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Abstract. A k-hypertournament H = (V,A), where V is the vertex set
and A is an arc set, is a complete k-hypergraph with each k-edge endowed
with an orientation, that is, a linear arrangement of the vertices contained
in the edge. In a k-hypertournament, the score si(losing score ri) of a
vertex is the number of edges containing vi in which vi is not the last
element(in which vi is the last element) and the total score of a vertex vi
is ti = si − ri. For v ∈ V we denote d+

H =
∑
a∈H

ρ(v, a) (or simply d+(v))

the degree of a vertex where, ρ(v, a) is k − i if v ∈ a ∈ A and v is the
ith entry in a, otherwise zero. In this paper, we obtain necessary and
sufficient conditions for a k-hypertournament to be degree regular. We
use the inequalities of Holder and Chebyshev from mathematical analysis
to study the score and degree structure of the k-hypertournaments.
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1 Introduction

Hypertournaments which are the generalizations of tournaments, have been
studied by number of authors like R. Assous [1], Barbut and Bialostocki [2], P.
Frank [4] and Gutin and Yeo [5]. These authors raise the problem of extending
the most important results on tournaments to hypertournaments. G. Zhou et
al. [26] extended the concept of scores in tournaments to that of scores and
losing scores in hypertournaments, and derived various results [6, 14, 15, 16,
17, 18, 19, 21, 10, 11, 12, 13, 22, 23, 25].
Given two non-negative integers n and k with n ≥ k > 1, a k-hypertour-

nament H on n vertices is a pair (V,A), where V is the set of vertices with
| V |= n, and A is the set of k-tuples of vertices called arcs, such that for any
k-subset S of V , A contains exactly one of the k! k tuples whose entries belong
to S.
Zhou et al. [26] extended the concept of scores in tournaments to that of

scores and losing scores in hypertournaments, and derived a result analogous
to Landau’s theorem [9] on tournaments. The score s(vi) or si of a vertex vi
is the number of arcs containing vi in which vi is not the last element and the
losing score r(vi) or ri of a vertex vi is the number of arcs containing vi in which
vi is the last element. The score sequence (losing score sequence) is formed by
listing the scores(losing scores) in non-decreasing order. A k-hypertournament
is said to be regular if the scores of each vertex (equivalently the losing scores)
are same.
Let H be a k-hypertournament and let v ∈ V be any vertex and a =

(v1, v2, . . . , vn) ∈ A be an arc of H. We denote by d+
H =

∑
a∈H

ρ(v, a) (or simply

d+(v)) the degree of a vertex v ∈ V where,

ρ(v, a) =

{
k− i, if v ∈ a and v is the ith entry of a,

0, if v /∈ a.

A hypertournament is said to be degree regular if all the vertices have the
same degree. The degree sequence of a k-hypertournament in non-decreasing
order is a sequence of non-negative integers [d1, d2, . . . , dn], where each di is
the degree of some vertex in V .
The following characterizations of losing score sequences of k-hypertourna-

ments can be found in [26], and a new short proof is given by Pirzada et al.
in [20].
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Theorem 1 Given two non-negative integers n and k with n ≥ k > 1, a
non-decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing
score sequence of some k-hypertournament if and only if for each 1 ≤ j ≤ n,

j∑
i=1

ri ≥
(
j

k

)
, (1)

with equality when j = n.

Theorem 2 Given two integers n and k with n ≥ k > 1, a non-decreasing
sequence S = [s1, s2, . . . , sn] of non-negative integers is a score sequence of
some k-hypertournament if and only if for each 1 ≤ j ≤ n,

j∑
i=1

si ≥ j

(
n− 1

k− 1

)
+

(
n− j

k

)
−

(
n

k

)
, (2)

with equality when j = n.

Koh and Ree [7] defined the k-hypertournament matrix M = M(H) associ-
ated with a k-hypertournament H = (V,A) as the incidence matrix M = [mij]
of size n× (

n
k

)
of H, where for 1 ≤ i ≤ n and 1 ≤ j ≤ (

n
k

)
, mij is given by

mij =

⎧⎪⎨
⎪⎩
1, if vi ∈ ej and vi is not the last element of ej,

−1, if vi ∈ ej and vi is the last element of ej,

0, if vi /∈ ej.

Since si + ri =
(
n−1
k−1

)
for each i, then clearly a given sequence s1 ≥ s2 ≥ . . . ≥

sn ≥ 0 is a score sequence of a k-hypertournament.

