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Széchenyi István University
email: pusztai@sze.hu

Tamás HAJBA
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Abstract. Behind the link selection problem there is a practical problem
that aims to check efficiently the vehicles on a road network. The checking
process is to be realized with license plate reading cameras for checking
the valid vignette of vehicles using that part of the network. However
this problem should be defined generally and the methods of obtaining
a solution can be applied to a wider range of problems independent of
the original problem. This paper defines the link selection problem with
directed graph, it shows the NP-hard complexity and it gives a heuristic
and binary integer programming models to solve the problem. These two
kinds of approaches allow us to examine and qualify the heuristic. The
computational results of the methods are compared with different sizes
of problems.

1 Introduction

The problem of link selection as an effective traffic check was introduced in [6].
The input data of a real life situation were produced with a traffic assignment
model [5], and the problem was solved with an algorithm that is based on the
greedy heuristic of set cover [1, 2, 3]. It was focused on the efficiency of the
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monitoring when the checking process has no influence on the flow of traffic,
i.e. it does not stop nor slow down the vehicles. Present work is also related
to this case, the loads of the network are given.

2 The link selection problem

The link selection problem has got two similar but slightly different optimiza-
tion tasks. We define the problem and its heuristic more generally than it was
described in [6].
Let us suppose that G is a directed graph and P is a finite, nonempty set

that contains acyclic paths in G. Every path has got a positive integer number
called weight.

Task 1: For a given ratio r ∈ (0, 1] let us select minimal number of edges from
G so that x/y ≥ r satisfied, where x is the sum of the weights of the
paths that contain at least one selected edge, and y is the sum of the
weights of all paths.

Task 2: For a given integer k > 0 let us select k edges from G so that the sum
of the weights of the paths that contain at least one selected edge is
maximum.

The first task is a special set cover problem in case of r = 1. The speciality
comes from the data. Let us consider the weights of the paths as the same
number of vehicles that are using the related paths. All vehicles are considered
as the set to cover and the vehicles that use an edge are considered as a subset.
The second task is a max k-cover problem with the same subsets of vehicles.
The set cover problem and the max k-cover problem are NP-hard [2].
The link selection problem is a special case of them, where the weights of

the paths of P correspond to the set to cover, the edges correspond to the
subsets, and the paths make a kind of relationship between the subsets.

3 The complexity of the link selection problem

It is shown that the 3-SAT problem can be reduced to the Task 1 and Task 2
problem as well, thus the link selection problem is NP-hard. For an arbitrary
3-SAT problem we give a proper Task 1 and Task 2 link selection problem such
that the solution of the 3-SAT problem can be obtained from the solution of
the link selection problem.
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a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 1: The G graph constructed for a three variable 3-SAT problem

a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 2: The 3 edge paths related to the three variables
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a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 3: The 5 edge path related to the x1 ∨ x2 ∨ x3 clause

Construction: Let us suppose that there is a given 3-SAT problem with n

variables and m clauses. Let x1, x2, · · · , xn be the variables of the 3-SAT prob-
lem. Construct the G = (V, E) directed graph as follows: for every xi variable
add 4 vertices ai, bi, ci, di into V (so V will contain 4n vertices); for every
i (i = 1, · · · , n) add an edge from ai to bi (this edge corresponds to xi) and
add an edge from ci to di (this corresponds to xi) into E; in addition, for every
i, j, i �= j add (bi, aj) and (di, cj) edges into E, and for every (i, j) add (bi, cj)
and (di, aj) edges as well. Note that in this G graph there is exactly one edge
from every ai and ci vertices (see Fig. 1).

Now we make P, a set of directed paths in G. For every xi variable add the
ai −bi − ci −di 3 edges path into P (see Fig. 2). In addition, for every clause
of the 3-SAT problem relate a 5 edges path as follows: let (X ∨ Y ∨ Z) be an
arbitrary clause of the 3-SAT problem; add into P the path in which the 1st
edge corresponds to X, the 3rd corresponds to Y, the 5th corresponds to Z, and
the 2nd and 4th ones are the edges between the proper vertices. For example
for the x1 ∨ x2 ∨ x3 clause the c1 − d1 − a2 − b2 − c3 − d3 path is related (see
Fig. 3). After this P will contain n+m directed paths.

Lemma 1 Let it be given an arbitrary 3-SAT problem and let G and P be the
graph and the set of paths constructed before. The 3-SAT problem is satisfiable
if and only if there exists a set of edges C ⊆ E, |C| = n such that every path of
P contains at least one edge from C (shortly C covers P).
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Proof. ⇒ If the 3-SAT problem is satisfiable then we give a set of edges
C ⊆ E, |C| = n that covers P. If an xi variable of the 3-SAT problem is true
then add the (ai, bi) edge into C, otherwise (if xi is false) add the (ci, di) edge
into C (thus |C| = n is satisfied). Let us notice that C contains exactly one
edge from every 3 edge paths and at least one edge from every 5 edge paths
(as every clause has got at least one true literal and the edge related to this
literal is in C), thus C covers P.

