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Loránd Eötvös University, Budapest

Faculty of Informatics
email: fulop@caesar.elte.hu

Abstract.We apply the concept of statistical complexity to understand
the dynamical behaviour of the time series by the probability distribu-
tion. This quantity allows to distinguish between the random, regular
motion and the structural complexity in finite systems. We determined
the numerical approximation of the statistical complexity of the Lozi
attractor and the generalized number system.

1 Introduction

In this article we discuss the statistical complexity [25], which provides a de-
scription of a finite measured sequence to specify more complicated dynamical
structures. It was extended on wide range of sciences [23, 1, 15].
The idea of complexity was introduced in different forms. We mention some

of them: algorithmic complexity (Kolmogorov) [22], amount of information
about the past required to predict the future (Crutchfield, Young) [7], com-
plexity of finite sequence (Lempel, Ziv) [24].
There are more questions in the real word, where the statistical complexity

is applied. We referred some example as more realistic gas of particles [4, 5],
the effective method in the hydrological systems [12], the statistical features
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of the behaviour for DNA [36], the earthquake magnitude time series [26],
chaotic motion in Logistic map [13], biological application [32].
The notion of statistical complexity is defined by the concept of the infor-

mation theory i.e. the entropy and the disequilibrium. The Shannon entropy
specifies the gain of the information storage in the disordered system and the
disequilibrium characterizes the amount of distance from the equiprobability
distribution.
While the entropy allows to describe the direction of flow and the Lyapunov

exponent characterizes the chaotic orbits, we can not specify the whole strange
attractor in the finite dimensional space. The statistical complexity enables to
determine the inner structure of the dynamical system and the location of the
strange attractor is shown in the parameter space. It is compared with the
complexity of generalized number system, which contains periodic paths.
The numerical simulation plays important role in the chaotic motion, be-

cause there are numerous problems, which can not be solved analytically.
We calculated the spectrum of statistical complexity of the two dimensional

piecewise Lozi map, which is not differentiable and contains chaotic region. It
is compared with the statistical complexity of the finite approximation of the
set Bγ on the lattice.
The structure of the article is the following:
Section 2 contains the introduction of the statistical complexity to con-

sider different measurement. The chaotic motion is described in Section 3.
The definition of the generalized number system and the fundamental set are
investigated in Section 4. The numerical results are displayed in Section 5.

2 Complexity

In this section we introduce the statistical complexity following the effective
entropy by P. Grassberger [16] and the main concept by R. López-Ruiz, H.
L. Manchini, X. Calbet (1995) [25, 28, 2]. This definition was extended to the
generalized statistical complexity measures by M. T. Martin et al. (2006) [29]
for different types of entropy and disequilibrium.
We investigate the notation of a measured sequence [14]. Let us denote

y1, . . . , yn the time series, where yi means the measurement of the quantity y

at time ti = t0 + iΔt, and the time interval Δt > 0 ∈ R.
The x(n) denotes the trajectory of length n in Rd, which is a time sequent

of the measurement. The kth point of the path of length n is denoted by

x
(n)
k (k = 1, . . . , n). We will study the series of x

(n)
1 , x

(n)
2 , . . . , x

(n)
n as a time
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sequent. The set K contains the points of some orbits x
(n)
k (k = 1, . . . , n).

We will apply the notation of symbolic dynamics, because the idea of comp-
lexity is more general concept than this application.
There are M different values of measurements. Each path x(n) for a finite

n corresponds to symbolic sequence O(n) = (o1, o2, . . . , on), where the symbol
ok (k = 1, . . . , n) is chosen from the set {1, . . . ,M}. Let us consider a time
series of length N’, where N ′ >> n. Then a given sequent O(n) appears with
probability P(O(n)) along this long series of length N ′. The unit of the time
interval Δt equals to a constant in this description.

2.1 Statistical complexity

The statistical complexity is based on the probabilistic description of a finite
time series, which provides a statistical approximation of the time sequent.
We introduce a measure of statistical complexity, which depends on the finite
discrete probability distribution.
We define N-system. Let us assume that there are N different symbol se-

quences of length n {O
(n)
1 , . . . O

(n)
N }, which correspond to the set of discrete

probability distribution P ≡ {p1, . . . pN}, where pi := P(O
(n)
i ) (

∑N
i=1 pi = 1)

and pi > 0 for all i.
The first we have to consider the entropy i.e. some measure of the amount

of information stored H and the disequilibrium D, which corresponds to the
distance from the appropriate probability distribution to the equilibrium.