Theorem 3 A non-increasing sequence of non-negative integers s1 ≥ s2 ≥
. . . ≥ sn ≥ 0 is a score sequence of a k-hypertournament H if and only if

l∑
i=1

si ≤ l

(
n− 1

k− 1

)
− l

(
l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.
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Theorem 4 Sequences 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ and r1 ≥ r2 ≥ . . . ≥ rn ≥ 0

are the score and losing score sequence of a k-hypertournament H if and only
if they satisfy si + ri =

(
n−1
k−1

)
for all i = {1, 2, . . . , n},

l∑
i=1

si ≥ l

(
n− 1

k− 1

)
+ l

(
n− l

k

)
−

(
n

k

)
,

and
l∑

i=1

ri ≤
(
n

k

)
−

(
n− l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.

The following result [7] gives the condition for a sequence to be the total
score sequence of a k-hypertournament matrix.

Theorem 5 A non-increasing sequence of integers T = [t1, t2, . . . , tn] is the
total score sequence of a k-hypertournament matrix M on n vertices if and
only if ti has the same parity as that of

(
n−1
k−1

)
, for all i = {1, 2, . . . , n} and

l∑
i=1

ti ≤ l

(
n− 1

k− 1

)
− 2

(
l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.

Khan, Pirzada and Kayibi [8] applied the inequalities from mathematical
analysis like Holder’s, Minkowski’s and Mahler’s inequalities to the powers
of scores and losing scores of k-hypertournaments and obtained the following

results. The result below [8] gives a lower bound on
j∑

i=i

r
g
i , where 1 < g < ∞

is a real number.

Theorem 6 [8]. Let n and k be two non-negative integers with n ≥ k > 1.
If [r1, r2, . . . , rn] is a losing score sequence of a k-hypertournament, then for
1 < g < ∞

j∑
i=i

r
g
i ≥ j

kg

(
j− 1

k− 1

)g

,

where 1 ≤ j < n. In particular, for j = n

n∑
i=i

r
g
i ≥ n

kg

(
n− 1

k− 1

)g

, (3)
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with equality in (3) holds if and only if the hypertournament is regular.

The next result [8] gives an upper bound for the inner product of score and
losing score vectors in Rn. The bound given in Theorem 7 is best possible in
the sense that it is realized by regular hypertournaments. It should also be
noted that Theorem 7 does not depend on the order of si and ri, and holds
for any arbitrary ordering of scores and losing scores.

Theorem 7 Let n and k be two non-negative integers with n ≥ k > 1. If
S = [s1, s2, . . . , sn] and R = [r1, r2, . . . , rn] are respectively the score and losing
score sequence of a k-hypertournament, then

〈S, R〉 =
n∑
i=1

siri ≤ k− 1

k

(
n

k

)(
n− 1

k− 1

)
,

with equality holds if and only if the hypertournament is regular.

For k = 2 the degree sequence is identical to the score sequence given
in [9]. In [27] Zhou and Zhang conjectured that a nondecreasing sequence
D = [d1, d2, . . . , dn] of nonnegative integers is a degree sequence of some k-
hypertournament under some conditions, and proved for the case k = 3.
The conjecture raised by Zhou and Zhang in [27] was settled by Chao and

Zhou [24] and was obtained the following result.

Theorem 8 Given two positive integers n and k with n > k > 1, a nonde-
creasing sequence [d1, d2, . . . , dn] of nonnegative integers is a degree sequence
of some k-hypertournament if and only if

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

for all 1 ≤ r ≤ n with equality for r = n.

Let H be a an r-uniform hypergraph with r ≥ 2 and let α(H) be the vertex
independence number of H. In 2014 Chisthi, Zhou, Pirzada and Iványi [3] gave
bounds for α(H) for different uniform hypergraphs.

2 On stronger bounds in hypertournaments

The following result is an equivalent form of Theorem 7 for scores and losing
scores in a k-hypertournament. Here we give a different proof of this result.
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Theorem 9 Given two nonnegative integers n and k with n ≥ k > 1, if
S = [s1, s2, . . . , sn] of nonnegative integers in nonincreasing order is a score
sequence and R = [r1, r2, . . . , rn] in non-decreasing order is the losing score
sequence of some k-hypertournament, then

j∑
i=1

siri ≤
(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
, (4)

with equality holds if and only if the hypertournament is regular.

