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Abstract. This paper deals with an implementation of the elliptic curve
primality proving (ECPP) algorithm of Atkin and Morain. As the ECPP
algorithm is not deterministic, we are developing a strategy to avoid
certain situations in which the original implementation could get stuck
and to get closer to the situation where the probability that the algorithm
terminates successfully is 1. We apply heuristics and tricks in order to
test the strategy in our implementation in Magma on numbers of up to
7000 decimal digits and collect data to show the advantages over previous
implementations in practice.

1 Introduction

The elliptic curve primality proving (ECPP) algorithm of Atkin and Morain
[1] starts from an input probable prime n and is called recursively on probable
primes of decreasing size in order to reach a probable prime whose primality
can be easily verified. In the paper of Atkin and Morain an implementation
of the ECPP algorithm is described. Further descriptions can be found in the
work of Lenstra, Lenstra [6] and Morain [7]. The aim of one recursive step of
these implementations is to find a new probable prime: the input for the next
recursive step. As not all numbers are equally suitable, it is useful to produce
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more than one probable prime in one step and select ‘the best one’. In this
paper we describe an implementation in the Computational Algebra System
Magma [2] that applies a strategy to control the selection of the input for the
next step. We refer to the original implementations (see in [7], [2]) as ECPP
and our modified implementation as Modified-ECPP in the rest of the paper.
This is the second implementation of Modified-ECPP within the confines

of a project that, besides investigating different strategies on the ’Downrun’,
deals with the heuristic running time, and questions and assumptions related
to this topic. The details of this project can be found in the work of Farkas,
Kallós, Kiss [4], Járai, Kiss [5] and Bosma, Cator, Járai and Kiss [3]. One goal
is to replace the actual ECPP implementation that is used in Magma.
In the rest of the paper lnk n shall denote (lnn)k, ln lnk n shall denote

(ln lnn)k, and so on.

2 Implementation of ECPP: details and tricks

The description, analysis, and implementation details of ECPP and the the-
oretical background of the statements below can be found in our paper [3].
Here we give a brief outline.
The input of the algorithm is a large probable prime n; this is a positive

integer that has passed some probabilistic primality tests. The aim is to provide
a proof for its primality.

Algorithm 1 : ECPP

(P) Starting with n0 = n, build up a sequence of probable primes n0, n1, . . . , nl,
such that nl is small enough for the primality of nl to be recognized eas-
ily.

(F) For each of the integers ni with i = 0, 1, . . . , l− 1, build up the elements
of the proof (consisting of pairs (Ei, Pi) of an elliptic curve and a point
on it).

(V) Verify that nl is prime and verify the other steps of the primality proof
(by showing that Pi has order ni+1 on Ei modulo ni and that ni+1 exceeds

(n
1
4

i + 1)2, for i = l− 1, l− 2, . . . , 0).

In this paper we only deal with stage (P). On one hand the other two stages
are not a risk in the sense that they always terminate successfully, on the other
hand the other stages can be highly parallelized.
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Next we describe the stages of algorithm (D), with input set nij , j = 1 . . . t

briefly; this is part of stage (P), but the actual relation to it is described later
on.

Algorithm 2 : Downrun

(D) For each nij select a set of negative discriminants D that is suitable for
nij such that for integers u (determined by D), nij +1−u is the product

of small primes and a probable prime q that exceeds ( 4
√
nij + 1)2. This

is done as follows:

(1) Find a list of discriminants D for each nij for which the binary

quadratic form nijx
2 +Bxy+ B2−D

4nij

y2, where B2 ≡ D mod nij, pro-

vides ν with ν ·ν = nij (cf. [3, 6]). Store the pairs (D,±u) for each
nij where u = ν+ ν.

(2) From the list of (D,±u) from the previous step, select those for
which m = nij +1−u can be factored as m = q ·f with q a probable

prime exceeding (n
1
4

ij
+ 1)2 and f is completely factored.