2.1.1 Measure of entropy and disequilibrium

The information measure was introduced as a quantity, which depends on a
probability distribution P = {pj, j = 1, . . . ,N}. In the information theory the
entropy was investigated as a unique function, which corresponds to the mea-
sure of the uncertainty. The statistical complexity is defined by the Shannon
entropy [33], therefore we will investigate this form in N-system:

H = −

N∑
i=1

pi log pi. (1)

This quantity H ∼ 0, if the symbol sequence O
(n)
c would be almost prob-

able (pc ∼ 1) and other O
(n)
i would be very improbable (pc ∼ 0). Hmax

notes the maximal value of H, which reaches the uniform probability dist-
ribution pe = {1/N, 1/N, . . . , 1/N} i.e. the equiprobability symbol sequence
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O
(n)
e characterizes the maximum of information for the N systems. The nor-

malized quantity H is the following H = H/Hmax, then 0 ≤ H ≤ 1, where
Hmax = logN.
If the system is out of equilibrium, the entropy H can be expanded around

this maximum Hmax:

H(p1, p2, . . . , pN) = logN−
N

2

N∑
i=1

(
pi −

1

N

)2

+ · · · = Hmax −
N

2
D+ · · · ,

where the quantity D =
∑

i(pi − 1/N)2 denotes the disequilibrium.
Let us multiply this expansion by H in the following:

H2 = H · Hmax −
N

2
H ·D+ g(N,pi),

where g(N,pi) contains the entropy multiplied by the rest of Taylor expansion
terms, which presents the form 1

N

∑
i(Npi − 1)m with m > 2. If we rename

C = H ·D:

C =
2

N
· H · (Hmax −H) + 2g/N.

This expression shows the connection among the entropy, disequilibrium and
complexity.
Let us define the function of disequilibriumD on the probability distribution

{pj : j = 1 . . . ,N} in N-system.
The Euclidean measure have been used i.e. the quadratic distances from the

probability distribution of each symbol sequences P(O(n)) to the equiproba-

bility P(O
(n)
e ):

D =

N∑
i=1

(pi − pe)
2 , where pe =

1

N
. (2)

The maximum disequilibrium is reached for dominant symbol series O
(n)
c with

pc ∼ 1 and Dc → 1 for N is increasing, while the disequilibrium vanishes. i.e.
D ∼ 0 for pi ∼ 1/N. For any other probability distribution D will have value
between these two extrema. The normalized disequilibrium is D = D · De,
where De equals to N

N−1
.

2.1.2 Measure of statistical complexity

The family of the complexity measure contains the product of disorder H
and disequilibrium D for different type of the time series. This is interplay



234 Á. Fülöp

between the information stored in the system and its disequilibrium. We will
define the measure of statistical complexity C [25] in the following expression
in N-system:

C = H ·D = −

(
N∑
i=1

pi log pi

)(
N∑
i=1

(
pi −

1

N

)2
)
. (3)

This quantity is larger or equals to zero, i.e. C ≥ 0. The normalized value of
C is C = H ·D = (H/ logN)(D · (N/(N− 1))).
The definition of statistical complexity measure can be divided into three

categories: (i) it is growing with increasing entropy, (ii) it is a convex function
and equals to minimum at the H = 0 total order and H = 1 total disperse
state and a maximum at transition level, where the probability distribution is
pe, (iii) it is decreasing with increasing entropy [29]. We will study the second
case in this article.
Because the statistical complexity was defined in a finite system, therefore

it depends on the scale. At each scale of observation a new set of accessible
symbol sequence O(n) appears with its corresponding probability distribution
P(O(n)) therefore the complexity changes.
The complexity C is finite and limiting but it is not necessary a unique

function of H, there exists a range of value between a minimal value Cmin

and a maximal value Cmax. Thus, evaluating the complexity provides more
important additional information regarding the peculiarities of a probability
distribution.
Two basic incidents are distinguished in the relationship between the en-

tropy H and complexity C. On the one hand the time sequence can be found
in any of its accessible symbol sequence O(n) with the same probability. All
of them contribute in equal measure to the information stored. On the other
hand, minimal information is enough to describe the system considering some
symmetries properties and distance.
It should be noticed that different measures for complexity employed for

different probability distribution. Tsallis suggested a generalisation of the
Shannon-Boltzmann-Gibbs entropic measure [34] and A. Rényi introduced a
definition of entropy for discrete probability distribution in 1950s [31].
The disequilibrium can be extended for various probability distribution.

