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Abstract. Several behavioral game theory models aim at explaining why
“smarter“ people win more frequently in simultaneous zero-sum games,
a phanomenon, which is not explained by the Nash equilibrium concept.
We use a computational model and a numerical simulation based on
Markov chains to describe player behavior and predict payoffs.

1 Introduction

Since the birth of experimental economics, thousands of experiments have been
conducted to observe the behavior of decision makers in different situations
(see e.g. [4]).

However, the most famous equilibrium concept—the Nash equilibrium [13]—
has proved to be unable to explain the outcome of several game theoretical
experiments, predicting that human thinking is more complicated than pure
rationality.

Game theory has also proved to be a useful modelling tool for network
situations, e.g. telecommunication problems. For a detailed survey in this field,
we refer the reader to [15]. An application can be found in [1].

Computing Classification System 1998: G.3, 1.6, J.4

Mathematics Subject Classification 2010: 60J20, 62P20, 68U20, 91A10

Key words and phrases: computational game theory, non-cooperative games, outguessing,
Markov chains, reasoning, communication networks

DOI:10.2478 /ausi-2014-0019

71



72 T. L. Balogh, J. Kormos

The phanomenon that human behavior is not purely rational in certain in-
teractive network situations led researchers to construct behavioral game the-
ory models. Recently, several models have been built to explain experimental
results (e.g. [2, 7]).

A popular model class aiming at explaining how players outguess each other
is the group of iterative reasoning models. Iterative reasoning has been applied
in many settings to the Rock-Paper-Scissors game or the Beauty contest-type
games ([3, 5, 8, 11, 12, 16]).

The concept of iterative reasoning and the corresponding main results are
presented in [4, pages 205-236]. A simplified concept for non-cooperative, two-
person, simultaneous games can be defined as follows. If Player A plays a
certain action, while Player B plays the best response to this action, then we
say that Player B outguessed Player A and played according to 1-reasoning.
If now Player A outguesses Player B, then Player A plays according to 2-
reasoning. Following this rule, the level of reasoning can be any k positive
integer, where the concept is defined as k-reasoning.

In this paper we investigate simultaneous, two-person, zero-sum, repeated
games that do not have a pure strategy Nash equilibrium and the players’
decisions depend only on their actions in the previous round of the game.
Here, the stochastic processes of the players’ decisions and their expected
payoffs can be described by Markov chains.

Our main goal is to point out why “smarter” people win more frequently in
some well-known zero-sum games. There are several ways to define smartness.
Our definition of smartness is connected to the concept of iterative reasoning
and is introduced later on in Section 3.

We focus on modelling players’ optimal strategy choices and expected pay-
offs. These are both stochastic processes given a certain bimatrix game and
the level of iterative reasoning according to which players make their decisions.

We constructed a Matlab script that carries out the requested numerical
analysis for any simultaneous, two-person bimatrix game. In our paper we
present the relating analytical results, describe our concept and recall some
numerical results and visualizations. Our Matlab script is also attached for
testing and experimental purposes.

The rest of the paper is organized as follows. Section 2 recalls some impor-
tant results in the field of Markov chains that are related to our topic. Section
3 describes our concept and provides numerical evidence. Section 4 describes
the Matlab script. Finally, Section 5 concludes.
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2 Markov chains—definitions and some important
results

It is necessary to recall some basic results from the field of Markov chains that
we use in the upcoming sections. For a more detailed analysis, we refer the
reader to [6, 9, 10, 14]. This section is a brief summary of Chapter 4 in [6,
pages 119-155], that is related to our concept. The proofs are always omitted.

Definition 1 Let S be a countable (finite or countably infinite) set. An S-
valued random wvariable X is a function from a sample space w into S for
which {X = x} is an event for every x € S.

Here S need not be a subset of R, so this extends the notion of a discrete
random variable (or vector). The concepts of distribution, jointly distributed
random variables, and so on, extend in the obvious way. The expectation of X,
however, is not meaningful unless S C R. On the other hand, the conditioning
random variables in a conditional expectation may be S-valued, and all of the
results about conditional expectation generalize without difficulty.