(3) Store the set of tuples (D,u, q) for each nij.

(4) From the possible choices of (D,u, q) select a subset that will be the
input for the next iteration.

An iteration step (D) in our Modified-ECPP differs slightly from an iteration
in the original ECPP.
In the original ECPP, in general the i-th iteration of (P) consists of run-

ning (D) with only one input ni and the outcome is just one q. At the first
successful q, the i-th iteration returns and q becomes ni+1, the input of the
(i + 1)-th iteration. If there is no new q after running through a predefined
discriminant set, it backtracks and returns ni−1 as ni+1. What actually hap-
pens after backtracking is that it goes further on the discriminants starting
(Di+1) right after the last successful D.
In the case of Modified-ECPP, the i-th iteration of (P) can have one or more

inputs nij . An initial (D) runs on the input set nij . This can result in zero,
one or more q-s. If there is at least one q, the iteration returns all of them and
they become the inputs of the (i + 1)-th iteration. If there is no new q after
processing the discriminants up to certain limits, we select the best from a list
of nk, the results of the previous iterations. The selected nk becomes the only
input of a new run of (D), running on a new set of discriminants, or factoring
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the existing m-s harder. Note that this is still the i-th iteration. The iteration
only returns when there is at least one new q produced. If not ambiguous, we
will denote nij with nk.
We have chosen this generic way above to describe (D), because it is appli-

cable to both Modified-ECPP that runs more (D)-s on a set of numbers and
returns a set of q-s and to ECPP that runs one (D) on one input and either
returns the first successful q or backtracks.

2.1 Parameters

There are three main parameters that we use in the algorithm to control the
Downrun, introduced in the work of Atkin and Morain [1]. As they play a
major role in our strategy we describe them here briefly.

Parameter d – In (D1) we select a set of fundamental discriminants D. In
order to control the size of this set, we apply an upper bound d on the size
of the discriminants. Unlike ECPP, an iteration of Modified-ECPP does not
stop at the first successful discriminant, but processes all of them up to d.
In stages (D1) and (D2) we need to perform a reduction for essentially every
discriminant that is suitable for the current input, as well as a factorization
and a primality test on each m and q that were produced processing the
suitable discriminants; thus the number of the selected discriminants has a
huge impact on the running time.

Parameter s – In stage (D1) we also have to extract the square root of
discriminants D modulo ni, which can be done faster if we extract the modular
square roots of all the prime divisors of the D-s instead. An upper bound s

on the size of the factors of the discriminants can control the size of the set
on which we have to perform the root extraction and the size of s also has an
effect on the number of the discriminants, as we throw away everything that
is not s-smooth.

Parameter b – One of the bottlenecks is factoring the m-s, performed in
stage (D2). There are two ways to control the running time of the factoring.
The first one, mentioned above, is to control the size of the discriminant set
through d and s; but we can also restrict the set of primes that we use to
factor the m-s. The bound on these primes is b.

Most of the ECPP implementations use these parameters as fixed limits.
For example in [1], d is taken to be 106, for practical purposes.
As we mentioned earlier, Modified-ECPP deals with a set of q-s during the

Downrun. In our case, we control the size of this set with the above parameters.
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The parameters depend on nk; by our choice these parameters will all be taken
of the form

a lnc1 nk ln ln
c2 nk.

For this reason, in the rest of the paper d(nk), s(nk) and b(nk) shall denote
them. Initially we provide the values a, c1 and c2 for them. Further on if an
iteration does not provide new q-s, backtracking and repetition (when we force
the same nk with bigger and bigger parameters) is also possible. In these cases
the parameters are increased by multiplying with a constant c, which is also
a parameter, while the exponents remain unchanged.

