
Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 190–205

Remarks on the A∗∗ algorithm

Tibor GREGORICS
Eötvös Loránd University, Faculty of Informatics

Budapest
email: gt@inf.elte.hu

Abstract. The A∗∗ algorithm is a famous heuristic path-finding algo-
rithm. In this paper its different definitions will be analyzed firstly. Then
its memory complexity is going to be investigated. On the one hand, the
well-known concept of better-information will be extended to compare
the different heuristics in the A∗∗ algorithm. On the other hand, a new
proof will be given to show that there is no deterministic graph-search
algorithm having better memory complexity than A∗∗. At last the time
complexity of A∗∗ will be discussed.

1 Introduction

The A∗∗ algorithm is one of the graph-search algorithms that can be used to
solve path-finding problems.
Path-finding problems are the tasks that can be modeled by a directed arc-

weighted graph (this is the so-called representation graph). Let R = (N,A, c)
denote a directed arc-weighted graph where N is the set of nodes, A ⊆ N×N

is the set of directed arcs and c : A �→ R is the weight function. The graphs
of our interest have got only finite outgoing arcs from their nodes and there
is a global positive lower limit (δ ∈ R) on the weights. These graphs are the
δ-graphs.[5] Thus a path-finding problem can be represented by the triple
(R, s, T) where R is a δ-graph, s denotes the start node and T denotes the set
of goal nodes. The solution of this problem is a path from the start node to
some goal node that can be denoted by s → t where t ∈ T .

Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 68T20
Key words and phrases: path-finding problem, graph-search algorithms, heuristic func-
tion, A∗ algorithm, A∗∗ algorithm

190

DOI: 10.1515/ausi-2015-0003



Remarks on the A∗∗ algorithm 191

The cost of a path can be calculated as the summation of the cost of the
arcs on this path. We will denote the smallest cost path from n to m as
n →

∗ m. This path is called as optimal path. In many path-finding problems
the optimal path from the start node to some goal node is needed to be found.
The value h∗(u) shows the optimal cost from the node u to any goal node.
The function h∗ : N �→ R is called as optimal remaining cost function. The
value g∗(u) gives the optimal cost from the start node to the node u and the
function g∗ : N �→ R is named as optimal leading up cost function. We can
calculate the optimal cost of the path going from the node s to any goal node
via the node u in the way f∗(u) = g∗(u) + h∗(u) where f∗ : N �→ R is the
optimal cost function. We remark that the value f∗(s) denotes the cost of the
optimal solution.
Graph-search algorithms try to find a path from the start node to a goal node

and during their process they always record the sub-graph of the representation
graph that has been discovered. This is the search graph (G). The nodes of G
whose children are known are the so-called closed nodes. The other nodes of
G that wait for their expansion are the open nodes. Sometimes a node may
be open and closed at the same time if it has been expanded but its children
(more precisely the optimal paths form the start node to its children) are not
completely known. Let OPEN denote the set of the open nodes at any time.
In every step the most appropriate open node will be selected and expanded,
i.e. its children must be generated or regenerated. The general graph-search
algorithm [5, 2, 3] evaluates the open nodes with an evaluation function f :
OPEN �→ R and chooses the open node with the lowest f value for expansion.

procedure Graph-search
G := ({s}, ∅) : OPEN := {s} : π(s) := nil : g(s) := 0
while OPEN �= ∅ loop

n := minf(OPEN)
if goal(n) then return there is a solution endif
foreach m ∈ Children(n) loop

if m /∈ G or g(m) > g(n) + c(n,m) then
π(m) := n : g(m) := g(n) + c(n,m)
OPEN := OPEN ∪m

endif
endforeach
G := G ∪ {(n,m)|m ∈ Children(n)}
OPEN := OPEN ∪ {(n,m)|m ∈ Children(n)}

endwhile
return there is no solution

end



192 T. Gregorics

The cheapest paths from the start node to the nodes of G, which are found
so far, must be recorded with their cost. These costs are shown by the function
g ∈ N �→ R. (It is clear that g(u) ≥ g∗(u) for all node u of N.) The algorithm
also maintains a pointer π ∈ N �→ N that marks the best parent of each
discovered node (except the start node). The best parent of any node is the
one which is along the cheapest discovered path driving from s to that node.
The recorded paths form a directed spanning tree in the search graph where
the root node is the start node. We will denote a recorded path driving from
s to u as s →π u and cπ(s, u) will symbolize its cost.
The computation of the evaluation function of a graph-search algorithm

