 〈Λi〉 = 1

n

n∑
j=1

lnΛi(tj−1), i = 1, . . . , f, (34)

where tj’s are subsequent times along an evolutionary path of the gauge field
configurations. In the conservative dynamics the Liouville’s theorem is fulfilled:

f∑
i=0

Li = 0. (35)

In the Hamiltonian system due to the conservation of the energy Li = −Lf−i+1

is satisfied for every i. The Kolmogorov-Sinai entropy is expressed by Pesins
formula:

hKS =
∑
i

LiΘ(Li), (36)

where Θ(x) being 1 for positive arguments and 0 otherwise. The dimension of
hKS is a rate (1/time) estimating the entropy:

S =
hKS

Re(L0)N3
. (37)

4.2 Lattice monodromy matrix

We explain the elements of the matrix in this section. The monodromy matrix
is the following:

M(t) =

(
∂U̇
∂U

∂U̇
∂P

∂Ṗ
∂U

∂Ṗ
∂P

)
. (38)
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The matrix’s elements of the lattice Hamiltonian for SU(2) are expounded:

∂U̇a

∂Ub = 0, (39)

∂U̇a

∂Pb = δab, (40)

∂Ṗa

∂Ub = ∂Va

∂Ub − (
∑N

c=1 Uc
∂Vc

∂Ub )U
a − VbUa −

∑N
c=1(UcV

c + PcP
c)δab, (41)

∂Ṗa

∂Pb = −2PbUa, where (42)

∂V
αq
k

∂Uβq
=

∑N
l=1

∂V
αq
k (U1,...,UN )

∂U
βq
l

, ahol N = 12, αq, βq = 0, 1, 2, 3. (43)

The over-dots assign the derivative with respect to the scaled time t/a. They
are providing information about the stability of trajectories in the neighbour-
hood of any point of an orbit in the (U, P) phase space. A small perturbation
(δU, δP), evolves in time governed by the monodromy matrix M. It is written
by this form:

M(t) =

(
0 1
∂Ṗ
∂U

∂Ṗ
∂P

)
. (44)

The eigenvalues of this matrix can be classified as follows: for real and positive
eigenvalues, neighbouring trajectories part exponentially and the motion is
unstable. In the limit of large time we obtain the Lyapunov components from
these eigenvalues to use the expression (34).

5 The eigenvalues of the monodromy matrix

The stability matrix is very rare and the number of element of matrix is very
large. We applied the Hessenberg method [11] for the determination of the
eigenvalues of the monodromy matrix, because the convergence of this method
is very fast.
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5.1 Balancing

The balancing procedure enables to take into account the sensitivity of the
eigenvalues to rounding errors. The errors is proportional to the Euclidean
norm of the matrix. The idea of balancing applies the similarity transforma-
tions to make corresponding rows and columns of the matrix have comparable
norms, while leaving the eigenvalues unchanged. Balancing is a procedure of
order N2 operations.
We used the algorithm of Osborn. This process contains a sequence of sim-

ilarity transformations by diagonal matrices D. The rounding errors was in-
vestigated during the balancing method, the elements of D are restricted to
the powers of the radix, which base applied for floating-point arithmetic (i.e.
2 for most machines). The output is a matrix that is balanced in the norm,
which is given by summing the absolute magnitudes of the matrix elements.

5.2 Reduction to Hessenberg form

First we reduced the matrix to a simplified form, it is called Hessenberg form,
and the we applied an iterative procedure on the simpler matrix. Such struc-
ture can be accomplished by a sequence of Householder transformations, or
other method, which is similar to Gaussian elimination with pivoting. Accord-
ingly, the actual elimination procedure used is little bit different from Gauss
elimination process.
Before the r-th stage, the original matrix A ≡ A1 has become Ar, which

was upper Hessenberg form in its first r− 1 rows and columns. The r-th stage
then contained the following operations:

• Search for the element of maximum magnitude in the r-th column below
the diagonal. If it is zero, drop the next two ”bullets” and the stage is
done. Otherwise, suppose the maximum element was in row r ′.

• The rows r ′ and r+1 are swapped (the pivoting procedure). To perform
the permutation a similarity transformation, also swapped columns r ′

and r+ 1.

• For i = r+ 2, r+ 3, . . .N compute the multiplier

ni,r+1 ≡ air

ar+1,r

.

Subtract ni,r+1 times row r + 1 from row i. To perform the elimination
of the similarity transformation, we also add ni,r+1 times column i to
column r+ 1.
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A total of N− 2 such stages are carried out.
When the magnitudes of the matrix elements changed by many orders, we

rearranged the matrix so that the largest elements is situated in the top left-
hand corner. This decreased the roundoff error (the reduction proceeds from
left to right). The operation count is about 5N3/6 for large N.