Jensen-Kullback divergence was investigated for relative entropies [29] and
Wootters statistical distance was applied for two probability distributions [37],
which can be used in the quantum mechanic.
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In Section 5 we study the statistical complexity on the system out of equi-
librium by numerical approximation.

3 Chaotic motion

In this section we introduce the Lyapunov exponent [8], which characterises
the chaotic behaviour of dynamical systems. This quantity is expressed by
probability density along the ergodic trajectory [6].
Let us introduce a map f : R → R, where xt+1 = f(xt), which (t =

0, 1, 2, 3 . . . ) corresponds to the trajectory x0, x1, x2 . . . at the time series t =
0, 1, 2 . . . . This map contains stable or unstable fixpoints x∗ and it is differen-
tiable near to the fixpoints x∗. We can expanded the map f around the fixpoint
x∗ upto linear expression:

|xt+1 − x∗|
|xt − x∗|

≈
∣∣∣∣∂f(x)∂x

∣∣∣∣
x∗
.

The solution of this equation is written by the next form |xt−x| ≈
∣∣∣∂f(x)∂x

∣∣∣
x∗

∣∣∣t =
ceλt, where c ∈ R is a constant value. If λ < 0, then the fixpoint x∗ becomes
stable. If λ > 0, then the fixpoint x∗ turns into unstable, and in the case of
λ = 0 the fixpoint x∗ is marginal stable.
The f(x) map was extended upto first order, therefore we can not determi-

nate the whole trapping region of the fixpoint x∗.
As a consequence we defined the Lyapunov exponent:

λ = lim
n→∞

1

n

n∑
t=0

ln

∣∣∣∣∂f(x)∂x

∣∣∣∣
xt

,

along the trajectories, where these orbits converge to the fixpoint x∗.
The Lyapunov exponent λ depends on the initial condition of the tra-

jectories, therefore we denote xn(x0) ≡ fn(x0) and it can be used as λ =

limn→∞

1
n
ln

∣∣∣∂fn(x0)∂x0

∣∣∣.
If λ > 0, then the motion is chaotic. The Lyapunov exponent is sensitive

to the initial condition. The d distance of points of the trajectories increases
exponentially, where the x0 and x0+ ε points (ε > 0, ε ∈ R) were near to each
other around the unstable fixpoint x∗ at the first time step (t = 0).
Then the form of Lyapunov exponent is the following:

λ ≈ lim
n→∞

1

n
ln

∣∣∣∣fn(x0 + ε) − fn(x0)

ε

∣∣∣∣ ,
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where ε → 0. This expression can be written |fn(x0 + ε) − fn(x0)| ≈ |ε|enλ.
The ergodicity plays important role in the chaotic motion.
We consider the ergodic paths, where h(xt) means an absolute continuous

integrable function (h : R → R) along the trajectory. At almost all initial
conditions x0 the average of the function h(xt) is introduced as following:

lim
n→∞

1

n

n∑
t=0

h(xt) =

∫ 1
0

h(x)P(x)dx ≡
∫ 1
0

h(x)dμ(x),

where μ(x) means some invariant measure, μ(x)
dx

= P(x) is a probability density
and the exact form is given by the map f(x). This expression is measure
invariant therefore:

∫ 1
0

h(x)dμ(x) = lim
n→∞

1

n

n∑
t=0

h(xt) = lim
n→∞

1

n

n∑
t=0

h(f(xt)) =

∫ 1
0

h(f(x))dμ(x).

The Lyapunov exponent is defined by the P(x) probability density along the
ergodic orbit:

λ =

∫ 1
0

P(x) ln |f ′(x)|dx.

In the chaotic motion the strange attractor S plays similar role in the case
of aperiodic motion as the attractor in the periodic motion. Let us choose
that orbits, which are characterized by probability distribution P(x). The set F
contains the initial points of these trajectories and the set L is defined following
L = {x|P(x) > 0}. Then we take the union of the set L with its closure. If the
Lyapunov exponent is larger then zero on this set, than we gain the strange
attractor S and the trapping region corresponds to the closure of the set F. The
motion comes on this set S after finite iteration and the points of trajectory
follow one to the other randomly.
We study the time series of the measurement of length n x(n) and the error

of initial point x
(n)
0 is ε > 0. Let us suppose λ > 0, then the ε ′ ≈ |ε|ekλ at

the kth element of sequence x
(n)
k i.e. the error of time series is increasing as

k becomes larger, we can not predict the value x
(n)
k+1 more exactly than |ε ′|eλ.