Definition 2 A matriz P = (P(i,j))ijes with rows and columns indexed by
S is called a one-step transition matriz if P(i,j) > 0 for all i,j € S and
Zjes P(i,j) =1 for alli € S.

In particular, the row sums of a one-step transition matrix are equal to 1.
We call P(i,j), the entry in row i and column j of the matrix P, a one-step
transition probability.

Definition 3 We say that {X,}n > 0 is a Markov chain in a countable state
space S with one-step transition matriz P if Xo, X1, ... is a sequence of jointly
distributed S-valued random variables with the property that

P(Xn—H = j|X0>-~ '>Xn) = P(Xn+1 :j|Xn) - P(ij) (1)
forallm >0 andj € S.

We assume that the sequence Xy, X1, ... is indexed by time, and if we regard
time n as the present, the first equation in (1), known as the Markov property,
says that the conditional distribution of the state of the process one time step
into the future, given its present state as well as its past history, depends only
on its present state. The second equation in (1) tells us that P(Xy1 =j/Xn =
i) = P(i,j) does not depend on m. This property is called time homogeneity.
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The distribution of Xy is called the initial distribution and is given by (i) :=
P(Xy =1),i €8S.

A Markov chain can be described by specifying its state space, its initial
distribution, and its one-step transition matrix.

Given a Markov chain {X,,}n > 0 in the state space S with one-step transi-
tion matrix P, it can be shown that, for every m > 1,1y, 11,...,im € S, and n >
0, P(Xnpt1 =11y oy Xnam = imlXn = 10) = P(io, 11)P(i1,12) . . . Pim_1, im)-

Definition 4 We define the m-step transition matriz P™ of the Markov chain
by
P™Mi,5) = -+ Y P, )P, i2)P(im1, ) (2)

11 yeerim—1€S

Notice that the superscript m can be interpreted as an exponent, this is, the
m-step transition matrix is the mth power of the one-step transition matrix.
This is valid both when S is finite and when S is countably infinite. It is easy to
check that this allows us to generalize (2), obtaining P(Xnim = j[Xo,..., Xn) =
P(Xn+m = jlXn) = Pm(Xn,j) forallm >0, m > 1, and j € S.

Given i € S, let us introduce the notation Pi(-) = P(:[Xo = 1), with the
understanding that the initial distribution is such that P(Xo = 1) > 0. It can
be shown that

Pi(Xi =11,..., X;n = im) = P(i,11)P(i1,12) - - - P(im—1, im) (3)

for all i1,...,im € S.

Given j € §, let us introduce the notation Tj for the first hitting time of state
j (or first return time if starting in state j) and Nj for the number of visits to
state j (excluding visits at time 0). More precisely, T; = min{n > 1: X, =j}
and Nj = ) Tx, =jj, where min ) = oco. If also i € S, we define fi; = Pi(Tj <
00) = Pi(Nj > 1). This is the probability that the Markov chain, starting in
state 1, ever visits state j (or ever returns to state i if j = 1). We can now
define transient and recurrent states.

Definition 5 We define state j to be transient if f;; < 1 and to be recurrent
if f=1.

Some important features are pointed out in the next propositions.

Theorem 6 Letting m — oo it can be shown that

0 ifj is transient
Pi(Nj = 00) = .f.] ' (4)
fiyj if j is recurrent.
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Theorem 7 For a Markov chain in S with one-step transition matriz P, state
jeSis

o0

transient if Z P} < oo, (5)
n=I
o0

recurrent if Z P} = co. (6)
n=I

What is more, given that i,j € S is distinct, if state 1 is recurrent and fj; > 0,
then state j is also recurrent and fj; = 1.
Let us define irreducible Markov chains.

Definition 8 A Markov chain in S with one-step transition matriz P to be
irreducible if fi; > 0 for all i,j € S.

By Proposition 2, if a Markov chain in S with one-step transition matrix P
is irreducible, then either all states in S are transient or all are recurrent.
This allows us to refer to an irreducible Markov chain as either transient or
recurrent.

