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Abstract. For a graph G with vertex set V(G) = {v1, v2, . . . , vn}, the
extended double cover G∗ is a bipartite graph with bipartition (X, Y),
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and
yj are adjacent if and only if i = j or vi adjacent to vj in G. The double
graphD[G] of G is a graph obtained by taking two copies of G and joining
each vertex in one copy with the neighbors of corresponding vertex in
another copy. In this paper we study energy and Laplacian energy of the
graphs G∗ and D[G], L-spectra of Gk∗ the k-th iterated extended double
cover of G. We obtain a formula for the number of spanning trees of G∗.
We also obtain some new families of equienergetic and L-equienergetic
graphs.

1 Introduction

Let G be finite, undirected, simple graph with n vertices and m edges having
vertex set V(G) = {v1, v2, . . . , vn}. Throughout this paper we denote such a
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graph by G(n,m). The adjacency matrix A = (aij) of G is a (0, 1)-square
matrix of order n whose (i, j)-entry is equal to one if vi is adjacent to vj and
equal to zero, otherwise. The spectrum of the adjacency matrix is called the
A-spectrum of G. If λ1, λ2, . . . , λn is the adjacency spectrum of G, the energy
of G is defined as E(G) =

∑n
i=1 |λi|. This quantity introduced by I. Gutman

[16] has noteworthy chemical applications.
Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G,

where di is the degree of vertex vi. The matrices L(G) = D(G) − A(G) and
L+(G) = D(G) + A(G) are called Laplacian and signless Laplacian matrices
and their spectras are respectively called Laplacian spectrum (L-spectrum)
and signless Laplacian spectrum (Q-spectrum) of G. Being real symmetric,
positive semi-definite matrices, let 0 = μn ≤ μn−1 ≤ · · · ≤ μ1 and 0 ≤ μ+

n ≤
μ+
n−1 ≤ · · · ≤ μ+

1 be respectively the L-spectrum and Q-spectrum of G. It is
well-known that μn = 0 with multiplicity equal to the number of connected
components of G (see [11]). Fiedler [11] showed that a graph G is connected
if and only if its second smallest Laplacian eigenvalue is positive and called
it as the algebraic connectivity of the graph G. Also it is well-known [8] that
for a bipartite graph the L-spectra and Q-spectra are identical. The Laplacian
energy of a graph G as put forward by Gutman and Zhou [17] is defined as

LE(G) =

n∑
i=1

∣∣∣∣μi −
2m

n

∣∣∣∣ .
This quantity, which is an extension of graph-energy concept has found re-

markable chemical applications beyond the molecular orbital theory of conju-
gated molecules [22]. Both energy and Laplacian energy have been extensively
studied in the literature (see [1, 2, 5, 9, 10, 12, 13, 14, 15, 18, 19, 20, 24, 25,
26, 27, 29, 30] and the references in them). Based on the above definition, the
signless Laplacian energy of a graph G is defined as

LE+(G) =

n∑
i=1

∣∣∣∣μ+
i −

2m

n

∣∣∣∣ ,
where μ+

i (i = 1, 2, . . . , n)is the signless Laplacian spectra of G. It is easy to
see that

tr(L(G)) =

n∑
i=1

μi =

n−1∑
i=1

μi = 2m and tr(LE+(G)) =

n∑
i=1

μ+
i = 2m,

where tr is the trace of the matrix.
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Two graphs G1 and G2 of same order are said to be equienergetic if E(G1) =
E(G2) [3, 23]. In analogy to this two graphs G1 and G2 of same order are
said to L-equienergetic if LE(G1) = LE(G2) and Q-equienergetic if LE+(G1) =
LE+(G2). Since cospectral (Laplacian cospectral) graphs are always equiener-
getic (L-equienergetic), the problem of constructing equienergetic (L-equiener-
getic) graphs is only considered for non-cospectral (non Laplacian cospectral)
graphs.
The extended double cover [6] of the graph G(n,m) with vertex set V(G) =

{v1, v2, . . . , vn} is a bipartite graph G∗ with bipartition (X, Y), X = {x1, x2, . . . ,

xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and yj are adjacent if and
only if i = j or vi adjacent vj in G. It is easy to see that G∗ is connected if
and only if G is connected and a vertex vi is of degree di in G if and only if
it is of degree di + 1 in G∗. Also the extended double cover G∗ of the graph
G always contains a perfect matching. The double graph D[G] of G is a graph
obtained by taking two copies of G and joining each vertex in one copy with
the neighbors of corresponding vertex in another copy. The k-fold graph Dk[G]
[21] of the graph G is obtained by taking k copies of the graph G and joining
each vertex in one of the copy with the neighbors of the corresponding vertices
in the other copies. If Tn is the graph obtained from the complete graph Kn

by adding a loop at each of the vertex, it is easy to see that Dk[G] = G⊗ Tk.
In this paper we study energy, Laplacian energy of the graphs G∗ and D[G],
the L-spectra of Gk∗ the k-th iterated extended double cover of G and obtain
a formula for the number of spanning trees of G∗. We also obtain some new
families of the equienergetic and L-equienergetic graphs.
We denote the complement of graph G by G, the complete graph on n

vertices by Kn, the empty graph by Kn and the complete bipartite graph with
cardinalities of partite sets q and r by Kq,r. The rest of the paper is organized
as follows. In Section 2, energy of the graphs G∗ and Dk[G] are obtained and
some new families of equienergetic graphs are given, in Section 3 L-spectra of
Gk∗ and a formula for the number of spanning tress of G∗ is obtained and in
Section 4 Laplacian energy of the graphs G∗ and Dk[G] and the construction
of some new families of L-equienergetic graphs by using the graphs Gk∗ and
Dk[G] is presented.

2 Energy of double graphs

In this section we find the energy of the graphs G∗ and Dk[G]. We also con-
struct some new families of equienergetic graphs based on these graphs.
For the graphs G1 and G2 with disjoint vertex sets V(G1) and V(G2), the



92 H. A. Hilal, S. Pirzada, A. Iványi

Cartesian product is a graph G = G1 ×G2 with vertex set V(G1)×V(G2) and
an edge ((u1, v1), (u2, v2)) if and only if u1 = u2 and (v1, v2) is an edge of G2 or
v1 = v2 and (u1, u2) is an edge of G1. The following result gives the A-spectra
(L-spectra) of the Cartesian product of graphs.

Lemma 1 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having A-spectra (L-spectra) respectively as, μ1, μ2, . . . , μn1

and
σ1, σ2, . . . , σn2

, then the A-spectra (L-spectra) of G = G1×G2 is μi+σj, where
i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

The conjunction (Kronecker product) of G1 and G2 is a graph G = G1 ⊗G2

with vertex set V(G1) × V(G2) and an edge ((u1, v1), (u2, v2)) if and only if
(u1, u2) and (v1, v2) are edges in G1 and G2, respectively. The following result
gives the A-spectra (L-spectra) of the Kronecker product of graphs.

Lemma 2 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having A-spectra (L-spectra) respectively as μ1, μ2, . . . , μn1

and
σ1, σ2, . . . , σn2

, then the A-spectra (L-spectra) of G = G1 ⊗ G2 is μiσj, where
i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

The join product of G1 and G2 is a graph G = G1 ∨ G2 with vertex set
V(G1)∪V(G2) and an edge set consisting of all the edges of G1 and G2 together
with the edges joining each vertex of G1 with every vertex of G2. The L-spectra
of join product of graphs is given by the following result.

Lemma 3 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having L-spectra respectively as μ1, μ2, . . . , μn1−1, μn1

= 0 and
σ1, σ2, . . . , σn2−1, σn2

= 0, then the L-spectra of G = G1 ∨G2 is n1 + n2, n1 +
σ1, n1 + σ2, . . . , n1 + σn2−1, n2 + μ1, n2 + μ2, . . . , n2 + μn1−1, 0.

The following result gives the A-spectra of G∗, the extended double cover
of the graph G.

Theorem 4 (Cvetkovic, Doob, Sachs, 1980 [7], Chen, 2004 [6]) If λ1, λ2, . . . , λn
is the A-spectra of a graph G, then the A-spectra of the graph G∗ is ±(λ1 +
1),±(λ2 + 1), . . . ,±(λn + 1).