Proof. Let S = [s1, s2, . . . , sn] and R = [r1, r2, . . . , rn] be respectively the score
sequence and losing score sequence of a k-hypertournament H, with S being
non-increasing and R being nondecreasing. Then as a consequence of Cauchy-
Schwartz inequality, we have(

r1 + r2 + . . .+ rn

n

)(
s1 + s2, . . .+ sn

n

)
≥ r1s1 + r2s2 + . . .+ rnsn

n
,

or
1

n

n∑
i=1

siri ≤ 1

n2

n∑
i=1

ri

n∑
i=1

si,

or
n∑
i=1

siri ≤ 1

n

n∑
i=1

ri

n∑
i=1

si. (5)

Now,
n∑
i=1

(si + ri)ri =

n∑
i=1

siri +

n∑
i=1

r2i .

This gives,
n∑
i=1

(
n− 1

k− 1

)
ri =

n∑
i=1

siri +

n∑
i=1

r2i ,

(because si + ri =
(
n−1
k−1

)
, 1 ≤ i ≤ n).

So, (
n− 1

k− 1

) n∑
i=1

ri =

n∑
i=1

siri +

n∑
i=1

r2i ,

or (
n− 1

k− 1

)(
n

k

)
=

n∑
i=1

siri +

n∑
i=1

r2i , (6)
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(by the equality in Theorem 1).
Further, by the Chebyshev’s inequality, we have,

n∑
i=1

siri ≥ 1

n

n∑
i=1

si

n∑
i=1

ri.

Using this in (6), we get(
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +

n∑
i=1

r2i . (7)

Since the arithmetic mean of n non-negative real numbers never exceeds their
root mean square, that is, √∑n

i=1 r
2
i

n
≥

∑n
i=1 ri

n
,

with equality if and only if r1 = r2 = . . . = rn,
or

n∑
i=1

r2i ≥
(
∑n

i=1 ri)
2

n
. (8)

Using (8) in (7) we get(
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +
(
∑n

i=1 ri)
2

n
.

Therefore, (
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +

(
n

k

)2
1

n
,

or

1

n

n∑
i=1

si

n∑
i=1

ri ≤
(
n− 1

k− 1

)(
n

k

)
−

1

n

(
n

k

)2

=

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
.

Using this in (5), we get

n∑
i=1

siri ≤
(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
. (9)
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Now we show that the equality in (9) holds if and only if the hypertourna-
ment is regular, that is, if and only if r1 = r2 = . . . = rn = r.
Let r1 = r2 = . . . = rn = r in (9).
Then equality holds if and only if

r

n∑
i=1

si =

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
.

That is, if and only if

1

n

(
n

k

) n∑
i=1

si =

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
,

(because by the equality in Theorem 1).
That is, if and only if

1

n

(
n

k

){
n

(
n− 1

k− 1

)
+ 0−

(
n

k

)}
=

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
,

(because by the equality in Theorem 2).
Therefore,

1

n

{
n

(
n− 1

k− 1

)
−

(
n

k

)}
=

(
n− 1

k− 1

)
−

1

n

(
n

k

)
,

or (
n− 1

k− 1

)
−

1

n

(
n

k

)
=

(
n− 1

k− 1

)
−

1

n

(
n

k

)
,

which is true. Hence the equality in (9) holds, if and only if the hypertourna-
ment is regular. �
The next result gives stronger bound for the total scores in k-hypertourna-

ments.

Theorem 10 If S = [s1, s2, . . . , sn] is a score sequence in non-decreasing or-
der, R = [r1, r2, . . . , rn], is a losing score sequence in non-increasing order
and T = [t1, t2, . . . , tn] is the total score sequence in non-increasing order of a
k-hypertournament H, then for 1 < p < ∞

l∑
i=1

t
p
i ≥ l

{(
n− 1

k− 1

)
+

2

l

(
n− l

k

)
−

2

l

(
n

k

)}p

,

with equality holds if and only if t1 = t2 = . . . = tn and l = n.
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Proof. Since the total score is ti = si − ri, then

l∑
i=1

ti =

l∑
i=1

si −

l∑
i=1

ri.

Therefore, by using Theorem 4 we obtain,

l∑
i=1

ti ≥ l

(
n− 1

k− 1

)
+

(
n− l

k

)
−

(
n

k

)
−

(
n

k

)
+

(
n− l

k

)
,

or
l∑

i=1

ti ≥ l

(
n− 1

k− 1

)
− 2

(
n

k

)
+ 2

(
n− l

k

)
. (10)

But by the Holder’s inequality with 1
p
+ 1

q
= 1 we have,

l∑
i=1

ti ≤
(

l∑
i=1

t
p
i

) 1
p
(

l∑
i=1

t
q
i

) 1
q

.