Now we turn to the analysis of the asymptotic behavior of Markov chains.
Let 7t be a probability distribution on S satisfying

N = Zﬂip(i)j)) ] €S. (7)
ieS
Regarding 7t as a row vector, this condition is equivalent to 7t = 7tP. Iterat-
ing, we have
n=mP=mnP’=...=nP", n>1. (8)

In particular, if {X,}n > 0 is a Markov chain in S with one-step transition
matrix P and if Xy has distribution 7, then X;, has distribution 7, for each
n > 1. For this reason, a distribution 7 satisfying (7) is called a stationary
distribution for the Markov chain.

We need one more definition to state an important result.

Definition 9 The period d(i) of state i € S is defined to be d(1) = g.c.d.D(1),
D(i) ={n € N: P*(i,i) > 0}, where g.c.d. stands for greatest common divisor.

We first notice that every state of an irreducible Markov chain has the same
period.

Note that if i,j € S are such that fi; > 0 and fj; > 0, then d(i) = d(j). This
allows us to speak of the period of an irreducible Markov chain.
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Definition 10 If the period is 1, we call the chain aperiodic.

We can now describe the asymptotic behavior of the n-step transition proba-
bilities of an irreducible aperiodic Markov chain.

Theorem 11 If an irreducible aperiodic Markov chain in S with one-step
transition matrix P has a stationary distribution 7, then it is recurrent and

lim P*(i,j) =n(j) i,j € S. (9)

n—oo

Furthermore, (i) > 0 for alli € S.

It follows from the previous statement that if an irreducible aperiodic Markov
chain in S with one-step transition matrix P has no stationary distribution,
then

lim P*(i,j) =01,j €S. (10)

n—oo

Thus, an irreducible aperiodic Markov chain in a finite state space S has a
stationary distribution.

Theorem 12 Let {Xyn},~, be an irreducible aperiodic recurrent Markov chain
in S with one-step transition matrix P. Then one of the following conclusions
holds:

(a) Bi[Ti] < oo for alli € S, and P has a unique stationary distribution Tt

given by
1
n(i) = ———, i€ S. 11
Y Em -

(b) Bi[Ti] = 0o for alli € S, and P has no stationary distribution.

If (a) holds, then the chain is said to be positive recurrent, and Equation (9)
holds. If (b) holds, then the chain is said to be null recurrent, and Equation
(10) holds.

In the following section we define our concept and point out its relationship
with Markov chains.

3 The outguessing equilibrium

This section introduces our notion of outguessing equilibrium. We first define
the family of games we analyze.
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Definition 13 In a two person simultaneous normal form game we denote
the players byi=1,2. We denote by Si the pure strategy set of player i, where
si € S and S = XiZ:1 Si The wutility (or payoff) of any player i is given by
ui(si, s_i) € R, where s_; denotes the strategy chosen by the other player.

Our main assumptions are as follows.

Assumption 1 We restrict attention to generic games, i.e. where the best
response correspondance is a function. That means that there exists only one
best response for any action of any of the two players.

Assumption 2 The game does not have a pure strateqy Nash equilibrium.

Notice that if the game had a pure strategy Nash equilibrium, mixed strategies
and probability distributions would not have to be dealt with.

Assumption 3 The game is repeated, the rounds are denoted by 1,2,... m,. ..

Assumption 4 The players are assumed to keep in mind the strategy profile
of the previous round (i.e. their own previous choice and their opponent’s
previous choice) and nothing else.

Assumption 5 Players are assumed to play according to 0-reasoning, 1-reaso-
ning, 2-reasoning, ..., K-reasoning, or a according to a probability distribution
of the different reasoning levels. The distributions are exogenously given and
do not change among different rounds of the game.

The definition of the different reasoning levels are discussed in Section 1. Be-
sides, we define O-reasoning by playing the same strategy as in the previous
round.

The exogenously given distribution over the set of reasoning levels is defined
as follows.

Definition 14 For any player i and any reasoning level k let Py denote the
probability of acting according to k-reasoning.

A player is considered smarter than its opponent if his expected reasoning
level is higher than that of his opponent. This is how we grab the difference
in the complexity of human thinking and try to point out why smarter people
may win more frequently in several strategic interactions.