Then the value of the ergodic time series becomes unpredictable. Therefore
we apply the statistical complexity to determine the location of the strange
attractor in the parameter space.
On a computer the study of the dynamical system appears in a finite m

dimensional space, then we have an m dimensional signal z(t). In a physical
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experiment a single scalar variable u(t) is monitored for a system, which has
an infinite dimensional phase space M ′′.
In this case we restrict our attention to the dynamics on a finite dimension

attractor A in the space M ′′. Otherwise we generate several different scalar
values zi(t) i = 1 . . . ,N from the original u(t).
The only way to obtain several measurements from a single one is to use

time delays. We choose different delays T1 = 0, T2, . . . , TN and it can be written
zk(t) = u(t+ Tk). We can generate an N dimensional signal in this manner.
The successive time derivative of the signal is formed: zk+1(t) = dkz1(t)/dt

k,
but the numerical differentiations produce high level of error. As usually we
should measure several experiment signal produce more exactly values.
The reconstruction of the dynamical process provides an N dimensional

image πA of an attractor A, which has finite Haussdorff dimension and it is
embedded in an infinite dimensional space M ′′. The projection will look dif-
ferent according to the choice of variables. Taken proved that theorem (1981):
If we use enough variables, typically about twice the Haussdorff dimension, we
shall generally get a good projection [8]. This method produces the attractor,
but the realisation is difficult.
In the next section we introduce the generalized number system and the

set Bγ, which is a fractal structure [11], but there are periodic motions on it,
therefore it is not chaotic.

4 Generalized number system

I. Kátai investigated the concept of generalized number systems [18] in the
1970s. This idea is developed on different algebraic structures expansively as
real quadratic fields [10], imaginary quadratic fields [19].
We introduce the basic definition in this section according to the literature

[20, 11].
Let Zk be a ring of integer vectorial in Rk (k ≥ 1). A k × k type matrix

with integer elements is noted by M, where L = MZk. Then L is a subgroup
in Zk, O(Zk/L) = t the order, where t = |detM|. We introduce the digit set
A in the following. Let A = {a0 = 0, a1, . . . , at−1} mean a complete set of the
representation of the residue classes mod M for (t ≥ 2). We define the number
system (A,M), if each n ∈ Zk can be written by uniqueness expansion form:

n = a0 +Ma1 + · · ·+Mh−1ah−1, aj ∈ A for h > 0. (4)

We define the function J : Zk → Zk, where the ring of integer vectorial is
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mapped to onto itself. There exists a unique a0 ∈ A and n1 ∈ Zk such that
n = a0 +Mn1 for every n ∈ Zk, i.e. let J(n) = n1 be.
The set H plays fundamental role in the number system (A,M). Let us

define H in the following:

H =
{
z
∣∣z = ∞∑

i=1

M−iai, ai ∈ A
}
. (5)

The set H is compact. If (A,M) is a number system, then

∪n∈Zk
(H+ n) = R. (6)

We say that (A,M) is just touching covering system (JTCS), if every n1, n2 ∈
Zk, n1 �= n2:

λ(H+ n1 ∩H+ n2) = 0, (7)

where λ is the Lebesques measure. Let B = A−A = {au−av|au, av ∈ A} hold.
We introduce a set S following. That element γ ∈ Zk is contained in the set
S, which fulfils γ �= 0 and satisfies the following expression:

H ∩H+ γ �= ∅. (8)

This set is assigned by Bγ and

B = ∪γBγ. (9)

More detailed, if z ∈ Bγ, then z can be extended by this form z =
∑

∞

i=1 M
−iai =

γ+
∑

∞

i=1 M
−ia ′

i, where ai, a
′
i ∈ A and γ =

∑
∞

i=1 M
−iei, where ei = ai−a ′

i ∈ B.
We will determinate the statistical complexity of the finite approximation

set Bγ on the ring of quadratic integers at a given algebraic number fields in
Section 4.
In the next section we investigate a walk along the finite transition graph,

which is analogous to dynamical system.

4.1 Transition graph of number system

Let us produce a finite directed labeled graph G(S) according to the article
[35], where the function Q : S → S (S ⊆ Zk \ {0}) means a walk P along the
transition graph.