can contain some extra knowledge about the problem. This is the so-called
heuristic function h : N �→ R that estimates the remaining optimal path cost
from a node to any goal node, i.e. h(u) ≈ h∗(u) for all nodes u of N.
The most famous heuristic graph-search algorithm is the A∗ algorithm. The

evaluation function of this algorithm is f = g + h where the cost function g

is calculated by the algorithm and the heuristic function h is derived from
the problem. The A∗ algorithm uses a nonnegative and admissible heuristic
function. The admissibility means that the heuristic function gives a lower
limit on the remaining optimal path cost from any node to a goal node, i.e.
h(u) ≤ h∗(u) for all node u of N.

2 Definitions of the A∗∗ algorithm

The A∗∗ algorithm can be treated as a modification of the A∗ algorithm.
During the execution of A∗, it can occur that the evaluation function value of
an open node n (g(n) + h(n)) might be smaller than the value g(u) + h(u)
of some node u on the recorded path from s to n. It signs that the estimation
h(n) is too low for the remaining path-cost hence

h(n) < g(u) + h(u) − g(n) = h(u) − cπ(u,n) ≤ h∗(u) − cπ(u,n) ≤ h∗(n).

The A∗∗ algorithm has been introduced by Dechter and Pearl to correct this
failure of the heuristic function.[1] Its evaluation function gives the maximum
of the value g(u) + h(u) for all node u on the recorded path s →π n, i.e.

f(n) = max
u∈{s→πn}

[g(u) + h(u)]

where h is a non-negative admissible heuristic function. Additionally, the se-
lection breaks ties arbitrarily but in favor of goal nodes.



Remarks on the A∗∗ algorithm 193

Corresponding to this definition, the evaluation function value of all open
nodes must be always recomputed after each expansion since the recorded
paths can be changed. However, the computational cost of the recalculation
of the evaluation function value of all open nodes with their recorded path
is too high. Russell and Norvig mention an alternative way to implement the
A∗∗ algorithm. [6] They suggest that the evaluation function value of u is
calculated by the following recursive formula:

f(u) := max(g(u) + h(u), f(v))

when a better path is found to a node u after the expansion of its parent
node v. Initially, f(s) := h(s). The next theorem shows that the original A∗∗

algorithm and this latter alternative one work in the same way.

Theorem 1 Both versions of the A∗∗ algorithm contain the same open nodes
with the same evaluation function values in each step.

Proof. We prove this result using induction on the number of the expansions.
Initially both versions add the start node into OPEN with the same evalu-

ation function value (f(s) = h(s)). Let us suppose that the statement of the
theorem is true in the ith step when the open node n is selected and expanded.
Let k be an arbitrary open node after this expansion. We will show that the
evaluation function value of k is independent of any version of A∗∗.
If there is no cheaper path from s to k via n, then the node k has to be

in OPEN before the expansion of n and neither of the versions modify its
evaluation function value.
Otherwise, we must distinguish two cases: either the node k or some of its

ancestor is a child of the node n.
If k is a child of n and either k is not in G or g(n) + c(n, k) < g(k) hold,

both versions recalculate the value f(k) after the expansion of n. According
to the original version,

f(k) = max
u∈{s→πk}

[g(u) + h(u)]

where s →
π k is the new recorded path via the node n. According to the

alternative version,

f(k) = max(f(n), g(k) + h(k)).

But the recorded path s →π n is not changed during the expansion of n thus
the value f(n) remains the same, and, by the induction hypothesis, this values



194 T. Gregorics

in both versions are identical, i.e.

f(n) = max
u∈{s→πn}

[g(u) + h(u)].

Thus the new evaluation function values of k in both versions are identical
because of

max
u∈{s→πk}

[g(u) + h(u)] = max
(

max
u∈{s→πn}

[g(u) + h(u)], g(k) + h(k)
)
.