If λ1, λ2, . . . , λn is the A-spectra of the graph G, then by Lemma 1, the A-
spectra of the graph G × K2 is λi + 1, λi − 1 for 1 ≤ i ≤ n. It is clear from
Theorem 4, that the graphs G × K2 and G∗ are cospectral if and only if G
is bipartite [6]. If Dk[G] is the k-fold graph of the graph G, the A-spectra of
Dk[G] is given by the following result.
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Theorem 5 (Cvetkovic, Doob, Sachs, 1980 [7], Marino, Salvi, 2007 [21]) If
λ1, λ2, . . . , λn is the A-spectra of a graph G, then the A-spectra of the graph
Dk[G] is kλ1, kλ2, . . . , kλn, 0 ((k− 1)ntimes).

If λ1, λ2, . . . , λn is the A-spectra of the graph G, then by Theorem 4, the A-
spectra of the graph G∗ is ±(λ1+1),±(λ2+1), . . . ,±(λn+1) and by Theorem
5, the A-spectra of Dk[G] is kλ1, kλ2, . . . , kλn, 0 ((k− 1)n times). Therefore,

E(G∗) =
n∑
i=1

|λi + 1|+

n∑
i=1

|− λi − 1| = 2

n∑
i=1

|λi + 1|,

and

E(Dk[G]) =

n∑
i=1

|2λi| = 2

n∑
i=1

|λ| = kE(G).

If λ1, λ2, . . . , λn is the A-spectra of a graph G, then the A-spectra of the
graph (G⊗ K2)× K2 is λi + 1, λi − 1,−λi + 1,−λi − 1, 1 ≤ i ≤ n. Therefore,

E((G⊗K2)×K2)=2

n∑
i=1

|λi + 1|+ 2

n∑
i=1

|λi − 1| = 2

(
n∑
i=1

|λi + 1|+

n∑
i=1

|λi − 1|

)

= 2E(G× K2) = E(2(G× K2)) = E((G× K2) ∪ (G× K2)).

From the above discussion, we observe that the graphs (G ⊗ K2) × K2 and
(G× K2) ∪ (G× K2) are equienergetic. Moreover, if the graph G is a bipartite
graph then the graphs (G⊗K2)×K2 and G∗∪G∗ are also equienergetic graphs.
As seen above E(Dk[G]) = k

∑n
i=1 |λi| = kE(G) = E(kG) = E(G∪G∪· · ·∪G)

(G is repeated k times). This shows that the graphs Dk[G] and (G∪G∪· · ·∪G)
(G is repeated k times) are non-cospectral equienergetic. However, we show
for any graph G the graphs D[G] and G ⊗ K2 are always equienergetic non-
cospectral graphs.

Theorem 6 If D[G] is the double graph of the graph G, then the graphs G⊗K2

and D[G] are non-cospectral equienergetic graphs.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G, then by Lemma 2,
the eigenvalues of the graph G⊗K2 are λi,−λi for 1 ≤ i ≤ n and by Theorem
5 (for k = 2), the eigenvalues of the graph D[G] are 2λi, 0 (n times) for
1 ≤ i ≤ n. Therefore,

E(G⊗ K2) =

n∑
i=1

|λi|+

n∑
i=1

|− λi| = 2

n∑
i=1

|λi|.
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Also,

E(D[G]) =

n∑
i=1

|2λi| = 2

n∑
i=1

|λi|.

Clearly these graphs are non-cospectral, so the result follows. �
In general, ifDk[G] be the k-fold graph of the graph G, we have the following

observation.

Theorem 7 If Dk[G] is the k-fold graph of the graph G, then the graphs Dk[G]
and G⊗ sK2 are non-cospectral equienergetic graphs if and only if k = 2s.

Proof. If λ1, λ2, . . . , λn are the eigenvalues of the graph, then by Lemma 2,
the eigenvalues of the graph G⊗ sK2 are λi (2

s−1 times), −λi (2
s−1 times) for

1 ≤ i ≤ n and by Theorem 5, the eigenvalues of the graph Dk[G] are kλi, 0

((k− 1)n times) for 1 ≤ i ≤ n. Therefore,

E(G⊗ sK2) = 2s−1
n∑
i=1

|λi|+ 2s−1
n∑
i=1

|− λi| = 2s
n∑
i=1

|λi|. (1)

Also,

E(Dk[G]) =

n∑
i=1

|kλi| = k

n∑
i=1

|λi|. (2)

From (1) and (2) it is clear that E(G⊗ sK2) = E(Dk[G]) if and only if k = 2s.
�

Let G∗∗ be the extended double cover of the graph G∗. We have the following
result.

Theorem 8 If G is an n-vertex graph, then E(G∗ ⊗K2) = E(G∗∗), if |λi| ≥ 2,
for all non-zero eigenvalues of G. Moreover these graphs are non-cospectral
with equal number of vertices.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G. By Theorem 4,
the eigenvalues of the graph G∗ are λi+1,−(λi+1) for 1 ≤ i ≤ n and so of G∗∗

are λi + 2, λi,−(λi + 2),−λi for 1 ≤ i ≤ n. Also by Lemma 2, the eigenvalues
of the graph G∗ ⊗ K2 are λi + 1,−(λi + 1), λi + 1,−(λi + 1) for 1 ≤ i ≤ n.
Assume that |λi| ≥ 2. Then

|λi + 1| =

{
|λi|+ 1, if λi ≥ 0

|λi|− 1, if λi < 0
, |λi + 2| =

{
|λi|+ 2, if λi ≥ 0

|λi|− 2, if λi < 0.
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Therefore,

E(G∗∗) = 2

n∑
i=1

|λi + 2|+ 2

n∑
i=1

|λi| = 2

⎛
⎝∑

λi≥0

|λi + 2|+
∑
λi<0

|λi + 2|+

n∑
i=1

|λi|

⎞
⎠

= 2

⎛
⎝∑

λi≥0

|λi|+ 2+
∑
λi<0

|λi|− 2+

n∑
i=1

|λi|

⎞
⎠

= 2

⎛
⎝ n∑

i=1

|λi|+

n∑
i=1

|λi|+ 2(
∑
λi≥0

1−
∑
λi<0

1)

⎞
⎠

= 4

n∑
i=1

|λi|+ 4θ,

where θ is the difference between the number of nonnegative and negative
eigenvalues of G and

E(G∗ ⊗ K2) = 2

(
n∑
i=1

|λi + 1|+

n∑
i=1

|− (λi + 1)|

)
= 4

n∑
i=1

|λi + 1|

= 4

⎛
⎝∑

λi≥0

|λi + 1|+
∑
λi<0

|λi + 1|

⎞
⎠ = 4

⎛
⎝∑

λi≥0

|λi|+ 1+
∑
λi<0

|λi|− 1|

⎞
⎠

= 4

n∑
i=1

|λi|+ 4

⎛
⎝∑

λi≥0

1−
∑
λi<0

1

⎞
⎠ = 4

n∑
i=1

|λi|+ 4θ.

Clearly these graphs are noncospectral with same number of vertices. �
Let G be a bipartite graph. It is well-known that the spectra of G is sym-

metric about the origin, so half of the nonzero eigenvalues of G lies to the left
and half lies to the right of origin. Therefore if G is a bipartite graph having
all its eigenvalues nonzero, the number of positive and negative eigenvalues of
G are same. Keeping this in mind we have the following result.

Theorem 9 If G∗ is the extended double cover of the bipartite graph G, then
the graphs G∗ and D[G] are noncospectral equienergetic if and only if |λi| ≥ 1

for all 1 ≤ i ≤ n.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G. By Theorem 4, the
eigenvalues of the graph G∗ are λi+1,−λi−1 for 1 ≤ i ≤ n and by Theorem 5,
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the eigenvalues of the graph D[G] are 2λi, 0 (n times) for 1 ≤ i ≤ n. Suppose
that |λi| ≥ 1 for i = 1, 2, . . . , n, then

|λi + 1| =

{
|λi|+ 1, if λi > 0

|λi|− 1, if λi < 0.

Therefore,

E(G∗) =
n∑
i=1

|λi + 1|+

n∑
i=1

|− λi − 1| = 2

n∑
i−1

|λi + 1|

= 2

⎛
⎝∑

λi>0

|λi + 1|+
∑
λi<0

|λi + 1|

⎞
⎠ = 2

⎛
⎝∑

λi>0

(|λi|+ 1) +
∑
λi<0

(|λi|− 1)

⎞
⎠

= 2

⎛
⎝(

∑
λi>0

|λi|+
∑
λ<0

|λi|) + (
∑
λi>0

1−
∑
λ<0

1)

⎞
⎠ = 2

n∑
i=1

|λi| = E(D[G]).