Using in (10), we get

l
1
q

(
l∑

i=1

t
p
i

) 1
p

≥ l

(
n− 1

k− 1

)
+ 2

(
n− l

k

)
− 2

(
n

k

)
,

or (
l∑

i=1

t
p
i

) 1
p

≥ l−
1
q

(
l

(
n− 1

k− 1

)
+ 2

(
n− l

k

)
− 2

(
n

k

))
.

This implies

(
l∑

i=1

t
p
i

) 1
p

≥ l
− 1

q l

(
n− 1

k− 1

)
+

2

l
l
− 1

q l

(
n− l

k

)
−

2

l
l
− 1

q l

(
n

k

)

≥ l
1− 1

q

(
n− 1

k− 1

)
+

2

l
l
1− 1

q

(
n− l

k

)
−

2

l
l
1− 1

q

(
n

k

)

= l
1− 1

q

((
n− 1

k− 1

)
+

2

l

(
n− l

k

)
−

2

l

(
n

k

))

= l
1
p

((
n− 1

k− 1

)
+

2

l

(
n− l

k

)
−

2

l

(
n

k

))
,



Scores and degrees in hypertournaments 209

(because 1
p
+ 1

q
= 1 or 1

p
= 1− 1

q
),

which gives,

l∑
i=1

t
p
i ≥ l

((
n− 1

k− 1

)
+

2

l

(
n− l

k

)
−

2

l

(
n

k

))p

. (11)

Now, we show that the equality in (11) holds, if and only if t1 = t2 = . . . =
tn = t and l = n. That is, the equality in (11) holds if and only if

ntp = n

((
n− 1

k− 1

)
+

2

n

(
n− n

k

)
−

2

n

(
n

k

))p

.

That is, if and only if

tp =

((
n− 1

k− 1

)
+

2

n
(0) −

2

n

(
n

k

))p

,

or

t =

(
n− 1

k− 1

)
−

2

n

(
n

k

)
,

or

t =
k

n

(
n

k

)
−

2

n

(
n

k

)
=

1

n

(
n

k

)
(k− 2), (12)

which is the total score of a vertex in a regular k-hypertournament, because
of the following fact.
By Theorem 5, we have for l = n, and t1 = t2 = ... = tn = t

n∑
i=1

t = n

(
n− 1

k− 1

)
− 2

(
n

k

)
.

This implies,

nt = n

(
n− 1

k− 1

)
− 2

(
n

k

)
,

or

t =

(
n− 1

k− 1

)
−

2

n

(
n

k

)
.

Further, we can write

t =
k

n

(
n− 1

k− 1

)
−

2

n

(
n

k

)
=

1

n

(
n

k

)
(k− 2), (13)

which shows that, (12) and (13) are same. �
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3 Degrees in hypertournaments

It is evident from Theorem 8 that inequalities on degrees play important role
in the study of hypertournaments. We shall use the classical inequalities to
provide more insight into the behavior of degrees in hypertournaments and
hence the structure of hypertournaments. We also discuss the case of equality
in detail for the inequalities derived and prove the equality holds if and only
if the hypertournament is degree regular. We also obtain the necessary and
sufficient conditions for the existence of a degree regular hypertournament.

Theorem 11 Let n and k be two positive integers with n > k > 1. If D =
[d1, d2, . . . , dn] is a degree sequence of some k-hypertournament, then for a
real number p with 1 < p < ∞

r∑
i=1

d
p
i ≥ r

2p
(r− 1)p

(
n− 2

k− 2

)p

, (14)

where 1 ≤ r ≤ n. In particular, for r = n

n∑
i=1

d
p
i ≥ n

2p
(n− 1)p

(
n− 2

k− 2

)p

, (15)

with equality in (15) holds if and only if the hypertournament is degree regular.

Proof. By Theorem 8, we have

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

or (
r

2

)(
n− 2

k− 2

)
≤

r∑
i=1

di.

But,
r∑

i=1

di =

r∑
i=1

di.1 ≤ (

r∑
i=1

d
p
i )

1
p (

r∑
i=1

1q)
1
q ,

(because by Holder’s inequality with, 1
p
+ 1

q
= 1).

Hence, (
r

2

)(
n− 2

k− 2

)
≤

(
r∑

i=1

d
p
i )

) 1
p
(

r∑
i=1

1q

) 1
q

,
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(for, 1 ≤ r ≤ n and 1
p
+ 1

q
= 1).