If k were in OPEN before the expansion of n, and one of its ancestors (let
m denote it) were a child of n, and a cheaper path were discovered form s

to this very ancestor via n, then the alternative version would not recalculate
f(k) but the original version would. Let fold(k) and fnew(k) be the earlier
and the new value of k maintained by the original version. By the induction
hypothesis, f(k) = fold(k). It should be shown that fnew(k) = fold(k) because
in this case f(k) = fnew(k) is followed. Let α denotes the recorded path from
s to m before the expansion of n. Let gα(u) denote the cost of α from s to
u before the expansion of n, and in this case g(n) + c(n,m) < gα(m). It is
obvious that

fold(k) = max
(

max
u∈{s→αm}\{m}

[gα(u) + h(u)], gα(m) + h(m),

max
u∈{m→

πk}\{m}
[g(u) + h(u)]

)
,

fnew(k) = max
(

max
u∈{s→πn}

[g(u) + h(u)], g(n) + c(n,m) + h(m),

max
u∈{m→

πk}\{m}
[g(u) + h(u)]

)
.

We know that f(n) = maxu∈{s→πn}[g(u)+h(u)] and the following inequations
hold:

• maxu∈{s→αm}\{m}[g
α(u) + h(u)] ≤ f(n) because the path s →

α m was
discovered before the path s →π m,

• gα(m) + h(m) ≤ f(n) because the path s →
α m was discovered before

the path s →π n,

• maxu∈{m→
πk}\{m}[g(u) + h(u)] ≤ f(n) because the path m →

π k was
discovered before the path s →π m.



Remarks on the A∗∗ algorithm 195

On the one hand, it follows from the above inequations that fold(k) ≤ f(n)
and since the algorithm selects n for expansion instead of k, the inequation
f(n) ≤ fold(k) must hold. Ergo, fold(k) = f(n). On the other hand, f(n) ≤
fnew(k) because n is on the recorded path s →π k, and f(n) ≥ fnew(k) is also
true because the path m →

π k were discovered before the path s →
π n. It

follows that fnew(k) = f(n). Thus fnew(k) = fold(k). �
The main consequence of this theorem is that the following lemmas and

theorems that are proved on only the original version of A∗∗ are valid for both
versions of A∗∗.

Lemma 2 The value f(m) calculated by the A∗∗ algorithm is proportional to
the depth of m.

Proof. Let d(m) denote the length of the recorded path from start node to
the node m. Let d∗(m) denote the length of the shortest path from start node
to the node m. It is obvious that d∗(m) ≤ d(m). By respecting the definition
of A∗∗, f(m) ≥ g(m) + h(m) for all open node m. We know that h(m) ≥ 0
and the cost of the arcs are greater and equal to a positive δ. Thus we have

f(m) ≥ g(m) + h(m) ≥ g(m) > d(m) · δ ≥ d∗(m) · δ.
�

From this lemma, it follows that the A∗∗ algorithm can find a solution if
there exists a solution even if the heuristic function is non-admissible and only
non-negative. This proof is analogous to the proof of the correctness of the A∗

algorithm. [5]

Lemma 3 When the A∗∗ algorithm selects a node n for expansion, the in-
equation f(n) ≤ f∗(s) holds.

Proof. If there is no solution, then f∗(s) can be considered infinite. If there
exists a solution, there must be a node m on the optimal solution path at the
time of the selection of n so that m is in OPEN and an optimal path from s

to m is recorded by algorithm, i.e. g(u) = g∗(u) for all nodes u of this path.
Let v denote the node of this path where

max
u∈{s→πm}

[g(u) + h(u)] = g(v) + h(v)

hold. The A∗∗ algorithm selects the node n instead of the node m, so f(n) ≤
f(m) must hold. Based on the admissible property of the heuristic function we



196 T. Gregorics

get

f(n) ≤ f(m) = max
u∈{s→πm}

[g(u) + h(u)] = g(v) + h(v) ≤ g∗(v) + h∗(v) = f∗(s).

�
The consequence of this lemma is that the A∗∗ algorithm can find optimal

solution if there exists a solution. This proof is analogous to the proof of the
optimality of the A∗ algorithm. [5]
At last an interesting property of the A∗∗ algorithm will be proved.