Clearly these graphs are noncospectral with same number of vertices.
Conversely, suppose that the graphsG∗ andD[G] are noncospectral equiener-

getic. We will show that |λi| ≥ 1 for all 1 ≤ i ≤ n.
Assume to the contrary that |λi| < 1 for some i. Then for this i, |λi + 1| =

λi + 1. Without loss of generality, suppose that the eigenvalues of G satisfy
|λi| ≥ 1, for i = 1, 2, . . . , k and |λi| < 1, for i = k + 1, k + 2, . . . , n, since the
eigenvalues are real and reordering does not effect the argument. We have the
following cases to consider.
Case i. If λi > 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k + 1, k + 2, . . . , n,

then

E(G∗) = 2

(
k∑

i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
n∑
i=1

|λi|+ n

)
.

Case ii. If λi > 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k+ 1, k+ 2, . . . , n, then
if θ0 is the number of zero eigenvalues of G, we have

E(G∗) = 2

(
k∑

i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑

i=1

(|λi|+ 1) +

n∑
i=k+1

(λi + 1)

)

> 2

(
k∑

i=1

(|λi|+ 1) +

n∑
i=k+1

(|λi|− 1)

)
= 2

(
n∑
i=1

|λi|− θ0

)
.
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Case iii. If λi < 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k+ 1, k+ 2, . . . , n, then

E(G∗) = 2

(
k∑

i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑

i=1

(|λi|− 1) +

n∑
i=k+1

(|λi|+ 1)

)

= 2

(
n∑
i=1

|λi|+ θ0

)
.

Case iv. If λi < 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k+ 1, k+ 2, . . . , n, then

E(G∗) = 2

(
k∑

i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑

i=1

(|λi|− 1) +

n∑
i=k+1

(λi + 1)

)

> 2

(
k∑

i=1

(|λi|− 1) +

n∑
i=k+1

(|λi|− 1)

)
= 2

(
n∑
i=1

|λi|− n

)
.

Clearly in all these cases, we obtain E(G∗) �= E(D[G]), a contradiction. There-
fore the result follows. �
We can also prove Theorem 9 by using Theorem 6, the fact that the graphs

G∗ and G× K2 are cospectral if G is bipartite [6, Theorem 2] and the graphs
G× K2 and G⊗ K2 are equienergetic if an only if |λi| ≥ 1 [4, Theorem 8].

3 The Laplacian spectra of Gk∗

Let G∗ be the extended double cover of the graph G, define G∗∗ = (G∗)∗,
and in general Gk∗ = (G(k−1)∗)∗, k ≥ 1, called the k-qtextitth iterated double
cover graph of G. The A-spectra of Gk∗ is given in [6]. Here we obtain the
L-spectra of the k-th iterated extended double cover Gk∗ of the graph G. Since
the graph Gk∗ is always bipartite for k ≥ 1, therefore its Laplacian (L-spectra)
and signless Laplacian (Q-spectra) spectra are same.
For any complex square matrices A and B of same order, the following

observation can be seen in ([28, page 41]).

Theorem 10 If A and B are complex square matrices of same order, then∣∣∣∣A B

B A

∣∣∣∣ = |A+ B||A− B|,

where the symbol | | denotes the determinant of a matrix.

We first obtain the L-spectra of G∗, the extended double cover of the graph
G, in the following result.
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Theorem 11 Let G(n,m) be an n-vertex graph having Laplacian and signless
Laplacian spectra, respectively as 0 = μn < μn−1 ≤ . . . ≤ μ1 and 0 < μ+

n <

μ+
n−1 ≤ . . . ≤ μ+

1 . Then the Laplacian spectra of G∗ is μ1, μ2, . . . , μn, μ+
1 +

2, μ+
2 + 2, . . . , μ+

n + 2.

Proof. Let A(G) be the adjacency matrix of the graph G. By a suitable
relabelling of vertices it can be seen that the adjacency matrix A(G∗) of the
graph G∗ is

A(G∗) =
(

0 A(G) + In
A(G) + In 0

)
.

Let D(G) and D(G∗) be respectively the degree matrices of the graphs G and
G∗. It is easy to see that

D(G∗) =
(
D(G) + In 0

0 D(G) + In

)
.

Therefore, Laplacian matrix L(G∗) of G∗ is

L(G∗) = D(G∗) −A(G∗) =
(

D(G) + In −(A(G) + In)
−(A(G) + In) D(G) + In

)
.

So the Laplacian characteristic polynomial of G∗ is

CG∗(λ) = |λI2n − L(G∗)| =
∣∣∣∣(λ− 1)In −D(G) A(G) + In

A(G) + In (λ− 1)In −D(G)

∣∣∣∣
= |((λ− 1)In −D(G)) − (A(G) + In)| |((λ− 1)In −D(G)) + (A(G) + In)|

= |(λ− 2)In − (D(G) +A(G))| |λIn − (D(G) −A(G))|

= QG(λ− 2)CG(λ).

From this the result follows. �
We now obtain the L-spectra of Gk∗ as follows.

Theorem 12 Let G(n,m) be a graph having L-spectra μi, and Q-spectra

μ+
i , 1 ≤ i ≤ n. The L-spectra of the graph Gk∗ is μi

((
k
0

)
times

)
, μi +

2
((

k−1
1

)
times

)
, μ+

i + 2
((

k−1
0

)
times

)
, μi + 4

((
k−1
2

)
times

)
, μ+

i +

4
((

k−1
1

)×)
, . . . , μi + 2(k− 2)

((
k−1
k−2

)
times

)
, μ+

i + 2(k− 2)
((

k−1
k−3

)
times

)
,

μi + 2(k− 1)
((

k−1
k−1

)
times

)
, μ+

i + 2(k− 1)
((

k−1
k−2

)
times

)
, μ+

i + 2k
((

k
k

)
times

)
, where 1 ≤ i ≤ n.
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Proof.We prove this result by induction and we use induction on k. For k = 1,
the result follows by Theorem 11. For k = 2, we have G2∗ = G∗∗. Let A(G∗)
and A(G∗∗) be the adjacency matrices respectively of the graphs G∗ and G∗∗.
It is not difficult to see that

A(G∗∗) =
(

0 A(G∗) + I2n
A(G∗) + I2n 0

)
.

Let D(G∗) and D(G∗∗) be respectively the degree matrices of G∗ and G∗∗. It
can be seen that

D(G∗∗) =
(
D(G∗) + I2n 0

0 D(G∗) + I2n

)
.

Therefore the Laplacian matrix of G∗∗ is

L(G∗∗) = D(G∗∗) −A(G∗∗) =(
D(G∗) + I2n −(A(G∗) + I2n)

−(A(G∗) + I2n) D(G∗) + I2n

)
.

So the Laplacian characteristic polynomial of G∗∗ is

CG∗∗(λ) = |λI4n − L(G∗∗)| =
∣∣∣∣(λ−1)I2n−D(G∗) A(G∗)+I2n

A(G∗) + I2n (λ− 1)I2n −D(G∗)

∣∣∣∣
= |((λ−1)I2n−D(G∗)) − (A(G∗)+I2n)| |((λ−1)I2n −D(G∗)) + (A(G∗) + I2n)|

= |(λ− 2)I2n − (D(G∗) +A(G∗))| |λI2n − (D(G∗) −A(G∗))|

= QG∗(λ− 2)CG∗(λ).