We begin the analysis with the description of the equilibrium concept for
the simplest case, where both players have two strategies each.



78 T. L. Balogh, J. Kormos

3.1 The 2-by-2 model

Initially, we restrict attention to two-player 2x2 games with the following gen-
eral payoff matrix:

Player 2
q 1—q
Left  Right
Player 1 P Top UTL;VIL WIRS VIR
—p Bottom | upr;ver  UpR;VBR

Table 1: The 2-by-2 game

According to Table 1, Player 1’s strategies are Top and Bottom, while Player
2 can choose between Left and Right. p, 1—p, q, 1—q are the respective strategy
choice probabilities. Finally, wij, vi; (where i € {T,B} and j € {L,R}) are the
two players’ payoff levels given a certain strategy pair.

According to Assumption 2, we assume that the game does not have a pure
strategy Nash-equilibrium. A necessary and sufficient condition for this is

UL > UBL, UBR > UTR, VIR > VTL, VBL > VBR- (12)

This means that the best responses of both players are given for any action of
their opponent. E.g. if Player 1 chooses Top, then Player 2’s best response is
Right, as vig > vy
For games that do not have a pure strategy Nash equilibrium, the classical
solution is the mixed strategy Nash equilibrium. As a reference point, we
provide the formulas for calculating the Nash-equlibrium mixing probabilities
of the two players for the game using the notations of Table 1:
VBL — VBR
VBL — VBR + VIR — V1L’
UBR — UTR . (14)
UBR — UTR + WL — UR

Pnash = (13)

Jnash =

However, the mixed strategy Nash equilibrium has been criticized, as several
experiments pointed out that it does not describe player behavior properly
(e.g. [2, 7]). As described in the introduction, these findings led researchers to
construct behavioral game theory models that may explain the way of strategic
thinking more precisely.

Our model tries to provide a mathematical framework for player behavior.

We introduce our concept of play history in the next definition.
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Definition 15 We use the notion history for the strategy profile of the previ-
ous round of the game.

The history of the game described by Table 1 can be the following: (Top;Left),
(Top;Right), (Bottom;Left) and (Bottom;Right).

Depending on the history, we can define four different games, where the
strategies and the payoffs are the same. The only difference is that both players
keep the history in mind and this has an influence on their decisions, i.e. their
strategy mixing probabilities.

The payoff and probability matrices with the four different histories are as
follows.

Player 2
. 1—qn
Left Right
Player 1 P™ Top Wi vie UTR, VIR
1 —pn Bottom | upi;ver  Upg;VeR

Table 2: The game with (Top, Left) history

Player 2
qTR T—qm
Left Right
Player 1 PR Top WL VIL - UTR; VIR
1 —pmwr Bottom | upr;veL Ugr;VeR

Table 3: The game with (Top, Right) history

Player 2
qer 1 —qsrL
Left Right
Player 1 PBL Top S VIL R VIR
1 —pp._ Bottom | upi;ver  Upg;VBR

Table 4: The game with (Bottom, Left) history
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Player 2
qBR T—qsr
Left Right
T . .
Player 1 FBR op WILVIL - WIRy VIR
—ppr DBottom | upr;Vver UBR;VBR

Table 5: The game with (Bottom, Right) history

An example for the game in Table 1 can be as follows.

Example 16 We assume that Player 1 chooses strategy Top, while Player
B chooses strategy Left in the first round of the game. Thus, for the second
round the history is (Top,Left). Let Player 1 play according to 0-reasoning with
certainty and Player 2 according to 1-reasoning with certainty. Thus, Player
1 will remain at strateqy Top, while Player 2 will choose his best response
to Top with certainty, that is, Right. We arrived at the (Top, Right) strategy
pair with certainty. Using the notations of Table 2, this means that p. =1,
while qm. = 0. Clearly, even if the reasoning levels follow a more complicated
distribution, then pr € [0,1] and qm € [0,1]. As we arrived at (Top, Right)
with certainty, (Top, Right) becomes the history for the third round of the
game. Applying again that Player 1 plays according to 0-reasoning and Player
2 plays according to 1-reasoning with certainty, the (Top, Right) profile will
occur in the third round of the game. With the same logic, the process can be
continued till any kth round of the game.