Theorem 4 If the A∗∗ algorithm selects the node m after the node n for
expansion, then f(n) ≤ f(m).

Proof. This statement is enough to prove with two nodes that are expanded
directly after each other: firstly the node n, then the node m.
If m has already been in OPEN just before n is expanded but this expansion

does not find a cheaper path from s to m, then the value of f(m) does not
change. But f(n) ≤ f(m) has to hold because the algorithm selects the node
n instead of the node m.
If m is not in OPEN before the expansion of n but it gets into there after

n is expanded, or if m has already been in OPEN just before n is expanded
and this expansion finds a cheaper path from s to m, then m must be a child
of n and the recorded path π from s to m drives via n. It is obvious that

max
u∈{s→πn}

[g(u) + h(u)] ≤ max
u∈{s→πm}

[g(u) + h(u)]

because n is on the path π. Thus, by respecting the definition of the evaluation
function of A∗∗, f(n) ≤ f(m) holds. �
An important consequence of this theorem is that if A∗∗ expands the same

node twice, its second evaluation function value will be greater than or equal
to the first one.

3 Memory complexity of the A∗∗ algorithm

The memory requirement of a graph-search algorithm depends basically on
the size of its search graph. This size can be mesuared by the number of the
expanded nodes of this search graph. These are the so-called closed nodes.
The size of the search graph is the biggest when the algorithm terminates
thus the memory requirement is given with the number of the closed nodes at



Remarks on the A∗∗ algorithm 197

termination. Because of this, we assume that the path-finding problems of our
focus has got a solution, thus most of the famous graph-search algorithms –
specially the A∗∗ algorithm – must terminate.
Let CLOSEDS denote the set of closed nodes of the graph-search algorithm

S at termination. Let X and Y be arbitrary graph-search algorithms. We can
say that X is better than Y in a given path-finding problem if CLOSEDX ⊂
CLOSEDY , and X is not worse than Y in a given path-finding problem if
CLOSEDX ⊆ CLOSEDY .

3.1 Comparison of different heuristics in the A∗∗ algorithm

At first we will compare two A∗∗ algorithms, namely A1 and A2 using different
heuristic funtions. Let h1 and h2 be admissible and non-negative heuristic
functions deriving from the same problem. We say – based on the work of
Nils Nilsson [5] – that the A2 algorithm using h2 is more informed than the
A1 algorithm using h1 if, for all nongoal nodes n, h2(n) > h1(n). We would
expect intuitively that the more informed algorithm would need to expand
fewer nodes to find a minimal cost path. Indeed, analogously to the similar
result of the A∗ algorithm, we can only prove that A2 does not expand a node
that A1 does not either.

Theorem 5 If A1 and A2 are two versions of A∗∗ such that A2 is more in-
formed than A1, then A2 is not worse than A1.

Proof. We prove this result, following to Nilsson [5], using induction on the
depth of a node in the spanning tree of the search graph of A2 at termination.
First, if A2 expands the node having zero depth, in this case this node must

be the start node, then so must A1. (If s is a goal node, neither algorithm
expand any nodes.)
Continuing the inductive argument, we assume (the induction hypothesis)

that A1 expands all the nodes expanded by A2 having depth d or less in the
A2 search graph. We must now prove that any node n expanded by A2 and of
depth d+1 in the A2 search graph is also expanded by A1. Let us suppose the
opposite of this, namely that there is a node m having depth d+ 1 expanded
by A2 but it is not expanded by A1. (We remark that this node m may not
be a goal node since it is expanded by a graph-search algorithm.)
It is trivial that m had to get into the OPEN for A2 if A2 expanded it.

According to Lemma 3, since A2 has expanded node m, we have f2(m) ≤ f∗(s)
where f2(m) is the evaluation function value of m at its expansion.