From this it is clear that the L-spectra of G∗∗ is μi, μi + 2, μ+
i + 2, μ+

i + 4,

for 1 ≤ i ≤ n, that is L-spectra of G∗∗ is μi

((
2
0

)
times

)
, μi + 2

((
1
1

)
times

)
,

μ+
i +2

((
1
0

)
times

)
, and μ+

i +4
((

2
2

)
times

)
. Therefore the result is true in this

case. Assume that the result is true for k = s− 1. Then by induction hypoth-

esis the L-spectra of G(s−1)∗ is μi

((
s−1
0

)
times

)
, μi + 2

((
s−2
1

)
times

)
, μ+

i +

2
((

s−2
0

)
times

)
, . . . , μi + 2(s− 2)

((
s−2
s−2

)
times

)
, μ+

i + 2(s− 2)
((

s−2
s−3

)
times

)
,

μ+
i + 2(s− 1)

((
s−1
s−1

)
times

)
. Now for k = s, it can be seen by proceeding as in

the case k = 2 the Laplacian matrix L(Gs∗) of the graph Gs∗ is

L(Gs∗)=D(Gs∗)−A(Gs∗)=
(

D(G(s−1)∗) + I2s−1n −(A(G(s−1)∗)+I2s−1n)

−(A(G(s−1)∗)+I2s−1n) D(G(s−1)∗) + I2s−1n

)
.
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Therefore, the Laplacian characteristic polynomial of Gs∗ is

CGs∗(λ) = |λI2sn − L(Gs∗)

=

∣∣∣∣(λ− 1)I2s−1n −D(G(s−1)∗) A(G(s−1)∗) + I2s−1n

A(G(s−1)∗) + I2s−1n (λ− 1)I2s−1n −D(G(s−1)∗)

∣∣∣∣
=

∣∣∣((λ− 1)I2s−1n −D(G(s−1)∗)) − (A(G(s−1)∗) + I2s−1n)
∣∣∣×∣∣∣((λ− 1)I2s−1n −D(G(s−1)∗)) + (A(G(s−1)∗) + I2s−1n)
∣∣∣

=
∣∣∣(λ− 2)I2s−1n − (D(G(s−1)∗) +A(G(s−1)∗))

∣∣∣
×
∣∣∣λI2s−1n − (D(G(s−1)∗) −A(G(s−1)∗))

∣∣∣
= QG(s−1)∗(λ− 2)CG(s−1)∗(λ).

Therefore, it follows that the L-spectra of the graph Gs∗ is μi

((
s−1
0

)
times

)
,

μi + 2
((

s−2
1

)
times

)
, μ+

i + 2
((

s−2
0

)
times

)
, . . ., μi + 2(s − 2)

((
s−2
s−2

)
times

)
,

μ+
i + 2(s− 2)

((
s−2
s−3

)
times

)
, μ+

i + 2(s− 1)
((

s−1
s−1

)
times

)
, μi+ 2

((
s−1
0

)
times

)
,

μi + 4(
(
s−2
1

)
times), μ+

i + 4(
(
s−2
0

)
times), . . ., μi + 2(s− 1)(

(
s−2
s−2

)
times), μ+

i +

2(s− 1)(
(
s−2
s−3

)
times), μ+

i + 2s(
(
s−1
s−1

)
times).

Using
(
k
r

)
+
(

k
r−1

)
=

(
k+1
r

)
, 0 ≤ r ≤ k and

(
s−1
0

)
=

(
s
0

)
=

(
s−1
s−1

)
=

(
s−2
s−2

)
= 1, we

see that the L-spectra of Gs∗ is μi(
(
s
0

)
times), μi+2(

(
s−1
1

)
times), μ+

i +2(
(
s−1
0

)
times), μi+ 4(

(
s−1
2

)
times), μ+

i + 4(
(
s−1
1

)
times), . . ., μi+ 2(s− 2)(

(
s−1
s−2

)
times),

μ+
i + 2(s − 2)(

(
s−1
s−3

)
times), μi + 2(s − 1)(

(
s−1
s−1

)
times), μ+

i + 2(s − 1)(
(
s−1
s−2

)
times), μ+

i + 2s(
(
s
s

)
times). Thus the result is true in this case as well hence

by induction the result follows. �
If G is a bipartite graph, it is easy to see that under elementary transforma-

tion the Laplacian characteristic polynomial of G coincides with the signless
Laplacian characteristic polynomial of G. Therefore the Laplacian and signless
Laplacian spectra of G are same. We have the following observation.

Corollary 13 If G(n,m) is a bipartite graph having L-spectra μi, 1 ≤ i ≤ n,

then the L-spectra of k-th iterated double cover Gk∗ of G is μi

((
k
0

)
times

)
,

μi+2
((

k
1

)
times

)
, . . ., μi+2(k−2)

((
k

k−2

)
times

)
, μi+2(k−1)

((
k

k−1

)
times

)
,

μi + 2k
((

k
k

)
times

)
, where 1 ≤ i ≤ n.
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Proof. Since for a bipartite graph G the Laplacian and the signless Laplacian
spectra are same, we have μi = μ+

i for all 1 ≤ i ≤ n. Using this in Theorem

21, we obtain the L-spectra of Gk∗ as μi

((
k
0

)
times

)
, μi + 2

((
k−1
1

)
times

)
,

μi+2
((

k−1
0

)
times

)
, μi+4

((
k−1
2

)
times

)
, μi+4

((
k−1
1

)
times

)
, . . ., μi+2(k−

2)
((

k−1
k−2

)
times

)
, μi+2(k−2)

((
k−1
k−3

)
times

)
, μi+2(k−1)

((
k−1
k−1

)
times

)
, μi+

2(k− 1)
((

k−1
k−2

)
times

)
, μi + 2k

((
k
k

)
times

)
. Now using the fact

(
t
r

)
+
(

t
r−1

)
=(

t+1
r

)
, 0 ≤ r ≤ t, the result follows. �

In [6] three formulae are given for the number of spanning trees of G∗ in
terms of A-spectra of the corresponding graph G. We now obtain a formula
for the number of spanning trees in terms of the L and Q-spectra of G∗.

Theorem 14 The number of spanning trees τ(G∗) of the graph G∗ is

τ(G∗) =
1

2
τ(G)

n∏
i=1

(μ+
i + 2).

Proof. Let 0 = μn < μn−1 ≤ · · · ≤ μ1 and 0 < μ+
n < μ+

n−1 ≤ · · · ≤ μ+
1 be

respectively the L-spectra and the Q-spectra of the graph G. By Theorem 3.2,
the L-spectra of the graph G∗ is μi, μ

+
i + 2 for i = 1, 2, . . . , n. By using the

fact that the number of spanning trees of a graph of order n is 1
n
times the

product of (n− 1) largest Laplacian eigenvalues of the graph, we have

τ(G∗) =
1

2n

n−1∏
i=1

μi

n∏
i=1

(μ+
i + 2) =

1

2
τ(G)

n∏
i=1

(μ+
i + 2).

�
In case G is bipartite, μi = μ+

i , so we have

τ(G∗) =
1

2n

n−1∏
i=1

μi

n∏
i=1

(μi + 2) = τ(G)

n−1∏
i=1

(μi + 2).

In [6] it is shown that the graphs G∗ and G × K2 are A-cospectral if and
only if G = K1 or G is bipartite. An analogous result holds for the L-spectra
and is given below.

Theorem 15 The graphs G∗ and G×K2 are L-cospectral if and only if G = K1

or G is bipartite.
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Proof. If G = K1, the graphs G∗ and G × K2 are both isomorphic to K1, so
are L-cospectral. Now if G �= K1, assume that G is bipartite. Then μi = μ+

i

and so the L-spectra of G∗ is μi, μi + 2 for 1 ≤ i ≤ n which is same as the
L-spectra of G × K2. Conversely, suppose that the graphs G∗ and G × K2 are
L-cospectral. Then μi = μ+

i , which is only possible if G is bipartite. Hence the
result. �
An integral graph is a graph all of whose eigenvalues are integers. Following

observation is a consequence of Theorem 12.

Theorem 16 A graph G is Laplacian integral if and only if the graph Gk∗ is
Laplacian integral graph.

It is clear from Theorem 16, that given a Laplacian integral G it is always
possible to construct an infinite sequence of Laplacian integral graphs. Indeed
the graph Gk∗ is Laplacian integral for all k ≥ 1.
Two graphs G1 and G2 are said to be co-spectral, if they are non-isomorphic

and have the same spectra. We have the following result, which follows by
Theorem 12.

Theorem 17 Two graphs G1 and G2 are Laplacian cospectral if and only if
the graphs Gk∗

1 and Gk∗
2 are Laplacian cospectral.