⇐ Let us suppose that there exists C ⊆ E, |C| = n that covers P. As P has
got all 3 edges ai − bi − ci − di (i = 1, · · · , n) paths and these paths are edge
disjunct (they have no common edges), so every 3 edges path has got exactly
one edge in C. On the other hand all paths of P start from an ai or ci vertex,
furthermore only one edge goes to every bi vertex, so if there is a (bi, ci) edge
in C then replacing it with the (ai, bi) edge we get such a set of n edges that
still covers P. Therefore it can be supposed that every edge in C is (ai, bi) or
(ci, di) type, and for every i there is exactly one edge from these (ai, bi) and
(ci, di) edges in C. Let xi be true if the (ai, bi) edge is in C, otherwise (if the
(ci, di) edge is in C) let it be false. For these variables the 3-SAT problem will
be satisfiable because every path of the 5 edge paths of the clauses contains at
least one edge from C (due to the assumption) that is (ai, bi) or (ci, di) type
edge, thus the literal related to this edge (and the clause itself) will be true.

�

Theorem 2 Task 1 of the link selection problem is NP-hard.

Proof. Let it be given an arbitrary 3-SAT problem. Let G and P be the graph
and the set of paths constructed before, let the weights of all paths equal to
1, and let r = 1 (i.e. we want to cover all paths of P). Due to the lemma if
the solution of this link selection problem contains n edges then the 3-SAT
problem is satisfiable, otherwise it is not. �

Theorem 3 Task 2 of the link selection problem is NP-hard.

Proof. Let it be given an arbitrary 3-SAT problem. Let G and P be the graph
and the set of paths constructed before, let the weights of all paths equal to
1, and let k = n (i.e. we want to cover with n edges as much as possible paths
of P). Due to the lemma if the solution of this link selection problem covers
all paths of P then the 3-SAT problem is satisfiable, otherwise it is not. �
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4 The greedy heuristic

A greedy algorithm can be used to solve the link selection problem.

GREEDY(G, P, task, r, k)

1. L ← {}
2. if task = 1

3. y ← sum up the weights of paths of P

4. repeat

5. For every edge e of G sum up the weights of paths of P that contain e

6. Select the edge e that has got the maximum weight

7. L ← L ∪ {e}
8. P ← P \ {paths that contain edge e}
9. /* Stopping criteria */

10. if task = 1 /* reaching r ratio */

11. u ← sum up the weights of paths of P

12. x ← y− u

13. stop ← x/y ≥ r

14. else /* selecting k number of edges */

15. stop ← |L| = k

16. until stop

17. return L

Describing the complexity of the algorithm let G = (V, E) graph be given
and n = |V |. Let us suppose that |P| = O(n2). In this case we can handle
all the paths between all different origin-destination pairs. If G represents a
road network, the degree of vertices is limited with a small constant, thus
|E| = O(n). The lengths of the (acyclic) paths of P are O(n). The algorithm
repeats a greedy selection (line 6) until the stopping criteria becomes true. This
iteration (line 4–16) runs O(n) times. The most complex step of the iteration
is in line 5. Based on the previous assumptions this step can be done in O(n3)
time, thus we get O(n4) complexity in both cases (task = 1, task = 2).
Unfortunately this polynomial time algorithm does not guarantee the opti-

mal solution. The greedy algorithm is an H(d)-approximation algorithm for
the set cover problem, where H(d) =

∑d
i=1

1
i , and d is the size of the largest

subset [3, 4]. It means that the solution of the greedy algorithm (the number
of the selected subsets) is at most H(d) times larger than the optimum (the
number of subsets selected by the optimal solution).
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The ratio of the greedy algorithm is 1−(1− 1
k)

k ≥ 1− 1
e ≈ 0.632 for the max

k-cover problem [2], which means that the number of elements covered by the
greedy algorithm divided by the number of elements covered by the optimal
solution is at least 0.632.
These general approximation ratios are valid for our algorithm too, namely

it is H(d) approximation algorithm for Task 1 with r = 1, and it is 0.632

approximation algorithm for Task 2.
Because of the speciality of the link selection problem, the greedy algorithm

gives much better solution than it is guaranteed by these ratios. In section 6
it will be shown that the greedy heuristic produces close to optimal solution
for the link selection problem.

5 Binary integer programming models

The link selection problem can be solved with binary integer programming
models too.