198 T. Gregorics

According to the induction hypothesis, since A2 has found a path from
s to m where all ancestors of m are below the level d, these ancestors are
also expanded by A1. Thus, firstly, node m must be in OPEN for A1. Let
f1(m) denote the evaluation function value of m at the termination of A1. It
is obvious that f1(m) ≥ f∗(s). Secondly, the recorded path from s to m in
the A1 search graph does not cost more than the path discovered by A2, that
is, g1(m) ≤ g2(m). Thirdly, for each ancestor v of node m on the recorded
path from s to m in the A1 search graph, f1(v) ≤ f∗(s) since they have been
expanded by A1. Thus, by respecting the definition of the evaluation function
of A∗∗, g1(v) + h1(v) ≤ f∗(s). Because of this, f1(m) = g1(m) + h1(m) follows
from the inequation f1(m) ≥ f∗(s).
Summarizing the consequences we get that

f2(m)≤f∗(s)≤f1(m)=g1(m)+h1(m)≤g2(m)+h1(m)<g2(m)+h2(m)≤f2(m),

but this is a contradiction. �

3.2 Comparison of the A∗∗ algorithm and other admissible
graph-search algorithms

In this analysis we will use the natural definition of ”equally informed” al-
lowing the algorithms compared to have access to the same heuristic infor-
mation while placing no restriction on the way they use it. Accordingly, we
assume that the heuristic function is a part of the parameters that specify
path-finding problem-instances and correspondingly, we will represent each
problem-instance by the quadruple P = (R, s, T, h) where R = (N,A, c) is the
representation δ-graph, s is the start node, T is the set of goal nodes, and h

is the heuristic function. If the heuristic function is non-negative and admis-
sible, then these problem-instances are called admissible problems. Moreover
we suppose that these problems have got solutions.
As the A∗∗ algorithm always finds the optimal solution in an admissible

problem, our aim is to compare the A∗∗ algorithm to other graph-search al-
gorithms that can also find optimal solution. These algorithms are called ad-
missible graph-search algorithms, or shortly admissible algorithms. Famous
graph-search algorithms, as the A∗ algorithm, the A∗∗ algorithm, the B algo-
rithm [4], or uniform-cost search [5], belong to this algorithm class.
In order to decide if an algorithm X dominates an algorithm Y, several

criteria can be used. According to one of these criteria, X dominates Y relative
to a set of problems if, in every problem, X is not worse than Y. Additionally,



Remarks on the A∗∗ algorithm 199

if Y does not dominate X, i.e. in at least one problem X is better than Y, then
we say that X strictly dominates Y relative to that set of problems.
However, now we do not have to compare two algorithms but two algorithm

classes. First, the A∗∗ algorithm is a non-deterministic algorithm because its
OPEN set can contain several nodes with the same evaluation function value
and in order to select the best one, we need some rules to break these ties.
By collecting all possible tie-breaking-rules we can get a set of deterministic
A∗∗ algorithms instead of the original non-deterministic one. In this sense
A∗∗ can be treated as an algorithm class. Secondly, we must compare this
algorithm class with all members of the admissible algorithms, i.e. the class of
the admissible algorithms. Thus we must extend the concept of the dominance
of algorithm to algorithm classes.
The algorithm class X is said to dominate the algorithm class Y relative to

a set of problems if in every problem for all deterministic versions y of Y there
exists a member x of X so that x is not worse than y. X strictly dominates Y

if X dominates Y and Y does not dominate X. (This definition corresponds to
the Type-1 criterion of the paper of Dechter and Pearl. [1])
Dechter and Pearl have thoroughly analyzed the memory complexity of the

A∗ algorithms and they have shown that neither algorithm A∗ nor any other
admissible graph-search algorithm dominate all admissible algorithms. They
have proven that the A∗∗ algorithm strictly dominates the A∗ algorithm rel-
ative to the admissible problems. Furthermore, they have mentioned the fol-
lowing theorem. (See it as Theorem 10 in Dechter and Pearl’s paper. [1])

Theorem 6 There is no admissible problem where all versions of A∗∗ expand
a node skipped by a deterministic admissible graph-search algorithm.