Thus given two Laplacian co-spectral graphs G1 and G2, it is always possible
to construct an infinite sequence of Laplacian co-spectral graphs. Indeed the
graphs Gk∗

1 and Since the extended double cover G∗ of the graph G is always
bipartite, it follows by Theorem 6, the graphs G∗∗ and G∗×K2 are L-cospectral
and in general the graphs Gs∗ and G(s−1)∗×K2 are L-cospectral. Also it is easy
to see that the graphs (G×K2)

∗ and G∗×K2 are L-cospectral and in general the
graphs (G×K2)

s∗ and Gs∗ ×K2 are both L-cospectral as well as Q-cospectral.
Moreover, if G is bipartite then as seen in Theorem 6, the graphs G∗ and
G × K2 are L-cospectral. Using the same argument it can be seen that the
graphs G∗∗ and G × K2 × K2 are L-cospectral if and only if G is bipartite. A
repeated use of the argument as used in Theorem 6, gives the graphs Gs∗ and
G × K2 × K2 × · · · × K2 = G × sK2 = G ×Qs (where K2 is repeated s times)
are L-cospectral if and only if G is bipartite. From this discussion it follows
that the graphs Gs∗, G(s−1)∗ × K2, (G × K2)

(s−1)∗ and G ×Qs−1 are mutually
non-isomorphic L-cospectral graphs if and only G is bipartite, where Qn is the
hypercube.
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4 Laplacian energy of double graphs

In this section, we study the Laplacian energy of the graphs D[G], Dk[G]
and G∗. Using these graphs we obtain some new families of non Laplacian
cospectral L-equienergetic graphs. Let D[G] and G∗ be respectively the double
graph and the extended double cover of the graph G. Then the Laplacian
spectra of the graph G∗ is given by Lemma 2, and the Laplacian spectra of
Dk[G] is given by the following result.

Theorem 18 (Marino, Salvi, 2007 [21]) Let G be a graph with n vertices
having degrees d1, d2, . . . , dn and let μ1, μ2, . . . , μn be its Laplacian spectra.
Then the Laplacian spectra of Dk[G] is kμi, kdi ((k−1)n times) for 1 ≤ i ≤ n.

Let μi for 1 ≤ i ≤ n be the L-spectra of the graph G. Then by Theorem 11,
the L-spectra of the extended double cover G∗ of the graph G is μi, μ

+
i + 2 for

1 ≤ i ≤ n. Also the average vertex degree of G∗ is 2m
n

+ 1. Therefore,

LE(G∗) =
n∑
i=1

|μi −
2m

n
− 1|+

n∑
i=1

|μ+
i −

2m

n
+ 1|.

Since average vertex degree of Dk[G] is k2m
n
, we have

LE(Dk[G]) =

n∑
i=1

∣∣∣∣kμi − k
2m

n

∣∣∣∣+ (k− 1)

n∑
i=1

∣∣∣∣kdi − k
2m

n

∣∣∣∣
= k

n∑
i=1

∣∣∣∣μi −
2m

n

∣∣∣∣+ k(k− 1)

n∑
i=1

∣∣∣∣di −
2m

n

∣∣∣∣
= kLE(G) + k(k− 1)

n∑
i=1

∣∣∣∣di −
2m

n

∣∣∣∣ .
From this it is clear that LE(Dk[G]) = kLE(G), if G is regular. Also, since

the k-fold graph of a regular graph is regular, it follows, if G1 and G2 are
r-regular L-equienergetic graphs then their k-fold graphs Dk[G1] and Dk[G2]
are also L-equienergetic. Let £(G) be the line graph of the graph G. It is
shown in [23] that if G1 and G2 are r-regular graphs then their k-th (k ≥ 2)
iterated line graphs £k(G1) and £k(G2) are always equienergetic and so L-
equienergetic. Therefore it follows that given any two r-regular graphs, we can
always construct an infinite family of L-equienergetic graphs.
In case the given r-regular connected graphs are L-equienergetic, the k-fold

graph forms a larger family of L-equienergetic graphs than the k-th iterated
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line graph. As an example, consider the 4-regular graphs G1 and G2 shown
in Figure 1 on 9-vertices. It can be seen that the L-spectra of G1 and G2 are
respectively as 0, 34, 64 and 0, 2, 32, 52, 63 (where as means a occurs s times in
the spectrum). Therefore LE(G1) = 16 = LE(G2). This shows that the graphs
G1 and G2 are regular L-equienergetic graphs, so their k-fold graphs Dk[G1]
and Dk[G2] and their k-th (k ≥ 2) iterated line graphs are also L-equienergetic.
In fact the k-fold graph gives an infinite family of L-equienergetic graph pairs
of order n ≡ 0 (mod 9), whereas the k-th iterated line graph gives an infinite
family of L-equienergetic graph pairs of orders n = 542 702 430, and so on,
from this the assertion follows.
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We have seen that the Laplacian energy of the graph D[G] is twice the
Laplacian energy of G when G is regular. But this need not be true for the
graph G∗ as seen from the Laplacian energy of G∗ given above. However we
have the following observation.

Theorem 19 Let G∗ be the extended double cover of the bipartite graph G.
Then LE(G∗) = 2LE(G) if and only if

∣∣μi −
2m
n

∣∣ ≥ 1 for 1 ≤ i ≤ n.

Proof. Let μi for 1 ≤ i ≤ n be the L-spectra of the graph G. Then by Corollary
13, the L-spectra of G∗ is μi, μi+2 for 1 ≤ i ≤ n. Assume that

∣∣μi −
2m
n

∣∣ ≥ 1,

for all i = 1, 2, . . . , n. Then since average vertex degree of G∗ is 2m
n

+ 1, we
have ∣∣∣∣μi −

2m

n
+ 1

∣∣∣∣ =
{ ∣∣μi −

2m
n

∣∣+ 1, if μi ≥ 2m
n

|μi −
2m
n
|− 1, if μi <

2m
n

,

∣∣∣∣μi −
2m

n
− 1

∣∣∣∣ =
{ ∣∣μi −

2m
n

∣∣− 1, if μi ≥ 2m
n∣∣μi −

2m
n

∣∣+ 1, if μi <
2m
n

.
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Therefore,

LE(G∗)

=

n∑
i=1

∣∣∣∣μi −
2m

n
− 1

∣∣∣∣+
n∑
i=1

∣∣∣∣μi −
2m

n
+ 1

∣∣∣∣
=

n∑
i=1

(∣∣∣∣μi −
2m

n
− 1

∣∣∣∣+
∣∣∣∣μi −

2m

n
+ 1

∣∣∣∣
)

=
∑

μi≥ 2m
n

(∣∣∣∣μi −
2m

n
− 1

∣∣∣∣+
∣∣∣∣μi −

2m

n
+ 1

∣∣∣∣
)

+
∑

μi<
2m
n

(∣∣∣∣μi −
2m

n
− 1

∣∣∣∣+
∣∣∣∣μi −

2m

n
+ 1

∣∣∣∣
)

=
∑

μi≥ 2m
n

(∣∣∣∣μi −
2m

n

∣∣∣∣− 1+

∣∣∣∣μi −
2m

n

∣∣∣∣+ 1

)

+
∑

μi<
2m
n

(∣∣∣∣μi −
2m

n

∣∣∣∣+ 1+

∣∣∣∣μi −
2m

n

∣∣∣∣− 1

)

= 2
∑

μi≥ 2m
n

∣∣∣∣μi −
2m

n

∣∣∣∣+ 2
∑

μi<
2m
n

∣∣∣∣μi −
2m

n

∣∣∣∣ = 2LE(G).

Conversely, suppose that LE(G∗) = 2LE(G). We will show that
∣∣μi −

2m
n

∣∣ ≥ 1

for all 1 ≤ i ≤ n. We prove this by contradiction. Assume that
∣∣μi −

2m
n

∣∣ < 1,

for some λj. Putting βi = μi −
2m
n
, and using the same argument as used in

the converse of Theorem 8 in [4] we arrive at a contradiction. �
If G is a graph satisfying the conditions of Theorem 19, then clearly the

graphs G∗ and G ∪ G are L-equienergetic. We now obtain some new families
of L-equienergetic graphs by means of the graphs G∗, Gk∗, D[G] and Dk[G].

Theorem 20 Let G1(n,m) be a graph having L-spectra and Q-spectra respec-
tively as μi and μ+

i and let G2(n,m) be another graph having L-spectra and
Q-spectra respectively as λi and λ+i for i = 1, 2, . . . , n. Then for p ≥ 2n + k

and m ≤ (k−1)n
2

+ k2

4
, k ≥ 3, we have LE(G∗

1 ∨ K̄p) = LE(G∗
2 ∨ K̄p).

Proof. LetG∗
1 be the extended double cover of the graphG1. Then by Theorem

11, the L-spectra of G∗
1 is μi, μ+

i + 2 for 1 ≤ i ≤ n and so by Lemma 3, the
L-spectra of G∗

1∨ K̄p is p+2n, p+μi(1 ≤ i ≤ n−1), p+μ+
i +2(1 ≤ i ≤ n), 2n
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((p− 1) times), 0, with average vertex degree

2m′

n′ =
4m+ 4pn+ 2n

p+ 2n
.