That is, (
r

2

)(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i )

1
p r

1
q ,

or

r
− 1

q

(
r

2

)(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i )

1
p ,

or

r
− 1

q r(r− 1)(r− 2)!

2(r− 2)!
(
n−2
k−2

) ≤ (

r∑
i=1

d
p
i )

1
p ,

or

r
1− 1

q
(r− 1)

2

(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i )

1
p .

This gives,

r
1
p
(r− 1)

2

(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i )

1
p ,

(because 1
p
+ 1

q
= 1 or 1

p
= 1− 1

q
).

Hence,
r∑

i=1

d
p
i ≥ r(r− 1)p

2p

(
n− 2

k− 2

)p

. (16)

For r = n, we have by the equality in Theorem 8

n∑
i=1

di =

(
n

2

)(
n− 2

k− 2

)
.

So, inequality (16) now becomes

n∑
i=1

d
p
i ≥ n

2p
(n− 1)p

(
n− 2

k− 2

)p

. (17)

Further, we show that the equality in (17) holds if and only if d1 = d2 =
... = dn = d, that is, if and only if the hypertournament is degree regular.
Suppose d1 = d2 = ... = dn = d in (17). Then equality holds if and only if

n∑
i=1

d
p
i =

n

2p
(n− 1)p

(
n− 2

k− 2

)p

.
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That is, if and only if

ndp =
n

2p
(n− 1)p

(
n− 2

k− 2

)p

,

or

dp =
(n− 1)p

2p

(
n− 2

k− 2

)p

.

That is, if and only if

d =
(n− 1)

2

(
n− 2

k− 2

)
, (18)

which clearly is the degree of a vertex in a regular k-hypertournament, verified
as follows. We know by the equality in Theorem 8

n∑
i=1

di =

(
n

2

)(
n− 2

k− 2

)
.

Since d1 = d2 = . . . = dn = d.

nd =

(
n

2

)(
n− 2

k− 2

)
,

which gives,

nd =
n(n− 1)!

2(n− 2)!

(
n− 2

k− 2

)
,

or

d =
(n− 1)

2

(
n− 2

k− 2

)
. (19)

Clearly (18) is same as (19). �
The following result gives the conditions for the existence of a degree regular

k-hypertournament on n vertices.

Theorem 12 Let n and k be two positive integers. For n > 2 and n > k > 1,
there exists a degree regular k-hypertournament on n vertices if and only if n
divides

(
k
2

)(
n
k

)
.

Proof. Suppose there exists a degree regular k-hypertournament with its de-
gree sequence [d1, d2, · · · , dn]. Then by the inequality (16), we have

n∑
i=1

d2 =
n

22
(n− 1)2

(
n− 2

k− 2

)2

,
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(case of equality with p = 2, where d1 = d2 = . . . = dn = d).
Thus,

nd2 =
n

22
(n− 1)2

(
n− 2

k− 2

)2

,

or

d2 =
(n− 1)2

22

(
n− 2

k− 2

)2

.

This gives,

d =
(n− 1)

2

(
n− 2

k− 2

)
,

(because degree cannot be negative).
Now,

2d = (n− 1)

(
n− 2

k− 2

)
,

or
2d

k(k− 1)
=

(n− 1)(n− 2)!

k(k− 1)(k− 2)!(n− k)!
,

or

2nd =
k(k− 1)n!

k!(n− k)!
,

or

nd =
k(k− 1)

2

(
n

2

)
.

Conversely, suppose that n divides
(
k
2

)(
n
k

)
.

Set for each 1 ≤ i ≤ n,

di =
1

n

(
k

2

)(
n

k

)
=

k(k− 1)

2n

(
n

k

)
.

Then,

di =
k(k− 1)

2n

n!

k!(n− k)!

=
k(k− 1)n(n− 1)(n− 2)!

2nk(k− 1)(k− 2)!(n− k)!

=
(n− 1)

2

(
n− 2

k− 2

)
.
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Therefore,
r∑

i=1

di =

r∑
i=1

{
n− 1

2

(
n− 2

k− 2

)}
,

which implies, for 1 ≤ r ≤ n

r∑
i=1

di =
r(n− 1)

2

(
n− 2

k− 2

)

≥ r(r− 1)

2

(
n− 2

k− 2

)

=
r(r− 1)(r− 2)!

2(r− 2)!

(
n− 2

k− 2

)
,

(because n ≥ r implies (n− 1) ≥ (r− 1)).
Hence,

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

with equality when r = n.
Thus by Theorem 8, D = [d1, d2, . . . , dn] is the degree sequence of a degree

regular k-hypertournament. �
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