List of symbols

Parameters
n number of the edges of G
m number of the paths of P
wj weight of the path j (j = 1, 2, . . . ,m)
nj number of the edges of path j (j = 1, 2, . . . ,m)
jl the index of the lth edge of path j (j = 1, 2, . . . ,m; l = 1, 2, . . . , nj)
r the required checking rate for Task 1 (r ∈ (0, 1])
k the number of required edges for Task 2 (k > 0)

Binary variables
xi = 1, if edge i is selected (0, otherwise) (i = 1, 2, . . . , n)
yj = 1, if at least one edge of path j is selected (0, otherwise)

(j = 1, 2, . . . ,m)

The following models can be given according to the tasks. Both models
contain n + m binary variables and m + 1 equations. Equations (1) and (4)
express that a path will be selected if an edge of that path is selected. Equation
(2) ensures that it reaches the required monitoring rate. Equation (5) ensures
that it selects the given number of edges.
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Model 1: checking with a given ratio

yj ≤
nj∑
l=1

xjl (j = 1, . . . ,m) (1)

r ·
m∑
j=1

wj ≤
m∑
j=1

wjyj (2)

z =

n∑
i=1

xi −→ min (3)

Model 2: checking with a given number of edges

yj ≤
nj∑
l=1

xjl (j = 1, . . . ,m) (4)

n∑
i=1

xi ≤ k (5)

z =

m∑
j=1

wjyj −→ max (6)

6 Computational outcomes

To compare the solution of our algorithm with the optimal solution we used
three test networks with 10, 20 and 80 junctions (vertices) (see Fig. 4, where
the thickness of the links (e-dges) corresponds to their total weights). The
greedy heuristic and Model 2 were compared for all possible values of k.
The results are shown in the figures, where the values of the X axes are

the number of selected links. The checked rates of the optimal solution are
shown in Fig. 6, 8, 10 corresponding to the test networks. The checked rates
are given in percentage of all traffic (the sum of the weights of all paths).
The differences between the checked rate of the approximate and the optimal
solution are given in percentage too and shown in Fig. 5, 7, 9.
We used all shortest paths between all different junctions of the networks.

The weights of the paths were generated in two different ways. In the first case
the weights were the demands of travel and in the second case the weights were
calculated by the demands of travel multiplied by the lengths of the paths (that
resulted larger weights and larger differences between them). In the first case
the weights give the traffic (see Traffic data in the figures) and in the second
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Figure 4: Test networks (10, 20 and 80 vertices) with loaded links

case the weights give the traffic performance (see Traf. Perf. data in figures).
With using traffic performance we prefer to check those vehicles that travel
longer distances on the networks (as it has been done in [6]).
In our tests the demands of travel were a random integer number in [1, 10].

The largest test network models a small part of the downtown of Budapest.
It contains 80 junctions (vertices), 244 links (edges), 6320 (80*79) paths, i.e.
6564 binary variables. We used GAMS software and CPLEX solver on an
average PC to solve Model 2. On our largest test network the solver required
about 2 hours to compute the optimal solution for all 244 values of k, while
the heuristic ran only 1 second.

10 junctions 20 junctions 80 junctions

Difference Traffic Traf.Perf. Traffic Traf.Perf. Traffic Traf.Perf.

Maximum 1.879 1.442 2.477 2.247 1.819 2.394

Average 1.037 0.671 0.587 0.596 0.397 0.250

Table 1: The maximum and the average differences between the solutions
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Figure 5: The difference of the solutions on a network with 10 junctions

Figure 6: The optimal solution on a network with 10 junctions
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Figure 7: The difference of the solutions on a network with 20 junctions

Figure 8: The optimal solution on a network with 20 junctions
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Figure 9: The difference of the solutions on a network with 80 junctions

Figure 10: The optimal solution on a network with 80 junctions
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The results show that:

• The maximum difference between the solution of the greedy algorithm
and the optimal solution was below 2.5%, but the average difference was
usually below 1% (see Tab. 1).

• Increasing the size of the problem or the weights of the paths, the func-
tions of the optimal solution became steeper (see Fig. 6, 8, 10). It means
that we need proportionally less number of links to reach the same
checked ratio.

• Selecting one or all links obviously gives optimal solution, so it is ex-
pected that selecting some or almost all links also results good solution.
The shapes of the functions of the maximum difference have proved this
idea. Additionally it can be seen that the parts of the worst cases are
not too long and they occurred earlier with increasing the size of the
problem.

7 Conclusion

The link selection problem is an NP-hard optimization problem. The goal of
the original real life problem was to check efficiently the vehicles on a road
network. The checking process is realized in such way that it does not change
the flow of traffic. A greedy heuristic was applied to solve a large size problem,
but the qualification of this heuristic was demonstrated only on small (10
loaded links) networks [6].
The optimal solution of the link selection problem can be calculated with

binary integer programming models as well. With this method the size of the
investigated problems could be increased, but it is bounded by the capability
of the applied solver contrary to the heuristic that is always usable.
In this study the greedy heuristic has been described generally for the link

selection problem and it was tested on different sized problems. The results
were compared with the optimal solutions that were calculated with binary
integer programming models presented here. The comparison shows that the
solution of this fast heuristic is much closer to the optimal solution than it is
guaranteed by the general approximation ratio.
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