Unfortunately, the proof of this theorem has got a little mistake in Dechter
and Pearl’s paper. In their argumentation, a new admissible problem must be
constructed from an elder one but the cost of the new arc adding to the elder
one may be zero. In our assumption, however, all arc-costs of the problem of
interest must be greater than a positive real number. This condition guarantees
that the length of the optimal solution path is finite. At first I tried to improve
the original proof but I could not. A new proof is presented here.
Proof. Let us suppose indirectly that P1 is an admissible problem where all
versions of A∗∗ expand an extra node skipped by a given deterministic admis-
sible graph-search algorithm Y.
If n denotes the extra node expanded by a version of A∗∗ but skipped by Y

and C∗
1 is the optimal solution cost in the problem P1, then it is obvious that



200 T. Gregorics

f(n) ≤ C∗
1 at the time of the expansion of n (see Lemma 3). In addition, there

must be at least one version of A∗∗ (it will be called a∗∗) so that f(n) < C∗
1.

If this version did not exist, the evaluation function value of each extra node
would be identical to C∗

1. But it must be an optimal solution path found by
Y avoiding the extra nodes on order to Y could find optimal solution. The set
OPEN of all versions of A∗∗always records a node u from this optimal solution
path with f(u) ≤ C∗

1. It means that a version of A∗∗ can be constructed in
a way that it always prefers the node u even its own extra node, but it is a
contradiction.
We are going to construct a new problem P2 from the search graph (G)

maintained by a∗∗ over the problem P1 at its termination appended by a
new arc (n, t) where t is a new goal node. (This graph contains all nodes of
P1 expanded by Y.) Let the cost of this new arc be (C∗

1 − f(n))/2. This is
obviously a positive value. The start node of P2 is the same one of P1.The
heuristic function h is identical to the heuristic function of P1 except that
h(t) = 0. Let C∗

2 denote the optimal cost from s to t.
It is easy to see that C∗

2 ≤ g(n) + c(n, t) ≤ f(n) + c(n, t) < C∗
1 (where g(n)

is the cost of the path from s to n, found by a∗∗) so that the only optimal
solution path of P2 goes through the node n to the node t.
Now we will show that P2 is an admissible problem. The heuristic function

was admissible in the problem P1 thus h(u) ≤ h∗
1(u) for all node u of G where

h∗
1(u) is the optimal path-cost from u to a goal node of G. Let h∗

2(u) be the
optimal path-cost from the node u to a goal node of G∪ (n, t). Since only one
new goal node was added it is conceivable that h∗

2(u) < h∗
1(u) for a node u if

there is a path from the node u to the node t in P2. To discover this path, the
node u must have been expanded by algorithm a∗∗ during the solution of P1
so it must be expanded during the solution of P2. By respecting the definition
of A∗∗, f(u) ≥ g(u) + h(u) for all open node u. If h(u) > h∗

2(u), then we
would have

f(u) ≥ g(u) + h(u) > g(u) + h∗
2(u) ≥ g∗2(u) + h∗

2(u) = f∗2(u) ≥ C∗
2

but this contradicts that f(u) ≤ C∗
2 (Lemma 3). Thus for all node u of G,

h(u) ≤ h∗
2(u) as well for the new goal node t since h(t) = 0 by definition.

In searching P2, algorithm Y must behave in the same way as in problem
P1, it must avoid expanding n and halting with cost C∗

1, which is higher than
that found by a∗∗. This contradicts Y being an admissible algorithm and it
should find the optimal solution. �



Remarks on the A∗∗ algorithm 201

Figure 1: Execution diagram and its thershold values

4 Time complexity of the A∗∗ algorithm

The running time of a graph-search algorithm depends on the number of its
iteration and on the time of one iteration. The latter factor can be estimated
on the basis of only the knowledge of the problem wanted to be solved, and the
first factor depends primaly on the strategy of the graph-search. Thus we will
analyze just this first factor. This will be given as a function of the number
of closed nodes at termination. (We suppose that the problems of our interest
have got a solution thus our algorithms terminate.) Hereinafter k will denote
the number of closed nodes at termination.
It is clear that the best running time is k since at least k iterations are

needed to expand k nodes if every node is expanded only once. But in many
problems a node may expand several times. It is known that, in the worst case,
the time complexity of the A∗ algorithm is 2k−1 but there is a modification of
A∗, this is algorithm B; its running time is at most 1

2
k2 in the worst case. [4]

An excellent tool to present the execution of a graph-search algorithm and to
calculate its time complexity is the execution diagram (Figure 1). This diagram
enumerates the expanded nodes with their current evaluation function values
in the order of their expansions (the same node may occur several times). It
is trivial that the first value is f(s) and the last one is the value of the goal
node found. (The goal node is selected for expansion but not expanded.) A
monotone increasing subsequence Fi (i = 1, 2, . . . ) is constructed from the
values of the diagram so that it starts with the first value f(s) and then the
closest non less one must always be selected. The selected values are called
threshold values and the nodes belonging to these values are called threshold
nodes. Let ni denote the ith threshold node where Fi = f(ni) is its threshold
value. The set of nodes that are expanded between the ith and the (i + 1)th

threshold nodes is called the ith ditch.