2.2 Tricks

Some data used in the algorithm is independent of the choice of nk, so it is
possible to collect it in advance.
In stage (D1) we need a list of the s(nk)-smooth discriminants up to d(nk),

that will be suitable for nk. We check two necessary but not sufficient condi-

tions; Jacobi symbols
(

D
nk

)
= 1 and

(
nk
p

)
= 1 for each prime divisor p of D,

cf. [1], in order to reduce the possibility of failure when reducing the quadratic
form in (D1). We will refer to this check further on as the Jacobi symbol filter.
We also have to extract the square root of the D-s mod nk; doing this for
the prime divisors of the discriminants will be more efficient as many primes
will occur for several discriminants. Both of these points suggest to store the
discriminants together with their prime factors and the primes themselves in
preprocessed files. For estimation purposes [3] we also need the class number
of the discriminants, which will be preprocessed too.

This way we can run through the prime file up to s(nk), checking
(
nk
p

)
= 1

and extract the square roots mod nk, and then collect those discriminants up
to d(nk) which have only appropriate prime divisors and build up the square

roots of them after checking
(

D
nk

)
= 1. We have such a file of discriminants

up to 109. As our initial value of d(nk) is

1

16e2·γ
ln2 nk ln ln

−2 nk,

running out of discriminants should not be a problem. The primes are collected
up to 2.7 · 109.
In stage (D2) we have to factor the m-s in order to acquire the input for the

next iteration. In our implementation we use Batch Trial Division [3] up to
2.7 ·109 and the Pollard ρ method after that. In Batch Trial Division one takes
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GCDs of products of number that are to be factored with products of primes,
a list of prime products is stored to avoid the time consuming multiplication
of primes on the fly. We store pairs of prime products with size 2t · 106 where
t = 0, . . . , 12. If we use factorization limit b, the size of the product of the
primes up to b is around eb. As 22

t·106 � eb, we have b � 2t · 106 · ln 2. This
way we have a product from 0 up to around 2t · 106 · ln 2 and from around
2t · 106 · ln 2 up to around 2t+1 · 106 · ln 2 and they are both of size 2t · 106
bits. This is useful, because depending on b(nk), we just have to find the right
place in the file and get the appropriate product. We store pairs to have the
possibility to start from 0 if it is the first factoring attempt, or from 2t ·106 ·ln 2
if we have already tried to factor below that.

2.3 Strategy

The detailed theoretical background of the strategy that the program uses is
described in [3]. Here we list the most important notation and facts.
By ek = e

(
s(nk), d(nk)

)
we denote the number of m-s that we gain in stage

(D2) after processing a set of s(nk)-smooth discriminants up to d(nk). The
expected value of ek is

ē
(
s(nk), d(nk)

)
=

∑
D

1

h(D)
,

where h(D) denotes the class number of discriminant D.
After applying the Jacobi symbol filter, that uses arithmetic properties of

nk and its prime factors, this expected value changes to

ēk = ē
(
nk, s(nk), d(nk)

)
=

∑
D

2t

h(D)
,

where t is the number of different prime factors of D.
The expected number of m-s that split as required (that is, for which the

second largest prime divisor is less than b(nk)) is

λk = λ
(
s(nk), d(nk), b(nk)

)
= eγ

lnb(nk)

lnnk
ek.

The progress we make is measured by the size difference between nk and the
q that is produced by (D) with nk as input; the expected value of that ‘gain’
is

Gk = G
(
b(nk)

)
= lnb(nk).
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In the rest of the paper we denote by q numbers that have been produced
already, and by q ′ we denote numbers that are not produced yet, but for
which an estimation has been made for the amount of work needed to produce
them for a given nk. Note that q-s become nk-s, when they become one of the
inputs of the next iteration.

As we already mentioned, a single iteration can have one or more inputs
and outputs. A larger number of inputs increases the probability of reaching
the small primes, but on the other hand, it slows down the computation. Our
aim is to find a balanced situation, where the implementation is reasonably
fast but we still have a good chance to terminate successfully.