Therefore,

LE(G∗
1 ∨ K̄p) =

∣∣∣∣p+ 2n−
2m′

n′

∣∣∣∣+
n−1∑
i=1

∣∣∣∣p+ μi −
2m′

n′

∣∣∣∣+
∣∣∣∣0− 2m′

n′

∣∣∣∣
+

n∑
i=1

∣∣∣∣p+ μ+
i + 2−

2m′

n′

∣∣∣∣+ (p− 1)

∣∣∣∣2n−
2m′

n′

∣∣∣∣ .
Now, if p ≥ 2n+ k and m ≤ (k−1)n

2
+ k2

4
, k ≥ 3, we have for i = 1, 2, . . . , n,

p+μi−
2m′

n′ = p+μi−
4m+ 4pn+ 2n

p+ 2n
=

p(p− 2n) + (2n+ p)μi − 4m− 2n

p+ 2n

≥ k(2n+ k) − 2(k− 1)n− k2 − 2n

p+ 2n
= 0,

and

p+ μ+
i + 2−

2m′

n′ = p+ μ+
i + 2−

4m+ 4pn+ 2n

p+ 2n

=
p(p− 2n) + (2n+ p)μ+

i + 2(p+ n) − 4m

p+ 2n

≥ k(2n+ k) − 2(k− 1)n− k2 + 2(3n+ k)

p+ 2n
=

8n+ 2k

p+ 2n
≥ 0.

So we have

LE(G∗
1 ∨ K̄p) =

(
p+ 2n−

2m′

n′

)
+ (n− 1)

(
p−

2m′

n′

)
+ n

(
p+ 2−

2m′

n′

)

+ (p− 1)

(
2m′

n′ − 2n

)
+

2m′

n′ + 4m = 6n+ (p− 2n)
2m′

n′ + 4m.

From this it is clear that the Laplacian energy of G∗
1 depends only on the

parameters p,m and n. Since these parameters are also same for G∗
2, it follows

that LE(G∗
1∨K̄p) = LE(G∗

2∨K̄p). In fact all the graphs of the family (G∗
i ∨K̄p),

i = 1, 2, . . ., having the same parameters n, p and m satisfying the conditions
in the hypothesis are mutually L-equienergetic. �
Let Gt∗ be the t-th iterated extended double cover of the graph G. We have
the following generalization of Theorem 20.
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Theorem 21 Let G(n,m) be a graph having L-spectra and Q-spectra respec-

tively as μi and μ+
i for 1 ≤ i ≤ n. For p ≥ 2tn + k and m ≤ (k−t)n

2
+ k2

2t+1 ,

k ≥ t+ 2, t ≥ 1, we have LE(Gt∗ ∨ K̄p) = 2tn(t+ 2) + (p− 2tn)2m
′

n′ + 2t(2m).

Proof. LetGt∗ be the t-th iterated extended double cover of the graphG. Then

by Theorem 12, the L-spectra of Gt∗ is μi

((
t
0

)
times

)
, μi + 2

((
t−1
1

)
times

)
,

μ+
i + 2

((
t−1
0

)
times

)
, μi + 4

((
t−1
2

)
times

)
, μ+

i + 4
((

t−1
1

)
times

)
, . . ., μi +

2(t−2)
((

t−1
t−2

)
times

)
, μ+

i +2(t−2)
((

t−1
t−3

)
times

)
, μi+2(t−1)

((
t−1
t−1

)
times

)
,

μ+
i + 2(t − 1)

((
t−1
t−2

)
times

)
, μ+

i + 2t
((

t
t

)
times

)
, where 1 ≤ i ≤ n. So by

Lemma 2.3, the L-spectra of Gt∗∨K̄p is 0, p+2tn, 2tn (p−1 times), p+μi (
(
t
0

)
times) (1 ≤ i ≤ n − 1), p + μi + 2 (

(
t−1
1

)
times), p + μ+

i + 2 (
(
t−1
0

)
times),

p+μi+ 4 (
(
t−1
2

)
times), p+μ+

i + 4 (
(
t−1
1

)
times), . . ., p+μi+ 2(t− 2) (

(
t−1
t−2

)
times), p + μ+

i + 2(t − 2) (
(
t−1
t−3

)
times), p + μi + 2(t − 1) (

(
t−1
t−1

)
times),

p+μ+
i +2(t−1) (

(
t−1
t−2

)
times), p+μ+

i +2t(
(
t
t

)
times), 1 ≤ i ≤ n, with average

vertex degree

2m′

n′ =
2t+1m+ 2ttn+ 2t+1pn

p+ 2tn
.

Therefore,

LE(Gt∗ ∨ K̄p)

=

n−1∑
i=1

∣∣∣∣p+ μi −
2m′

n′

∣∣∣∣+
t−1∑
r=1

n∑
i=1

(
t− 1

r

) ∣∣∣∣p+ μi + 2r−
2m′

n′

∣∣∣∣
+

t−1∑
r=1

n∑
i=1

(
t− 1

r− 1

) ∣∣∣∣p+ μ+
i + 2r−

2m′

n′

∣∣∣∣+
n∑
i=1

∣∣∣∣p+ μi + 2t−
2m′

n′

∣∣∣∣
+ |p+ 2tn−

2m′

n′

∣∣∣∣+(p− 1)|2tn−
2m′

n′

∣∣∣∣+
∣∣∣∣0− 2m′

n′

∣∣∣∣ .
Now, if p ≥ 2tn + k and m ≤ (k−t)n

2
+ k2

2t+1 , k ≥ t + 2, t ≥ 1, we have for
i = 1, 2, . . . , n and r = 0, 1, . . . , t

p+ μi + 2r−
2m′

n′ = p+ μi + 2r−
2t+1m+ 2ttn+ 2t+1pn

p+ 2tn

=
p(p− 2tn) + 2r(p+ 2tn) + (p+ 2tn)μi − 2t+1m− 2ttn

p+ 2tn
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≥ k(2tn+ k) − k(2tn+ k) + 2ttn− 2ttn

p+ 2tn
= 0.

Similarly, it can be seen that p+ μ+
i + 2r− 2m′

n′ ≥ 0. So we have

LE(Gt∗ ∨ K̄p)

= (n− 1)

(
p−

2m′

n′

)
+

t−1∑
r=1

(
n

(
p+ 2r−

2m′

n′

)
+ 2m

)[(
t− 1

r

)
+

(
t− 1

r− 1

)]

+

(
p+ 2tn−

2m′

n′

)
+ (p− 1)

(
2m′

n′ − 2tn

)

+

(
n

(
p+ 2t−

2m′

n′

)
+ 2m

)
+

2m′

n′ + 2m

= 2t+1n− pn(2t − 1) + (p− n)
2m′

n′

+

t∑
r=1

(
t

r

)(
n

(
p+ 2r−

2m′

n′

)
+ 2m

)
+ 2m

= 2t+1n− pn(2t − 1) + (p− n)
2m′

n′ + n(2t − 1)

(
p−

2m′

n′

)
+ (2t − 1)2m+ 2ttn+ 2m

= 2tn(t+ 2) + (p− 2tn)
2m′

n′ + 2t(2m),

where we have made use of the fact
[(

t−1
r

)
+
(
t−1
r−1

)]
=

(
t
r

)
and

t∑
r=1

r
(
t
r

)
= t2t−1.

Clearly the Laplacian energy of the graph (Gt∗ ∨ K̄p) depends only on the
parameters p,m, t and n. Therefore all the graphs of the families (Gt∗

i ∨ K̄p),
where t, i = 1, 2, . . . , with the same parameters p,m, t and n satisfying the
conditions in the hypothesis are mutually L-equienergetic. �
Theorem 21 gives an infinite family of L-equienergetic graphs in various

ways, firstly fix the value of t and allow p to vary we obtain families of L-
equienergetic graphs with same t, secondly fix the value of p and allow t to
vary we obtain families of L-equienergetic graphs with same p and so on.

Corollary 22 Let G(n,m) be a bipartite graph having L-spectra μi for 1 ≤
i ≤ n. For p ≥ 2tn + k and m ≤ (k−t)n

2
+ k2

2t+1 , k ≥ t + 2, t ≥ 1, we have

LE(Gt∗ ∨ K̄p) = 2tn(t+ 2) + (p− 2tn)2m
′

n′ + 2t(2m).

Proof. The proof follows the proof of Corollary 13 and the same argument as
in the proof Theorem 21. �
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From Theorem 21, it is clear if G1 and G2 are any two graphs with the
same parameters, then we can always find tripartite graphs (G∗

1 ∨ K̄p) and
(G∗

2 ∨ K̄p) having the same Laplacian energy. Next we show the construction
of L-equienergetic graphs by means of graphs D[G] and Dk[G].