The elements of the set S correspond to vertices of the graph G(S) and the
edges can be defined as follows:
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There exists a directed edge from γk to γk+1 and it is labeled by δ ∈ B, if
Q(γk) = γk+1, i.e. γk+1 = γkM− δ, k ∈ N.
Let us construct the graph G(S):
The elements γi of the set S can be computed by the following way:
◦ Initial condition: If the first element γ1 satisfies Q(γ1) = 0, then this

element γ1 = 0.
◦ If γ2 ∈ S and there exists en edge, which goes from γ1 to γ2, than γ1 ∈ S.
◦ Each element of the set S fulfils the next condition. That values of outgoing

and ingoing degree of the vertices γk are larger than zero i.e. deg+(γk) >

0,deg−(γk) > 0.
◦ The set S contains periodic points: Qr(γ1) = γ1.
The loop of the algorithm:
◦ From every γ1 ∈ S an edge fits to γ2, if γ2 = γ1M− δ for δ ∈ B.
◦ If deg+(γ1) = 0, than erase the vertices γ1 and all edges, which directed

to γ1.
Repeat these finite steps, until we delete all those nodes from which no edge

goes out i.e. deg−(γk) = 0 or ends, remove all coinciding edges as well.
We obtain the directed transition graph G(S).

Let P := γ1
δ1−→ γ2

δ2−→ γ3 . . . , γr−1
δr−1−−−→ γr be a walk of length r on the

graph G(S), it is labeled by (δ1, δ2, . . . , δr−1), i.e. for finite orbit of length r
Q(r)(γ1) = γr.
Because z ∈ Bγ was defined by expression (8):

z =

∞∑
i=1

M−ifi, fi ∈ A. (10)

Every infinitely long walk P is assigned by the series of labels: δ1, δ2, . . . , δr−1, . . . ,
where δi = fi− f ′i with appropriate fi, f

′
i ∈ A. Therefore z ∈ Bγ can be labeled

by the sequence f1, f2 . . . .

5 Numerical results

We introduce an appropriate measure of the time series and the statistical
complexity on lattice.



240 Á. Fülöp

5.1 Probability measure and euclidean distance on lattice

Let us consider a lattice C ′ in the Rd with linear size ε (ε > 0, ε ∈ R), where
C ′
j assigns the elementary box of lattice C ′ in the following way:

C ′ = ∪jC
′
j , and C ′

j ∩ C ′
i = ∅, where j, i ∈ {0, . . . ,N ′′d − 1}, (11)

where the set of C ′
j is a partition of [0,N ′′ε[d⊂ Rd. Let K be a compact set,

which contains the measured value y:

Tj = K ∩ C ′
j �= ∅, where j = 1, . . . ,M ′ and K ∩ C ′

j = ∅ for any other C ′
j .

T = ∪M ′
j=1Tj, where Tj ∩ Ti = ∅, i �= j.

The compact set K ⊂ Rd consists of every points x
(n)
k (k = 1, . . . , n) of some

orbit of length n. Each path corresponds to the series of the indices j for which

x
(n)
k ∈ Tj and j ∈ {1, . . . ,M ′}.
The lattice size ε and the unit of the time interval Δt equal to a constant.
We define the distance on this lattice, where a box of the linear size ε is

taken as the unit length. We introduce constant values, that is a, which means
the minimal distance between two points a = min{|x−y| : x �= y, x, y ∈ K} and
L, which is the diameter of the set K i.e. L = max{|x− y| : x, y ∈ K}.
Let us introduce I ′, which contains all series of the indices n ′ = (n ′

1, n
′
2 . . . , n

′
n),

where n ′
1, n

′
2, . . . , n

′
n ∈ {1, . . . ,M ′}, and M ′ ∈ N. The elements of the set T

(n)
n ′

correspond to the path of length n. The set T
(n)
n ′ is the following:

T
(n)
n ′ =

{
(x

(n)
1 , x

(n)
2 . . . , x

(n)
n )

∣∣x(n)1 ∈ Tn ′
1
, x

(n)
2 ∈ Tn ′

2
, . . . , x

(n)
n ∈ Tn ′

n

}
.