Choosing the best q

We saw that λk is the expected number the successful m-s, so the expected
number of new q-s. From [3] we know that we are likely to succeed when λk
exceeds 1.
On the other hand all the new q-s become the input of the next iteration

and we run an initial (D) on them with certain (small) values of parameters
s, d and b. If this does not provide at least one new q, then we select the best
nk as the input of the next (D).

The reason why we cannot choose the best nk right away and have to run
an initial (D) on the newly produced numbers, lies in our definition of best.
There are two aspects to this.
First of all, we have to consider that the numbers are not equally appro-

priate. Applying the Jacobi symbol filters on nk1 could filter out more dis-
criminants than on nk2 , so to produce the same number of new q-s we would
have to process a larger number of discriminants or use bigger factoring bound
for nk1 . Higher bounds imply more execution time, as we need to deal with
bigger discriminants, primes. So the first aspect is the time it takes to produce
a given number of q-s on input nk.
The second aspect is the size of the produced q-s. The smaller they are, the

faster we get to the small primes.

The first aspect we can estimate with the help of λ; for estimating the
running time to produce certain amount of q-s, we collect some actual running
times to see how the numbers behave. This information can be collected from
the initial (D) runs. The parameters of these initial runs are chosen as follows:

s0(nk) = λ0 · 1

2 · eγ lnni ln ln
−1 nk
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d0(nk) = λ20 ·
1

4 · e2·γ ln2 ni ln ln
−2 nk

b0(nk) = ln2 nk

The choice for s0(nk) comes from taking λ = eγ
ln b(nk)
lnnk

ek if we suppose that

λ = λ0 is a parameter and s(nk) ≈ ek; we take d(nk) equal to s2(nk) despite
of [3], where we state that it is better to keep the value of s below

√
d, because

in practice, on small numbers, taking s <
√
d led to some difficulties.

During the initial runs we store the time needed for extracting the modular
square roots, for the reduction algorithm and for factoring, and we also see
how many new q-s are produced. With this information, we can estimate the
time needed when we increase s, d or b separately. For the first two we can
estimate the increment in the value of ēk when the smoothness bound for the
discriminants up to d0(nk) is increased from s0(nk) to c·s0(nk), and separately,
the effect of including the s0(nk)-smooth discriminants up to c ·d0(nk) rather
than d0(nk). We filter out the discriminants that are appropriate for nk and
determine ēk in both cases. We can directly determine the value of b(nk) using
the actual ek.
Now we can compute λk in all three cases and we can also estimate the time

tk it would take in all three cases to execute (D) with the estimated values of
one parameter while the other two remain unchanged. Then we can store the
different tk

λk
values.

We now know the expected number of q ′-s resulting from increasing one
of the parameters, but we do not know the expected size of them. This can
be determined with the help of the gain function Gk, which depends only on
b(nk), the factorization effort on m. From this we can see that we gain q ′-s
with the smallest expected size if we increase b, also if we increase s or d,
the expected size of the q ′ that we gain are the same. After incrementing s

or d, we want to know how much effort it takes to reduce q ′ further: what is
the average work per bit needed to decrease q ′? This we can estimate from
the previous iterations. After multiplication by the estimated size differences,
we obtain a value, ak-s for the expected effort of reducing q ′-s to the size of
the smallest one. Then compare the values tk

λk
+ak and select that parameters

for which this value is minimal. We denote this minimal value by mtk, for
the given nk. Now the best number is the nk for which this value mtk is the
smallest.

Note that the running time of the three bottleneck subroutines (extracting
square roots modulo nk, quadratic form reduction, integer factoring) depends
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(via the three parameters) only on nk, so it is possible to express these running
time as a function of nk. Estimating the running time of square root extraction
modulo a prime and of form reduction is fairly easy, because we can measure
the running time of a single such operation and multiply by the number of
times we need to perform them (which is the number of primes in nk and
the number of successful discriminants, respectively). In the case of factoring
the running time of Batch Trial Division is linear neither to the number of
m-s nor to the number of primes used, but as we do not use huge amount
of m-s or primes simultaneously, linear approximation works well in practice.
For b(nk) = 2t · 106 · ln 2 we double the expected time if we increase t to t+ 1

as we have to deal with products of twice the size.