If we consider any 2-by-2 game that satisfies our assumptions and a first-
round strategy profile and a distribution on the set of reasonng levels is given
for both players, there emerge the following questions:

1. What is the ex ante strategy choice distribution of the two players if the
number of rounds n — oco0? Is there any limiting distribution?

2. What is the expected payoff of the players for each round if n — oo? Is
the series of expected payoffs convergent?

To answer these questions, we will apply the theory of Markov chains.

3.2 The Markov chain model of the 2-by-2 game

The outguessing model can be interpreted as a Markov chain. According to
Assumption 4, the players keep in mind only the actions of the previous round
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of the game. Let us define the Markov chain of the described 2-by-2 game.

Proposition 17 The strategy profile sequence of the repeated game represents
a Markov chain.

Proof. The proof comes directly from Definition 3 and Assumption 4 that
show that the strategy profile sequence {X;,} (n > 1) has the Markov property.
U

In a 2-by-2 game we have 4 different strategy profiles, in our example these
are (Top;Left), (Top;Right), (Bottom;Left) and (Bottom;Right), or in a shorter
form: TL, TR, BL, BR. Thus, we can define the four states as follows:

State no. Strategy profile

1 (Top;Left)

2 (Top;Right)

3 (Bottom;Left)
4 (Bottom;Right)

Table 6: States of the Markov chain

The transition matrix of the Markov chain can be obtained by using the data
of the general payoff and probability matrices from the previous subsection.

Proposition 18 The 4-by-4 transition matrixz can be written as follows:

pgmn prll—dqn) (T—pwlgn (01 —pm)( —qmn)
T | PRAR PrR(T—qm) (O—pwlgwr (1 —pw)(1 —qm)
perger Per(l —qer) (T —vper)ger (1 —per)(1 —gsr)
perger  PBR(1 —dgsr) (T —per)ger (1 —pBr)(T — gBR)

Proof. The elements of the transition matrix are the probabilities of getting
into a given state from a given previous state, i.e. the probabilities that a
certain strategy profile will emerge given the strategy profile of the previous
round. Using the previously defined pi; and qy; probabilities, and knowing that
strategic decisions are independent from each other in a simultaneous game,
we obtain the formula in the statement. U

Clearly, the transition matrix depends directly only on the players’ prob-
abilities of choosing a certain strategy with a given history. The transition
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matrix is independent from the construction of these probabilities. Thus, it
remains the same for all models where the players’ actions depend only on the
previous round and a probability distribution is exogenously given for both
players on the set of reasoning levels.

The following lemma indicates that only 0, 1, 2 and 3-reasoning levels are
relevant for the given 2-by-2 game.

Lemma 19 For 2-by-2 games and for all k > 4, k-reasoning is equivalent to
(k —4)-reasoning.

Proof. The proof comes directly from the inequalities in (12). O

We need one more definition to be able to state the key result of the paper.

Definition 20 Let us denote the initial strategy distribution of the players by
UNE

The distribution over the state space (the set of strategy pairs) in the nth
round can obviously be calculated as follows:

T = T"'7mp. (15)

The key result states that under certain conditions there exists a limiting
distribution if n — oo.

Proposition 21 If Py, > 0 (see Definition 14) for every i € {1,2} and every
k € {0,1,2,3} and if n — oo, then there exists a limiting distribution 7 over
the state space of the {Xn} (n > 1) Markov chain.

Proof. If Py > 0 for every i € {1,2} and every k € {0,1,2,3}, then it can
easily be verified according to Definitions 8 and 13 that {X;,} is an irreducible
aperiodic Markov chain. Thus, according to Theorem 11 it is recurrent and
has a limiting distribution. O

We arrived at our equilibrium concept. The outguessing equilibrium is de-
fined as the limiting distribution.

Definition 22 We call the limiting distribution 7t the outguessing equilibrium.