Theorem 23 Let D[G] be the double graph of the graph G. Then, for p ≥
2n+ k and m ≤ k(2n+k)

8
, k ≥ 4, we have

LE(D[G]∨ K̄p) = 4n+ (p− 2n)
2m′

n′ + 8m.

Proof. Let μi and di for i = 1, 2, . . . , n be respectively the L-spectra and the
degree sequence of the graph G. Then by Theorem 21, the L-spectra of the
graph Dk[G] is kμi, kdi ((k − 1)n times) and so by Lemma 3, the L-spectra
of the graph Dk[G]∨ K̄p is p+ kn, p+ kμi (1 ≤ i ≤ n− 1), p+ kdi ((k− 1)n
times) (1 ≤ i ≤ n), kn ((p− 1) times), 0, with average vertex degree

2m′

n′ =
2k2m+ 2pkn

p+ kn
.

So, if p ≥ kn+ t and m ≤ t(kn+t)
2k2

, t ≥ 2k, k ≥ 2, we have for i = 1, 2, . . . , n

p+ kμi −
2m′

n′ = p+ kμi −
2k2m+ 2pkn

p+ kn

=
p(p− kn) − 2k2m+ k(p+ kn)μi

p+ kn

≥ t(kn+ t) − t(kn+ t)

p+ kn
= 0.

Similarly, we see that

p+ 2di −
2m′

n′ ≥ 0.

Therefore,

LE(D[G]∨ K̄p)=

∣∣∣∣p+2μi−
2m′

n′

∣∣∣∣+
n−1∑
i=1

∣∣∣∣p+ 2μi −
2m′

n′

∣∣∣∣+
n∑
i=1

∣∣∣∣p+ 2di −
2m′

n′

∣∣∣∣
+ (p− 1

∣∣∣∣2n−
2m′

n′

∣∣∣∣+
∣∣∣∣0− 2m′

n′

∣∣∣∣
= 4n+ (p− 2n)

2m′

n′ + 8m.
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Clearly the Laplacian energy of the graph D[G] ∨ K̄p depends only on the
parameters p,m and n. Therefore all the graphs of the family (D[Gi] ∨ K̄p),
i = 1, 2, . . . with the same parameters p,m and n satisfying the conditions of
the theorem, are mutually L-equienergetic. �
If Dk[G] is the k-fold graph of the graph G, we have the following general-

ization of Theorem 23.

Theorem 24 Let Dk[G] be the k-fold graph of the graph G. Then for p ≥
kn+ t and m ≤ t(kn+t)

2k2
, t ≥ 2k, k ≥ 2, we have LE(Dk[G]∨ K̄p) = 2kn+ (p−

nk)2m
′

n′ + 2mk2.

Proof. Let μi and di for i = 1, 2, . . . , n be respectively the L-spectra and the
degree sequence of the graph G. Then by Theorem 21, the L-spectra of the
graph Dk[G] is kμi, kdi ((k − 1)n times) and so by Lemma 3, the L-spectra
of the graph Dk[G]∨ K̄p is p+ kn, p+ kμi (1 ≤ i ≤ n− 1), p+ kdi ((k− 1)n
times) (1 ≤ i ≤ n), kn ((p− 1) times), 0, with average vertex degree

2m′

n′ =
2k2m+ 2pkn

p+ kn
.

So, if p ≥ kn+ t and m ≤ t(kn+t)
2k2

, t ≥ 2k, k ≥ 2, we have for i = 1, 2, . . . , n

p+ kμi −
2m′

n′ = p+ kμi −
2k2m+ 2pkn

p+ kn

=
p(p− kn) − 2k2m+ k(p+ kn)μi

p+ kn
≥ t(kn+ t) − t(kn+ t)

p+ kn
= 0.

Similarly, we see that

p+ kdi −
2k2m+ 2pkn

p+ kn
≥ 0.

Therefore,

LE(Dk[G]∨ K̄p)

=

∣∣∣∣p+kn−
2m′

n′

∣∣∣∣+
n−1∑
i=1

∣∣∣∣p+ kμi −
2m′

n′

∣∣∣∣+ (k− 1)

n∑
i=1

∣∣∣∣p+ 2di −
2m′

n′

∣∣∣∣
+ (p− 1)

∣∣∣∣kn−
2m′

n′

∣∣∣∣+
∣∣∣∣0− 2m′

n′

∣∣∣∣ = 2kn+ 2mk2 + (p− nk)
2m′

n′ .
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From this it is clear the Laplacian energy of the graph (Dk[G]∨K̄p) depends on
the parameters p, k,m and n. Therefore all the graphs of the families (Dk[Gi]∨
K̄p) where i = 1, 2, . . ., and k = 2, 3, . . . having the same parameters p,m, k

and n satisfying the conditions of the Theorem, are mutually L-equienergetic.
�

Theorem 24 generates families of L-equienergetic graphs in various ways.
If we allow p to vary and keep k fixed, we obtain an infinite family of L-
equienergetic graphs with same k and if we allow k to vary and keep p fixed,
we obtain an infinite family of L-equienergetic graphs with same p and so on.
If D[G] and G∗ are respectively the double graph and the extended double

cover of the graph G, then the following result gives the construction of L-
equienergetic graphs with different number of edges.

Theorem 25 Let G1(n,m1) and G2(n,m2) be two graphs of order n ≡ 0

(mod 4) with m2 = m1+
n
4
. Then for p ≥ 4n+k and m2 ≤ n(k−2)

4
+ k2

16
, k ≥ 4,

we have

LE(D(G∗
1)∨ K̄p) = LE(D(G2)

∗ ∨ K̄p).

Proof. Let μi, di and μ+
i for i = 1, 2, . . . , n be respectively the L-spectra,

degree sequence and Q-spectra of G1 and let λi, d
′
i and λ+i be the L-spectra,

degree sequence and Q-spectra of the graph G2. Then by Theorems 11 and
18 and Lemma 3, the L-spectra of the graphs D(G∗

1) ∨ K̄p and D(G2)
∗ ∨ K̄p

are respectively as p+ 4n, p+ 2μi (1 ≤ i ≤ n − 1), p+ 2μ+
i + 4, p+ 2di + 2

(2 times) (1 ≤ i ≤ n), 4n ((p − 1) times), 0 and p + 4n, p + 2λi (1 ≤ i ≤
n− 1), p+ 2λ+i + 4, p+ 2d′

i + 2 (2 times) (1 ≤ i ≤ n), 4n((p− 1) times), 0,
with average vertex degrees

2m′
1

n′ =
16m1 + 8n+ 8pn

p+ 4n
,

2m′
2

n′ =
16m2 + 8n+ 8pn

p+ 4n
.

Now, if p ≥ 4n+ k and m2 ≤ n(k−2)
4

+ k2

16
, k ≥ 4, we have for i = 1, 2, . . . , n

p+ 2μi −
2m′

1

n′ = p+ 2μi −
16m1 + 8n+ 8pn

p+ 4n

=
p(p− 4n) + 2(p+ 4n)μi − 16m1 − 8n− 8pn

p+ 4n

≥ k(4n+ k) − 4n(k− 2) − k2 − 8n

p+ 4n
= 0.



112 H. A. Hilal, S. Pirzada, A. Iványi

Similarly, we can show that

p+ 2μ+
i + 4−

2m′
1

n′ ≥ 0, p+ 2di + 2−
2m′

1

n′ ≥ 0.

Therefore,

LE(D(G∗
1)∨ K̄p) =

∣∣∣∣p+ 4n−
2m′

1

n′

∣∣∣∣+
n−1∑
i=1

∣∣∣∣p+ 2μi −
2m′

1

n′

∣∣∣∣
+

n∑
i=1

∣∣∣∣p+ 2μ+
i + 4−

2m′
1

n′

∣∣∣∣
+ 2

n∑
i=1

∣∣∣∣p+ 2di + 2−
2m′

1

n′

∣∣∣∣
+ (p− 1)

∣∣∣∣4n−
2m′

1

n′

∣∣∣∣+
∣∣∣∣0− 2m′

1

n′

∣∣∣∣
= 16n+ 16m1 + (p− 4n)

2m′
1

n′ .

Proceeding similarly for the graph D(G2)
∗ ∨ K̄p it can be seen that

LE(D(G2)
∗ ∨ K̄p) = 12n+ 16m2 + (p− 4n)

2m′
2

n′ .