If no new q-s are produced, we need to be able to backtrack. We keep a
window with a certain number of nk-s for which we store all the data that is
necessary to continue using this value of nk if turns out to be the best. Newly
found nk-s are always going to the window, and if the number of the nk-s in
the window exceeds a limit, we throw away the worst ones. It is not possible
to backtrack to a number that is not in the window anymore. We compute the
expected work to decrease one bit for values nk in this window and update it
after each iteration.
Note that while processing a number, the running times that are stored will

be updated with the new data; estimation takes place directly after processing,
so we can base our decision on an up-to-date set of data.

Resulting algorithm

Now we describe briefly how we make our estimates and decisions, followed by
the description of one iteration. For the notation used we refer to the previous
subsection.

Algorithm 3 : Estimation Algorithm

(E) The Estimation Algorithm determines the value of mtij for a value of nij.
The input is s(nij), d(nij) and b(nij), the values of the main parameters
of the previous call of (D) on nij as input.

(1) Determine the effect of increasing s or d by computing the values
of e

(
nij , c · s(nij), d(nij)

)
, and e

(
nk, s(nij), c · d(nij)

)
: collect the

c · s(nij)-smooth discriminants up to d(nij) and s(nij)-smooth dis-
criminants up to c · d(nij), that are appropriate for nij.
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(2) From the actual running times stored for nij, determine tij for c ·
s(nij), c · d(nij), 2

t · b(nij).

(3) Compute the expected gain Gij, and compute the values aij for each
parameter.

(4) Determine and store the value of mtij together with the correspond-
ing lists of discriminants and primes.

Algorithm 4 : Modified-ECPP Iteration Step

(P) With a set of one or more nij-s as input, one iteration of the Modified-
ECPP Algorithm runs until it finds one ore more new q-s that become
the inputs for the next iteration. The following steps are carried out.

(1) Run (D) on each nij with s0(nij), d0(nij) and b0(nij).

(2) Run (E) on each nij in order to determine mtij, with the data
collected in the previous step on the running times. Add the nij-
s to the window. If we obtain new q-s go to (1), else to (3)

(3) Reorder the window by the values mtk (all of them are up to date).

(4) Pick the best as nij and run (D) on it.

(5) Run (E) on the selected nij with the data collected in the previous
step.

(6) If we have new q-s go to (1), else to (3)

We list the additional important parameters, besides the ones mentioned in
the previous sections.

Parameter λ0 – In (1) this parameter provides the initial value of λ. If it is
too big, (1) becomes too slow, and also the process would result in too many
new q-s and the tree of nk-s would expand too much. On the other hand if it
is too small, we cannot collect realistic data about the running time. It seems
to be appropriate to keep this value between 1/3 and 1/2.

Parameter c – In (E) we take c · s(nk), c · d(nk) as next values of these
parameters. If this is too big, running (D) becomes too slow, if it is too small,
we spend to much time on administration because we take too small steps.
The value seems to be appropriate between 3/2 and 3.

Parameter α – In (E) we increase the value of λ with δλ. We require
a certain lower bound on δλ, that is α. If δλ is above α the value of c is
acceptable, below it we have to multiply c with α/(δλ). We use α = 0.25;
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Parameter wSize – This parameter denotes the size of the window, that
we have mentioned above. We have to be careful with it because if we store
too big window, the program becomes slow, otherwise, if it is too small, it is
possible that the strategy would select a node that is outside of the window,
so we restrain it. This parameter is of the form lnn/(c ln lnn).