5.3 The QR algorithm for real Hessenberg matrices

We took the following relations for the QR algorithm with shifts:

Qs · (As − ks1) = Rs (45)

where Q is orthogonal and R is upper triangular matrix, and

As+1 = Rs ·QT
s + ks1 = Qs ·As ·QT

s . (46)

The QR transformation keeps the upper Hessenberg form of the original matrix
A ≡ A1 and the workload is O(n2) per iteration on such matrix. As s → ∞, As

converges to a term, where the eigenvalues are either isolated on the diagonal
elements or they are eigenvalues of 2 × 2 submatrix on the diagonal. This
shows a rapid convergence. The basic difference in this situation is that a
nonsymmetric real matrix can have complex eigenvalues. This means that the
eigenvalues may be complex for a good choices of the shifts ks.
The complex arithmetic can be used in this process. We need here states

that if B is a nonsingular matrix such that

B ·Q = Q ·H, (47)

where Q is orthogonal and H is upper Hessenberg, then Q and H are fully
determined by the first column of Q.
We used two step of the QR algorithm, either with two real shifts ks and

ks+1, or with complex conjugate values ks and ks+1 = k∗. This gives a real
matrix As+2, where

As+2 = Qs+1 ·Qs ·As ·QT
s ·QT

s+1. (48)

The Q’s are calculated by the next expression:

As − ks1 = QT
s · Rs (49)

As+1 = Qs ·As ·QT
s (50)
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As+1 − ks+11 = QT
s+1 · Rs+1. (51)

Let us used the equation (50), and the expression (51) can be written:

As − ks+11 = QT
s ·QT

s+1 · Rs+1 ·Qs. (52)

Therefore, if we define

M = (As − ks+11) · (As − ks1) (53)

equations (49) and (52) give

R = Q ·M, (54)

where

Q = Qs+1 ·Qs (55)

R = Rs+1 · Rs. (56)

The equation (48) can be rewritten:

As ·QT = QT ·As+2. (57)

We search for an upper Hessenberg matrix H such that

As ·QT
= Q

T ·H, (58)

where Q is orthogonal. If Q
T
has the same first column as QT , then Q = Q

and As+2 = H.
The first row of Q is determined as follows. The equation (54) presents

that Q is orthogonal matrix and it triangularizes the real matrix M. Any real
matrix can be triangularized with a sequence of Householder matrices P1, P2,
... Pn−1. Thus the matrix Q can expressed by Q = Pn−1 . . . P2 · P1.
We need search for Q, which is satisfying equation (58) whose first row is

that of P1. The Householder matrix P1 is determined by the first column of
M. Because As is upper Hessenberg, the equation (53) presents that the first
column of M has the form [p1, q1, r1, 0, . . . 0]

T , where

p1 = a2
11 − a11(ks + ks+1) + ksks+1 + a12a21

q1 = a21(a11 + a22 − ks − ks+1)

r1 = a21a32. (59)
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Therefore
P1 = 1− 2w1 ·wT

1 ,

where w1 has only its first 3 elements nonzero. Proceeding in this way up to
Pn−1, we can see that at each stage the Householder matrix Pr has a vector
wr, which is nonzero only in elements r, r + 1 and r + 2. These elements are
calculated by the elements r, r + 1, and r + 2 in the (r − 1)-st column of the
current matrix.
The result is the next

Pn−1 · · ·P2 · P1 ·As · PT
1 · PT

2 · · ·PT
n−1 = H,

where H is upper Hessenberg matrix. Thus

Q = Q = Pn−1 · · ·P2 · P1
and

As+2 = H.

The shifts of the beginning at each stage are formed to the eigenvalues of the
2× 2 matrix in the bottom right-hand corner of the current As.
This gives

ks + ks+2 = an−1,n−1 + ann

ksks+1 = an−1,n−1ann − an−1,nan,n−1. (60)

Substituting the expression (60) in the equation (59) we get

p1 = a21 {[(ann − a11)(an−1,n−1 − a11) − an−1,nan,n−1]/a21 + a12}

q1 = a21[a22 − a11 − (ann − a11) − (an−1,n−1 − a11)]

r1 = a21a32. (61)

We reduce possible roundoff, when there are small off-diagonal elements. Fi-
nally, we perform a double QR step we constructed the Householder matrices
Pr r = 1, . . . n− 1.
For P1 we applied p1, q1 and r1, which were given by expressions (61). The

remaining matrices, pr, qr and rr were calculated by the (r, r−1), (r+1, r−1),
and (r + 2, r − 1) elements of the current matrix. The number of arithmetic
operations can be decreased by writing the nonzero elements of the 2w · wT

part of the Householder matrix in the form

2w ·wT =

⎡
⎣ (p± s)/(±s)

q/(±s)
r/(±s)

⎤
⎦ · [1 q/(±s) r/(p± s)],
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where

s2 = p2 + q2 + r2.