Using the fact m2 = m1 +
n
4
, the result follows. �

Let D[G1] be the double graph of the graph G1(n,m1) and let G∗
2 be the

extended double cover of the graph G2(n,m2), then for p ≥ 2n + k and

m1 ≤ k(2n+k)
8

, k ≥ 4, we have from Theorem 23

LE(D[G1]∨ K̄p) = 4n+ 8m1 + (p− 2n)
2m′

1

n′ . (3)

Also, for p ≥ 2n+ k and m2 ≤ n(k−1)
2

+ k2

4
, k ≥ 4, we have by Theorem 20

LE(G∗
2 ∨ K̄p) = 6n+ 4m2 + (p− 2n)

2m′
2

n′ . (4)

If we suppose that 4m1 = 2m2 + n, then it follows from (3) and 4 that

LE(D[G1]∨ K̄p) = LE(G∗
2 ∨ K̄p).

This gives another construction of families of graphs with same Laplacian
energy, same number of vertices but different number of edges. Next we give
another way of constructing a family of graphs having same number of vertices,
same Laplacian energy but different number of edges.
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Theorem 26 Let G1(n,m1) and G2(n,m2) be two graphs with m2 = 2m1.

Then for p ≥ 4n+k and m2 ≤ k(4n+k)
8

−n, k ≥ 4, we have LE(D(G∗
1)∨ K̄p) =

LE(G∗∗
2 ∨ K̄p).

Proof. Let μi, μ
+
i and di for i = 1, 2, . . . , n be respectively the L-spectra,

Q-spectra and the degree sequence of the graph G1 and let λi and λ+i be
the L-spectra and Q-spectra of the graph G2. Then by Theorems 11 and 18
and Lemma 3, the L-spectra of D(G∗

1) ∨ K̄p is p + 4n, p + 2μi (1 ≤ i ≤
n − 1), p + 2μ+

i + 4, p + 2di + 2 (2 times) (1 ≤ i ≤ n), 4n ((p − 1) times),
0. Also by Theorem 12 and Lemma 3, the L-spectra of the graph G∗∗

2 ∨ K̄p is
p+ 4n, p+ λi (1 ≤ i ≤ n− 1), p+ λi + 2, p+ λ+i + 2, p+ λ+i + 4 (1 ≤ i ≤
n), 4n((p− 1) times), 0, with average vertex degrees

2m′
1

n′ =
16m1 + 8n+ 8pn

p+ 4n
,
2m′

2

n′ =
8m2 + 8n+ 8pn

p+ 4n
.

So, if p ≥ 4n+ k and m2 ≤ k(4n+k)
8

− n, k ≥ 4, we have for i = 1, 2, . . . , n

p+ 2μi −
2m′

1

n′ = p+ 2μi −
16m1 + 8n+ 8pn

p+ 4n

=
p(p− 4n) + 2(p+ 4n)μi − 16m1 − 8n− 8pn

p+ 4n

=
k(4n+ k) − k(4n+ k) + 8n− 8n

p+ 4n
= 0.

Similarly, we can show

p+ 2μ+
i + 4−

2m′
1

n′ ≥ 0, p+ 2di + 2−
2m′

1

n′ ≥ 0.

Therefore,
LE(D(G∗

1)∨ K̄p)

= |p+ 4n−
2m′

1

n′ |+

n−1∑
i=1

|p+ 2μi −
2m′

1

n′ |+

n∑
i=1

|p+ 2μ+
i + 4−

2m′
1

n′ |

+2

n∑
i=1

|p+ 2di + 2−
2m′

1

n′ |+ (p− 1)|4n−
2m′

1

n′ |+ |0−
2m′

1

n′ |

= 16n+ (p− 4n)
2m′

1

n′ + 16m1.
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Proceeding similarly as above for the graph G∗∗
2 ∨ K̄p, we can see that

LE(G∗∗
2 ∨ K̄p) = 16n+ (p− 4n)

2m′
2

n′ + 8m2.

Using m2 = 2m1, the result follows. �
Theorem 26 generates L-equienergetic graphs with same number of vertices

but different number of edges, infact when one graph contains twice the num-
ber of edges as contained in other. Lastly we give the construction of family
of graphs with same number of vertices, edges and Laplacian energy by means
of Cartesian product and extended double cover.

Theorem 27 Let G1(n,m) and G2(n,m) be two connected non-bipartite
graphs. Then for p ≥ n+2, and min(μ+

n, λ
+
n) ≥ 2m

n
−2 we have LE(G∗

1×Kp) =
LE(G∗

2 × Kp) if and only if LE(G1) = LE(G2).

Proof. Let 0 = μn < μn−1 ≤ · · · ≤ μ1 and 0 < μ+
n < μ+

n−1 ≤ · · · ≤ μ+
1

be respectively the L-spectra and the Q-spectra of the graph G1 and let 0 =
λn < λn−1 ≤ · · · ≤ λ1 and 0 < λ+n < λ+n−1 ≤ · · · ≤ λ+1 be respectively the
L-spectra and Q-spectra of the graph G2. Then by Theorem 11 and Lemma
1, the L-spectra of the graphs G∗

1 ×Kp and G∗
1 ×Kp are respectively as γi+qj

and θi + qj, i = 1, 2, . . . , 2n, j = 1, 2, . . . , n, where

γi =

{
μi, if i = 1, 2, . . . , n

μ+
i + 2, if i = n+ 1, n+ 2, . . . , 2n,

θi =

{
λi, if i = 1, 2, . . . , n

λ+i + 2, if i = n+ 1, n+ 2, . . . , 2n

and p = q1 = q2 = · · · = qp−1, qp = 0 with average vertex degree

2m′

n′ =
2m

n
+ p.

Therefore,

LE(G∗
1 × Kp) =

2n∑
i=1

n∑
j=1

∣∣∣∣γi + qj −
2m′

n′

∣∣∣∣
= (p− 1)

2n∑
i=1

∣∣∣∣p+ γi −
2m′

n′

∣∣∣∣+
n∑
i=1

∣∣∣∣γi −
2m′

1

n′

∣∣∣∣
= (p− 1)LE(G1) + 4pn− 4n.
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Similarly it can be seen that

LE(G∗
2 × Kp) = (p− 1)LE(G2) + 4pn− 4n.

It is now clear that LE(G∗
1×Kp) = LE(G∗

2×Kp) if and only if LE(G1) = LE(G2),
therefore the result follows. �
Since G∗ is always bipartite, Theorem 27 gives the construction of connected

graphs from a given pair of L-equienergetic bipartite graphs having same num-
ber of vertices, edges and Laplacian energy. Moreover if t is the first value of p
satisfying the conditions in Theorem 27, then every value greater than t also
satisfies this condition, therefore we obtain an infinite family of L-equienergetic
graph pairs.
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[2] T. Aleksić, Upper bounds for Laplacian energy of graphs, MATCH Commun.
Math. Comput. Chem. 60, 2 (2008) 435–439. ⇒90

[3] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–
295. ⇒91

[4] A. S. Bonifacio, C. T. M. Vinagre, N. M. Abreu, Constructing pairs of equiener-
getic and non-cospectral graphs, Applied Mathematics Letters 21, 4 (2008) 338–
341. ⇒97, 105

[5] J. Carmona, I. Gutman, N. J. Tamblay, M. Robbiano, A decreasing sequence
of upper bounds for the Laplacian energy of a tree, Linear Algebra Appl. 446
(2014) 304–313. ⇒90

[6] Z. Chen, Spectra of extended double cover graphs, Czechoslovak Math. J. 54, 4
(2004) 1077–1082. ⇒91, 92, 97, 101

[7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application,
Academic Press, New York, 1980. ⇒92, 93

[8] D. Cvetkovic, S. K. Simic, Towards a spectral theory of graphs based on signless
Laplacian I, Publ. Inst. Math (Beograd), 85 (2009) 19–33. ⇒90

[9] K. Ch. Das, I. Gutman, On incidence energy of graphs, Linear Algebra Appl.
446 (2014) 329–344. ⇒90

[10] G. H. Fath-Tabar, A. R. Ashrafi, Some remarks on the Laplacian eigenvalues
and Laplacian energy of graphs, Math. Commun. 15 (2010) 443–451. ⇒90

[11] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23, 2 (1973)
298–305. ⇒90

[12] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm
Graz 103 (1978) 1–22. ⇒90



116 H. A. Hilal, S. Pirzada, A. Iványi
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