3 Analysis of the strategy and running times

In the main experiment we tested the strategy with around 200 numbers each
for k·1000 decimal digits, with k = 1, 2, . . . , 7. We ran various other experiment
on running time and on the strategy. We have produced many graphs, but pre-
senting all of them here is impossible. They can be downloaded from the page
http://www.math.ru.nl/~gykiss. In case our graphs cannot present data
for different sizes of numbers, we will always display the graph for the largest
size for which data are available. The experiments were run on computers with
Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz processors and 8 GB memory.

Running times

Figure 1 shows the running times for the main experiment of the algorithm.
The number of decimal digits of the input numbers appears on the x-axis on
both graphs, while the y-axis indicates the running time in seconds on the first
graph, the average running times of the algorithm on the same numbers; for
k = 1, 2, 3, . . . , 7 vertically the average of the running times for the numbers
of k · 1000 digits is indicated as a single dot on the second graph.
Applying a Least Squares linear approximation method, we found that the

best fit for the running time on a logarithmic scale is given by the line y =
3.86 · x− 21.00. This is displayed in Figure 2.
It is possible to play around with the running time, for example by chang-

ing the parameter c that is responsible for the size of the increase of the
parameters s and d. We tested numbers from 1000 up to 3000 digits with
c = 1.5, 2, 2.5, 3, 3.5, 4.
The effect on the running time can be seen in Figure 3. On the x-axis the

different values of c are given, and on the y-axis the running time. We see that
effect of changing c in this range is insignificant.
The time spent in a single iteration can be separated into administration

time and the execution time. We consider filtering the discriminants for given
nk and the estimation process as part of the ‘administration’, and time spent
on extracting modular square roots mod nk, reduction of forms, factoring
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Figure 1: Running times

and Miller-Rabin tests on the new q-s as part of the ‘execution’. We have to
emphasize that in one iteration there will typically be several execution and
administration steps, and these experiments are not meant to measure the
time used in an iteration. Figure 4 shows the proportion of the total execution
time per run to the total running time per run. The total running times are
indicated on the x-axis, and on the y-axis the execution times for numbers
from 1000 digits up to 7000 digits are displayed (together with the line y = x,
for comparison). The clusters for the data for the numbers of the same size
are clearly visible. As expected, the time spent on administration rather than
execution is negligible.

Experiments on the strategy

In the analysis of the strategy we put emphasis on backtracks and repetitions.
Repetitions and backtracks are very similar and occur for the same reason:
they indicate that we could not provide a new q after executing the initial (D)
as well as a run of (D) on the best available input (the initial run of D is only
used to collect data on the number and is considered only as precomputation).
In both cases we have to select a new value of nk to continue on. The only
difference is that when we backtrack we select a different number, whereas in
a repetition the same number is selected again (because it is still ‘best’). It is
natural that repetitions occur frequently as we increase λ with around α = 0.25

instead of 1, which means that one may expect to repeat the procedure as much
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Figure 2: Average Running times on logarithmic scale

Figure 3: Changes of the running time if we change parameter c on 3000 digit
numbers

as 4 times before producing a new q.
Note that when we backtrack, we may step either backwards or forward, as

the window may contain numbers for both situations.
Note that the length of the path is not equal to the number of iterations,

as we include each number on which (D) was ever called in the path, and in
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Figure 4: The proportion of the execution time compared to the total running
time

one iteration (D) may be called several times. However, the number of the
iterations is equal to the maximum level, as we consider numbers produced in
the same iteration to be on the same level.

Figure 5: The number of backtracks as a function of the length of the paths

Figure 5 show the proportion of the number of backtracks and repetitions
to the length of the path, for numbers of various sizes. On the x-axis the
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path lengths are indicated, on the y-axis, the number of backtracks (on the
first graph) or repetitions (on the second graph). The length of the path is of
order O(ln(n)), and the graphs clearly show the 7 clusters corresponding to
numbers of size k · 1000, for k = 1, . . . , 7. From Figure 5 it is clear that we
need backtracks during the Downrun, and as a rule of thumb, approximately
once every 30 steps on the path. We can also see that around half of the path
is repetition.