If we proceed in this way, convergence is usually very fast, which is need to
control from step to step. There are two possible ways of terminating the
iteration for an eigenvalue. First, if an,n−1 becomes ’negligible’, then ann is
an eigenvalue. We can then delete the n-th row and column of matrix and
find the next eigenvalue. Otherwise an−1,n−2 may become negligible. Then the
eigenvalues of the 2 × 2 matrix in the lower right-hand corner may be taken
to be eigenvalues. We delete the n-th and (n − 1)-th rows and column of the
matrix and continue the process. The operation count for the QR algorithm
described here is ∼ 5k2 per iteration, where k is the current size of the matrix.
In the next (6.) Section the significant question is the parallelisation of the

Hessenberg method in rare matrix.

6 Parallel hybrid Hessenberg method

In [5] we used the CUDA platform to develop a parallel version of the Yang-
Mills algorithm for lattice calculations. Here we give the details how we have
moved forward from there by applying parallelism to calculate the eigenvalues
of the monodromy matrix (4.1. subsection), which helps to show the chaos in
the non-Abelian gauge field theory.

6.1 Main idea

Examining the Hessenberg method we can easily differentiate parts that has
more computational intensive tasks, while others are not so performance sen-
sitive. Hence the Block Hessenberg Algorithm is used. In this instead of taking
the whole matrix as the input of the transformation process we divide it into
smaller blocks. We take these blocks and calculate the Householder vector for
each column in that block and with it update the consecutive columns. When
finished we use the accumulated Householder transformations to update the
rest of the whole matrix. We repeat this until we update all the blocks. This
way with the accumulated Householder transformations in overall less matrix
multiplications will be used compared to the original Hessenberg Algorithm
in which case we always have to update every column with the calculated
Householder vector.
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6.1.1 Block householder algorithm

To calculate the Householder vectors we use the following [10]:

ν = (
1

Ak+1,k+σ

) (62)

σ = sign(Ak+1,k‖x‖2) (63)

Vk = [ν1, ν2, ..., νk] (64)

Compact-WY representation of the k Householder transformations:

(I− ν1ν
T
1 )...(I− νkν

T
k) = I− VkTkV

T
k

A := A(I− VLTLV
T
L ) = A− YLV

T
L

A := (I− VLTLV
T
L )A

Tk =

[
Tk−1 −τkTk−1V

T
k−1νk

0T τk

]
(65)

Yk = AVkTk =
[
Yk−1 τk(−Yk−1V

T
k−1νk +Aνk)

]
(66)

We initialize V,T and Y as follows:

V1 = [ν1]

T1 = [τ1]

Y1 = [AV1T1]

Update formula for one column of a block

A∗,k := A∗,k − Yk((Vk)k,∗)T (67)

A∗,k := (I− VkT
T
k V

T
k )A∗,k (68)

Update formula for the rest of the matrix

A∗,L+1:n := A∗,L+1:n − YL((VL)L+1:n,∗)T (69)

A∗,L+1:n := (I− VLT
T
L V

T
L )A∗,L+1:n (70)
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With the hybrid implementation we extend the algorithm to the GPU as
much as reasonably possible. The GPU will need a high amount of data to be
able to achieve high utilization [15] and thus high performance, so the low on
data parts of the calculation are kept on the CPU while the intensive matrix
multiplications are pushed to the GPU.
Before commencing any calculations we upload the matrix into the GPUs

memory, after that we follow the next steps for the kth block:
For every column (i) in the block:

1. Compute the Householder vector (v), the ith column of V (CPU) [eq.
62,63,64]

2. Update T and Y matrices (CPU) [eq. 65,66]

3. Update the next column (CPU) [eq. 67,68]

After updating the block:

4. Update the rest of the matrix with V,Y,T (GPU) [eq. 69,70]

5. Copy over the next block to the CPU as it has been updated on the
GPU

6. Continue the reduction

6.2 Restrictions

The monodromy matrix can become very big as we increase the N parameter
of the lattice, thus requiring a lot of memory, which can go up to the TB
range. Because of this right now reasonable results can be achieved only up to
N = 6.