Analogously to the article [11] we define a measure by the map μ(T
(n)
n ′ ) on the

lattice:

μ(T
(n)
n ′ ) =

|T
(n)
n ′ |

|T (n)|
, where T (n) = ∪n ′∈I ′T

(n)
n ′ . (12)

We note T
(n)
m ′ ∩ T

(n)
n ′ = ∅, if n ′ �= m ′, n ′,m ′ ∈ I ′ and 1 < |I ′| ≤ Mn and

∑
n ′∈I ′

|T
(n)
n ′ |

|T (n)|
= 1. (13)
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The measure of Shannon entropy is defined for finite time series on lattice:

H̃ = −
∑
n ′∈I ′

μ(T
(n)
n ′ ) lnμ(T

(n)
n ′ ). (14)

We investigate the measure of disequilibrium on grid:

D̃ =
∑
n ′∈I ′

(
μ(T

(n)
n ′ ) −

1

N

)2

. (15)

Let us introduce the measure of complexity is the following on the lattice:

C̃ = H̃D̃. (16)

In the next section we determine the statistical complexity C̃ for the Lozi map
on some range of parameter a, b and for the finite approximation of the set
Bγ.

5.2 Approximation of the statistical complexity

In this section we consider the indicator role of the statistical complexity i.e.

it enables to point out the nonlinearity on the time series x
(n)
1 , . . . , x

(n)
n . The

Lozi map possesses chaotic behaviour in some ranges of parameter and initial
condition, but it is not everywhere differentiable, therefore we perform numer-
ical approximation. These properties were discussed by bifurcations [3] and
the Lypunov exponents [9], but the statistical complexity can be determined
more easier than the other quantities.
We present the statistical complexity on the finite approximation of the set

Bγ, which is obtained for a generalized number system in quadratic integer.

5.2.1 Lozi map

R. Lozi introduced a two dimensional a piecewise linear map [27], which assigns
the plane into itself f : (R×R) → (R×R), it is a homomorphism on a metric
space:

f(x, y) = (1+ y− a|x|, bx).

A numerical simulation is plotted on the Figure 1.
M. Misiurewicz [30] proved that Lozi map has a strange attractor on some set

of values a, b, which arises from the intersection of the images of the trapping
region. He supposed six conditions:
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Figure 1: Lozi map (a = 1.7, b = 0.5,N ′ = 104 iteration)

1. 0 < b < 1, a > 0 2. a > b+ 1 3. 2a+ b < 4

4. a > 1
2

√
3b2 + 4+

√
(3b2 + 4)2 − 32b 5. b < a2−1

2a−1
6. a

√
2 > b+2.

His theorem was proven by the geometrical verification:
That set, which satisfies these assumptions (1-6) is open and non-empty.
If the parameters fulfil the first and a + b > 1 conditions, the map f has

two hyperbolic fixpoints: F1 = (1/(1+a−b), b/(1+a−b)) and F2 = (1/(1−
a− b), b/(1− a− b)),
The stable and unstable manifold of these points Wu

F1, W
s
F1, W

u
F2 and Ws

F2

located on the plane (X, Y) according to the eigenvectors of the map f. The
nonempty set, which satisfies the conditions 1–3 corresponds to the trapping
region. Because the strange attractor equivalents to closure of unstable man-
ifolds, he justified that subset of trapping regions, which fulfils the first and
3-5 criterion, suits to the strange attractor.
Let us consider the statistical complexity of Lozi map by numerical approx-

imation. Particularly we study the the strange attractor on the plane of the
parameter space (a, b), where a, b ∈ R and the relationship between H̃ and
C̃.
We applied the generalized partition of the Lozi map on the two dimensional

lattice (X, Y). The kth element x
(n)
k of time sequence of length n equals to 1,

if y > 0, otherwise x
(n)
k = 0.
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Figure 2: The points of the relationship H̃ × C̃ for the ideal gas with uniform
probability distribution (N = 3)

The time series of length N ′ (N ′ >> n) is generated by the iteration of the
Lozi map and we created an appropriateN-system according to the probability
distribution {p1, . . . , pN} of orbits of length n x(n). Then there are N different

paths of length n {x
(n)
1 , x

(n)
2 , . . . , x

(n)
N }, which corresponds to the set of the

probability distribution {p1, . . . , pN} , where pl := P(x
(n)
l ) (l = 1, . . . ,N). It

is applied to calculate the entropy H̃, disequilibrium D̃ and the statistical
complexity C̃ by appropriate measure on lattice.
Before discussing for the statistical complexity of the Lozi map we should

mention that system, where the complexity does not have any intricately struc-
ture and C̃max �= C̃min, i.e. all possible value of the discrete probability distri-
bution appears, then the points show uniformly dispersion on the plane H̃× C̃

between C̃min and C̃max (Figure 2).
In contract the structure of statistical complexity for the Lozi map is charac-

terized by the intricate dynamics on the plane H̃× C̃ in the range a ∈ (0 : 2.5)
and b ∈ (0 : 1) (Figure 3).
It suggests that the structure of relationship between the entropy H̃ and

complexity C̃ becomes more entanglement for chaotic dynamics.
We distinguish 3 different regions of the spectrum following:
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Figure 3: The C̃(H̃) spectrum of the Lozi map (n = 10, N ′ = 1024)