Figure 6: The level and size differences of backtracks

Besides knowing how often we backtrack in a run, we would like information
on how far back we step (in terms of level or size) when backtracking. There
should not be too big size or level differences, as in this case the effort invested
in decreasing the size of the nk-s is lost. In Figure 6 we present the level and
size differences that occurred up to 7000 digits. The x-axis on both graphs
indicates the size of the numbers from which we backtracked. On the y-axis
on the graph on the left the level differences are indicated, and on the graph on
the right the size differences (in number of digits). A positive number means
that we stepped back, a negative number means that we stepped forward, 0
indicates that we stayed on the same level but we have selected a different
number. It is clearly suggested by these graphs that neither the level nor the
size differences depend on the size of the input; only for really small numbers,
when the work that we loose with backtracking is small, the size differences
can be relatively large. There are very few outliers for larger sizes.
The length of repetition sequences and how long they take, is also interest-
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Figure 7: The length and proportion of the repetition sequences

Figure 8: The time of the repetition sequences

ing. The result of our experiments on this can be seen in Figure 7 and Figure 8.
In x-direction in each case the size of the number that is repeated is indicated.
The y-axis in the first graph of Figure 7 indicates the length of the repetition
sequence, in the second graph it indicates the percentage of the number of the
repetitions on numbers of a certain size compared to the total amount of rep-
etitions. In Figure 8 the y-axis indicates the time of the repetition sequences.
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We see that the length of the repetition sequence does not really depend on
the size of the input, it never exceeds 13. The percentage of the number of
repetitions seems to be decreasing when the numbers are growing, though at
7000 digits the percentage is higher. The reason is that when we start on a
number with 7000 digits we have to increase our effort on it until there are new
q-s produced, as this is the only choice at that point. The time of course does
depend on the size of the numbers, as for bigger numbers (D) takes longer;
still the dependence is rather controlled with few outliers.

4 Conclusions and future improvements

To sum up the results from our experiments we make the following observa-
tions.
The evidence from experiments with numbers up to 7000 decimal digits is

that the running time is below o
(
ln4(n0)

)
. Of course there is no experimental

way to show that this is asymptotically correct.
The proportion of the running time needed for administration of the strategy

to be applied is small, which is necessary for the strategy to be useful.
Experiments show that in around half of the cases the strategy chooses to

increment d (meaning: allow the use of larger discriminants) and in almost
all other cases it chooses to increase s (that is: allow larger primes in the dis-
criminants). For bigger numbers enlarging d is a bit more frequent, for smaller
numbers enlarging s. Selection of b (that is: allow larger primes in the fac-
torization of the m-s) hardly ever happens. As we saw that the number of
repetitions does not exceed 13, the implementation should be able to work
with numbers up to 10000 digits without running out of discriminants. After
running out of discriminants it would be still possible to continue with increas-
ing b (there is no upper limit to that parameter). Of course testing such big
numbers would take very long.
The number of the backtracks and repetitions are proportional to the length

of the path and seems to be independent from the size of the input.
The maximum level of backtracks and the lengths of repetitions seem to be

the similar for different sizes of inputs. That is what we expect as the input
selection depends on the estimated running times + the work that we have to
do to reduce the new q-s to the same size. The work to reduce the new q-s; the
avgWork, is growing for bigger inputs, but also the estimated running times,
thus their relation should be the same. The size differences for backtracks are
growing with bigger inputs, but the differences are negligible.
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The time of the repetition sequences are growing also, but without too many
extreme cases and of course for bigger input the execution time grows.
The overall conclusion is that the implementation seems to be working as it

was intended, but there is still space for improvement. The goal is to provide an
optimized implementation of the ECPP algorithm written in C that combines
this strategy with a collection of highly optimized package written in C and
Assembly.
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