202 T. Gregorics

Let us introduce some further notations:

• OPENi – the OPEN set just before the ith threshold node is expanded
by A∗

• gi(u) – the value g(u) just before the ith threshold node is expanded by
A∗

• fA
∗
(u) – the evaluation function value f(u) according to A∗

• fA
∗∗
(u) – the evaluation function value f(u) according to A∗∗

Theorem 7 Consider an admissible path-finding problem where the threshold
values of the execution diagram of the A∗ algorithm form a strictly monotone
increasing number sequence. Algorithm A∗∗ expands the threshold nodes of A∗

in the same order and with the same threshold values if these algorithms use
the same tie-breaking-rule.

Proof. We prove this theorem using induction on the threshold nodes of the
diagram of the A∗ algorithm. The first threshold node is the start node and this
same node is expanded by A∗∗ at first. It is clear that fA

∗
(s) = fA

∗∗
(s). Let us

suppose that until the ith threshold node the statement is true, that is, at the
expansion of ni both algorithms maintain the same search graphs, the same
sets OPEN, the same cost function (g) values, the same parent pointers (π)
and Fi = fA

∗
(ni) = fA

∗∗
(ni). (This is the induction hypothesis.) We will show

that between ni and ni+1, the A∗ algorithm and the A∗∗ algorithm expand
the same nodes. It follows that the induction statement is also true for the
(i+ 1)th threshold node.
Let us describe the nodes expanded by A∗ in the ith ditch. A nodem belongs

to this ditch if it gets into OPEN after the expansion of ni and fA
∗
(m) < Fi.

The condition of m getting into OPEN is that there exists a path s → m via
the node ni so that it is found after the expansion of ni and all nodes on
this path between ni and m are also in this ditch and the cost of this path is
cheaper than all other path s → m discovered before. It also means that, for
all nodes u on that path between ni and m, g(u) + h(u) < Fi holds. [3]
On the one hand, if the node m of the ith ditch is put into OPEN by the

A∗∗ algorithm, then it must be expanded before the next threshold since

fA
∗∗
(m) = max

u∈s→πm
[g(u) + h(u)] =

= max
(

max
u∈s→πni

[g(u) + h(u)], max
u∈ni

→
πm

[g(u) + h(u)]
)
=

= max
(
fA

∗∗
(ni), max

u∈ni
→

πm
[g(u) + h(u)]

)
=

= Fi < Fi+1.



Remarks on the A∗∗ algorithm 203

On the other hand, let us suppose now indirectly that A∗∗ expands a node
before the expansion of ni+1 that does not belong to the ith ditch of A∗. Let us
take the first such node in the order of the expansions of A∗∗. This node will be
denoted bym. It is obvious thatmmust be put intoOPEN by A∗. If fA∗∗

(m) <
Fi+1, then the node m should be expanded by the A∗ algorithm before ni+1,
thus m would belong to the ith ditch of A∗. If fA∗∗

(m) ≥ Fi+1, then all nodes
of the ith ditch would precede the expansion of m, thus ni+1 would be put into
OPEN, too. The only chance of the expansion of m preceding the expansion
of ni+1 is that fA

∗∗
(m) = Fi+1. It is clear that fA

∗∗
(m) = g(m)+h(m). In this

case the node m would be put into OPEN by A∗ after the expansions of the
ith ditch and fA

∗
(m) = Fi would follow from fA

∗∗
(m) = g(m) + h(m). If the

tie-breaking-rule of A∗∗ selected the node m instead of ni+1, then A∗ would
do the same, that is ni+1 would not be the next threshold node of A∗. This is
a contradiction. �

There are two interesting side effects of this proof. First, the A∗ algorithm
and theA∗∗ algorithm expand the same nodes between two neighboring thresh-
old nodes. Secondly, the evaluation function values of the nodes expanded by
A∗∗ in the ith ditch are equal to the ith threshold value Fi.
We underline that the difference of execution diagrams of algorithms A∗

and A∗∗ under the constraints of the previous theorem is that how many
times a node is expanded between two neighboring thresholds and how much
its evaluation function value is. The number of the expansions of A∗∗ partly
depends on the order of the expansions of the nodes having the same evaluation
function value. If the version of A∗∗ is introduced, whose tie-breaking rule
prefers the node having less costly recorded path from s, it can be prevented
that the same node is expanded several times in one ditch because, after the
expansion of a node, algorithm cannot find a better path to this node in this
ditch. Thus the running time of this version is not worse than any version of
A∗.
But what can we say when the threshold values of the execution diagram of

A∗ is not strictly monotone but just monotone? In this case some neighboring
threshold values may be equal. In the ditches after these thresholds the A∗∗

algorithm expands the nodes with the same evaluation function value. Because
our tie-breaking-rule defined in the previous paragraph may prefer ni+1 for
expansion to some node of the ith ditch and this node will be expanded later
or never, thus the number of the expansions of this tie-breaking-rule may be
less than the number of the expansions of the best version of the A∗ algorithm.
On the Figure 2 our tie-breaking-rule of the A∗∗ algorithm expands every node



204 T. Gregorics

Figure 2: Example where the A∗∗ algorithm is faster than algorithm B

only once but the best version of the A∗ algorithm, this is algorithm B [4],
expands the node m twice.

5 Summary

The A∗∗ algorithm was defined by Dechter and Pearl [1] but it was introduced
in a bit different form by Russell and Norviq. [6] I have shown that these
versions do not differ (Theorem 1). The fact that the A∗∗ algorithm is an
admissible graph-search algorithm is a well-known property. But I have men-
tioned that, if the heuristic function applied by algorithm is not admissible
but only non-negative, then A∗∗ always finds a not necessarily optimal solution
(if there exists a solution). I have proved that the evaluation function values
of the nodes expanded by A∗∗ form a monotone increasing number sequence
(Theorem 4).
Then we have extended the the concept of ”better-informed” derived from

Nilsson [5] onto the A∗∗ algorithm. It allows us to compare the memory com-
plexity of two algorithms A∗∗ using different heuristics (Theorem 5). Perhaps it
is much more important to compare the memory requirement of A∗∗ with other
graph-search algorithm, especially the A∗ algorithm using the same heuristics.
All of this has been done in the excellent work of Dechter and Pearl. However
there is a statement in that paper about the A∗∗ algorithm whose proof has
got a mistake. I have given another proof of that statement (Theorem 6).
At last I have shown (Theorem 7) that the time complexity, more precisely,

the number of the expansions of a certain version of the A∗∗ algorithm is not
worse than the versions of A∗.



Remarks on the A∗∗ algorithm 205

References

[1] R. Dechter, J. Pearl, Generalized best-first search strategies and opti-
mality of A∗, Journal ACM , 32, 3, (1985) 505–536. ⇒192, 199, 204

[2] I. Fekete, T. Gregorics, L. Zs. Varga, Corrections to graph-search algo-
rithms. Proc. of the Fourth Conference of Program Designers, ELTE, Bu-
dapest, June 1–3, 1988. ⇒191

[3] T. Gregorics, Which of graphsearch versions is the best? Annales Univ.
Sci. Budapest., Sect. Comput. 15 (1995) 93–108. ⇒191, 202

[4] A. Martelli, On the complexity of admissible search algorithms. Artificial
Intelligence, 8, 1 (1977) 1–13. ⇒198, 201, 204

[5] N. J. Nilsson, Principles of Artificial Intelligence. Springer-Verlag, 1982.
⇒190, 191, 195, 196, 197, 198, 204

[6] S. J. Russell, P. Norvig, Artificial Intelligence. A Modern Approach. Pren-
tice Hall Inc., 1995. ⇒193, 204

Received: October 7, 2014 • Revised: October 30, 2014