6.3 Implementation

For implementation and testing we have used a GeForce GTX 980M with
compute capability 5.2 (Table 1) and an Intel Core i7-4710HQ CPU that does
not have an IGP (Table 2).
As the starting point the original matrix for which we would like to compute

the Hessenberg form will be uploaded to the GPU. After this as we compute
the new Hessenberg vectors in the V matrix trough the blocks and update
the T, Y matrices we are providing every element for the GPU to update our
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GeForce GTX 980M

Technical Specifications Compute Capability 5.2

Transistors (Million) 5200

Memory (GB) 4

Memory Bandwidth (GB/s) 160

GFLOPs 3189

TDP (watts) 125

Table 1: GeForce GTX 980M technical specifications.

i7-4710HQ

Transistors (Million) 1400

Connected memory (GB) 24

Memory Bandwidth (GB/s) 25.6

GFLOPs 422

TDP (watts) 47

Table 2: Core i7-4170HQ technical specifications.

original matrix. We copy the V, T, Y matrices to the GPU and using matrix-
matrix multiplication we do the update. After this as the matrix has been
changed the next block will be copied over to the CPU side. We choose the
blocks to be 32 columns wide.
For doing the matrix multiplications in parallel on the GPU we use the

NVIDIA developed CUBLAS library’s cublasdgemm function, while on the
CPU we use LAPACK with Intel MKL BLAS.

6.3.1 Comparison of the theoretical performance

Here we provide a comparison between the GPU’s and CPU’s achievable per-
formance based on the GFLOPS and TDP values.
If we look at the computational power of the used processors we can see that

the GPU is 7.5 times higher than what the CPU can provide. The GFLOPS
of the CPU was calculated using the following formula:

GFLOPS = cores ∗ clock ∗ FLOPs

cycle
/1000

The clock rate of a Core i7-4710HQ on full load with all 4 cores activated is
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3.3 GHz and the maximum FLOPs/cycle is 32 [16], thus the maximum per-
formance number in Table 2. If we would like to reach the GPU’s performance
with the actual CPU architecture, this means we will need 7.5 times more
power. This means if we stay on the Haswell architecture and we will just try
to increase the throughput we will reach a TDP of 352.5 watts. This leads us
to the conclusion if we would like to have the same performance on the CPU
that we have on the GPU will need 2.82 times more power for the CPU. This
will also mean that the physical limitations will not hold back the increase
of clock rate and power which can never be true, leaving the GPUs the most
efficient processors.

6.4 Numerical results

To calculate the eigenvalues of the monodromy matrix we used the Hessenberg
method. To make the process more efficient we applied the block Hessenberg
model to be able to utilize parallelization.
For overall testing the following system was used (Table 3):

CPU GPU OS Compiler
CUDA
version

Intel Core
i7 4710HQ

GeForce
GTX 980M

Windows
10 Pro

Visual
C++ 2013

7.0

Table 3: The used system’s specification.

The numerical results fulfill the physical principle, the constraint value of the
physical quantity remains constant during the time evolution of the equation
of motion. The Lyapunov Spectrum (Figure 2) justifies the existence of the
chaotic motion in the Yang-Mills fields.
We compared the runtime of the CPU to the GPU (Figure 1), the GPU gives

substantially better results as we increase the available work. Evaluating the
same lattice size the runtime on the GPU shows acceleration of a magnitude
of 3.
The Kolmogorov-Sinai entropy (Figure 3) is obtained from the evolution

eigenvalues of the monodromy matrix as functions of the scaled energy. These
results gives good approximation for an ideal gas (S logE).
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Figure 1: Runtime on the CPU and on the GPU with N = 2, 3, 4, 5, 6.
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Figure 2: The Lyapunov spectrum on N=6.

Figure 3: The Kolmogorov-Sinai entropy on N=6.
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7 Summary

As the GPUs are becoming more powerful with each new architecture it be-
comes easier to modify the existing applications and algorithms to be parallel.
In our case the Block Hamilton algorithm was able to achieve a 3 fold speed
up compared to the CPU version, while computing the eigenvalues of the
monodromy matrix.
By moving from CPU to GPU the eigenvalues are the same, thus keeping

the physical principles valid. Physical constant quantities remains constraint
while solving the equation of motion by parallel algorithm, such as the total
energy.
The performance of the GPUs make it possible to calculate eigenvalues of

the monodromy matrix to evince the chaotic behaviour of Yang-Mills system.
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[5] R. Forster, A. Fülöp, Yang-Mills lattice on CUDA, Acta Univ. Sapientiae, In-
formatica, 5, 2 (2013) 184–211. ⇒217, 230
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[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Re-
cipies in C, Cambridge University Press, 2002. ⇒217, 225

[12] L. E. Reichl, The Transition to Chaos, Springer-Verlag, 1992. ⇒221
[13] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press CB2

1RP, 1996 ⇒217
[14] C. N. Yang, R. Mills, Conservation of isotropic spin and isotopic gauge invari-

ance, Phys. Rev. 96 (1954) 191–195. ⇒218
[15] CUDA C Programming Guide NVIDIA Corp., 2013, http://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html. ⇒232
[16] Technology Insight: Intel Next Generation Microarchitecture Code Name

Haswell, IDF2012. ⇒234

Received: September 30, 2015 • Revised: December 29, 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