I. The complexity C̃ ∼ 0, the entropy H̃ ∼ 1: This subset corresponds to
strange attractor. It is characterized by maximal entropy storage near to the
equiprobable distribution D̃ ∼ 0.
II. We distinguish that region, where the C̃ ∼ 0, H̃ ∼ 0,D ∼ 1, in this case

the value of entropy decreases to zero for the large amount of order.
III. Between the two extreme states (I), (II) the complexity satisfies the

maximal value, which corresponds to the transition states.
The statistical complexity C̃ is plotted on the plane of parameter space

(a, b) (Figures 4). Suitably for the case I. that region, where the value of the
complexity steeply decreases to C̃ ∼ 0, at the same time the entropy increases
to H̃ ∼ 1 and the disequilibrium becomes to D̃ ∼ 0, corresponds to strange
attractor i.e. this set is characterized by maximal entropy storage near to the
equiprobable distribution.
The result of M. Misiurewitz can be compare with numerical simulation of

Lozi map. These are equivalent to each other inside error.
Let us choose ΔC̃ ∼ ±0.01 then Δa,Δb ∼ 0.03 holds i.e. the triangle, which

is bounded by the lines to suit the conditions 1, 3, 6. Then the measured
value C̃ ∼ 0, H̃ ∼ 1 corresponds to the theoretical consideration within a given
accuracy. This region equivalents to strange attractor (Figure 4.).
We study the finite N-system on lattice, therefore we need to discuss the ef-

fect of the scaling properties. If we increase the value ofN, then the complexity-
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Figure 4: The statistical complexity C̃ of the Lozi map on the parameter plane
(a, b)

curve peak goes to smaller entropy values in the numerical simulations. It
means that the biggest complexity can be reached for less entropy with larger
discrete probability distribution {p1, . . . , pN}.

5.2.2 Finite approximation of Bγ

We introduced the idea of the generalized number system for Zk in the Section
4. It can be extended to the ring of the integer Z[θ] in Q[θ], where θ is an
algebraic integer and the element of the set forms f(θ) = v0 + v1θ + · · · +
vn−1θ

n−1, vj ∈ Z. The equivalency between the Zk and Z[θ] was proven [18].
The digit set is denoted by A = {a0, a0, . . . , at−1} (⊂ Z[θ]).
The map J : Z[θ] → Z[θ] is introduced by J(α) = α1, where there exists a

unique b ∈ A in (A, θ) and a unique α1 ∈ Z[θ], where α = b+ θα1. It can be
extended for α by this expression αl = J(l)(α).
Kátai I. and Szabó J proved that (θ,A) is a canonical number system if

and only if �θ < 0 and �θ = ±1, where θ is a Gaussian complex integer and
A = {0, 1, . . . ,N(θ) − 1} (N(θ) = θθ) [21].
According to the expression of the fundamental set H (5), it holds in this

extension field Z[θ]. Let ρ = 1/θ, where ρ ∈ C, 0 < |ρ| < 1 and A = {0, 1}.
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Then the analogue set H:

H =
{
z
∣∣z = ∞∑

i=1

ρifi, fi ∈ A
}
. (17)

Because Bγ = H ∩H+ γ,

Bγ =
{
z
∣∣z ∈ H, z− γ ∈ H

}
. (18)

Therefore all expansions of γ appear as

γ = ρ1e1 + ρ2e2 . . . , (19)

where e1, e2 · · · ∈ B = A − A. Because ei = fi − f ′i holds, where fi, f
′
i ∈ A,

(i = 1 . . . ), we can determine all of possible values of the digit fi, which follows
from expressions (17), (18):

z = ρ1f1 + ρ2f2 . . . . (20)

The elements of the set Bγ contains z over infinite sums, we will approximate

them with finite sums. This set is denoted by B̃γ, which contains these elements
for some fixed k and γ, it is written as

x =

k∑
i=1

ρifi, fi ∈ A. (21)

The Kolmogorov entropy and the fractal dimension of the finite approxima-
tion of the set Bγ were published [14] [11].

In the next section we will study the statistical complexity for the set B̃γ,
whose every element corresponds to a subset of Bγ.

5.2.3 Statistical complexity of the set B̃γ

In this section we present the numerical results, which is obtained for a gene-
ralised number system in quadratic integers.
In the article [17] it was proven that θ ∈ C is a root of the polynomial of

second-degree f(x), whose coefficients are a2 = 1, a1 = 0,±1,±2, a0 = 2. The
smallest ring is Δ = {1,Θ}. Then

∪γ∈Δ(H+ γ) = C (22)
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Figure 5: Transition graph for θ = −1− i and B = {−1, 0, 1}

λ((H+ γ1) ∩ (H+ γ2)) = 0, γ1 �= γ2, γ1, γ2 ∈ Δ (23)

where γ =
∑l

ν=0 aνΘ
ν and aν ∈ A. Then (Θ,A) is a canonical number system

in a quadratic field extensions for all these Θ values.
We construct the transition graph G(S) (Figure 5) according to Section 4.1.

The base of the number system is chosen as θ = −1 − i and the digit set
A = {0, 1}. The edge is labeled by an element of the set B = {−1, 0, 1}.
The steps of graph construction are the following:
◦ Every γ ∈ Z[Θ] which satisfies the condition |γ| ≤

√
2+ 1, we determinate

η = γΘ− δ for δ ∈ B. A directed edge fits from γ to η, if |η| ≤
√
2+ 1 holds.

◦ That γ vertices is deleted, which has no edge from γ and remove all edges
which are directed to γ.
The process results the graph G(S).
Let us consider the process of the graph walking P.
◦ First step in the initial condition we choose one vertex along the graph

G(S) randomly.
◦ The basic concept of the graph walking P is the following. It contains all of

possible edges at least ones (δ1, δ2, . . . , δk), i.e. this step produces the minimal
length orbit.
◦ Let us take into consideration, that the outgoing degree of vertices q can

be larger than 1 and the graph walking need to contain all edges, therefore the
same node can appear more times resulting the perfect series of all directed
ones.
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Figure 6: The spectrum C̃(H̃, D̃) of the set B̃γ (N ′ = 8064, n = 50)

◦ We need to consider each of sequences f1, . . . , fr, (fi ∈ A) to the series of
labels of edges.
The N-system is determined by finite walk on the transition graph G(S).

The probability distribution {p1, p2, . . . , pN} is created according to the path
of length n x(n) along the walk of length N ′.
We determined the Shannon entropy H̃, the disequilibrium D̃ and the sta-

tistical complexity C̃ on lattice, which is plotted on the Figure 6.
The points of the curve in three dimensional space H̃×D̃×C̃ does not contain

any intrinsic structure i.e. any structural complexity and it is a unique convex
function C̃(D̃) respectively C̃(H̃). The curve corresponds to the maximal limit
of the statistical complexity C̃max of the curve in Figure 3. on the range H̃ ∈
[0, 1] and D̃ ∈ [0, 1].
The transition graph, which was introduced analogues to dynamical process

on the set B̃γ points to regular motion.

6 Summary

The statistical complexity is an indicator, which can be used to reveal the
dynamical behaviour of the finite system. We calculated the complexity C̃ of
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Lozi map on the plane of parameter (a, b), this map has chaotic range, where
the strange attractors can be unique specified by complexity C̃, entropy H̃
and disequilibrium D̃ on lattice. Here the value of entropy becomes H̃ ∼ 1,
the quantity of disequilibrium is D̃ ∼ 0, therefore the value of C̃ changes to 0
sharply on the parameter space. Contrary to the statistical complexity C̃ of the
set B̃γ in the generalized number system corresponds to unique function of the
entropy H̃ and disequilibrium D̃ and it fits to the upper limit of the spectrum
C̃(H) for the Lozi map. Because the chaotic motion on the strange attractor
contains aperiodic orbits in contrast to the dynamical behaviour of the set
Bγ includes periodic paths, the statistical complexity is able to indicate the
different properties of time series and it is localised in the finite dimensional
space.
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[20] I. Kátai, Generalized number systems in Euclidean spaces, Math. and Computer
Modelling 38, 7–9 (2003) 883–892. ⇒237
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