According to the proof of Proposition 21, the key result is supported by The-
orem 11: the strategy profile sequence of the repeated 2-by-2 game represents
a Markov chain that has a limiting distribution.
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As far as the players’ expected payoffs are concerned, they can easily be
determined by multiplying 7’ (7t vector transposed) with the vector of the
corresponding payoff levels.

By running our script, the limiting distribution 7t and the long-term ex-
pected payoffs can be calculated and visualized. It becomes clear that the
player with the higher expected reasoning level has the higher expected payoff
on the long run.

3.3 Numerical experiment—the matching pennies

In the matching pennies game, both players have to announce ”heads” or
"tails” at the same time. If the announcements are the same, Player 1 wins 1
from Player 2, otherwise Player 2 wins 1 from Player 1. The payoff matrix of
the well-known zero-sum game is as follows:

Player 2
q I-q
Left  Right
P Top =1 —=1;1
Player 1 —p Bottom | —1;1 T1;—1

The Nash-equilibrium mixing probabilities are 50%-50% for both players.

Let us assume that in our model the initial strategy choice probabilities are
0.5 each (in the first round when there is no history). For the distributions
over the set of reasoning levels (see Definition 14) let us assume that Pp = 0.4,
P11 = 0.2, Py, = 0.2, P13 = 0.2, while Pyy = 0.2, Py = 0.2, P;p = 0.4, P;p = 0.4.
Clearly, Player 2 is considered smarter due to his higher expected reasoning
level.

We ran our script and the process of the expected payoffs calculated from
(711,72, ..., T, . ..) and T is depicted in Figure 1.

It can easily be seen that these processes converge to certain limit values,
a numerical evidence for Proposition 21. It is also verified for the Matching
pennies that the smarter Player 2 (the above "+4” sequence) has a higher
expected payoff (0.232) than Player 1 (-0.232). According to the mixed strategy
Nash equilibrium concept, both players would have zero expected payoff.
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Figure 1: Long-term expected payoffs of the two players depending on the
number of rounds; 2-by-2 case

3.4 The 3-by-3 case

If we consider a 3-by-3 game and keep all our assumptions, then the propo-
sitions trivially remain valid. The only exception is Lemma 19. The modified
version for 3-by-3 games is as follows.

Lemma 23 For 3-by-3 games and for all k > 6, k-reasoning is equivalent to
(k — 6)-reasoning.

Proof. The proof comes directly from the modified version of inequalities in
(12) for 3-by-3 games. O

What is important is that Proposition 21 remains valid if k € {0, 1, 2, 3,4, 5}.
By running our script for 3-by-3 games, we can obtain numerical evidence for
the results.
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3.5 Numerical experiment—the Rock-paper-scissors game
The payoff matrix of the well-known Rock-paper-scissors game is as follows.

Player 2
qr q2 g3
Rock Paper Scissors
p1 Rock 0,0 —1;1 1, —1
Player 1 p, Paper 1,—1 0;0 1,1
p3  Scissors | —1;1  1;—1 0;0

We fixed the expected (average) reasoning level of Player 1 at 2.0 and that
of Player 2 at 2.5 (not violating the conditions of Proposition 7). The expected
payoffs are depicted in Figure 2 below.

Clearly, smarter Player 2 (crosses) "beats” Player 1 (dotted crosses) on the
long run. Player 2’s long term expected payoff lies at 0.038, while Player 1’s
is -0.038.

4 Notes about the script

Our script was written in Matlab. Its inputs are the following values:

e the payoff matrix of the corresponding 2-by-2 or 3-by-3 game

e the players’ discrete probability distributions over the set of reasoning
levels

e initial strategies (i.e. player behavior in the very first round—either a
fixed strategy pair or an initial distribution)

The script works the following way. Firstly, from the given values the script
calculates the transition matrix of the Markov chain. Then, the outguessing
equilibrium (see Definition 13) and the long-term expected payoffs for both
players are also calculated. Proposition 3 suggests that the “smarter” player
(if there is one) beats its opponent on the long run.

Apart from the calculations, the power of the script is that the outguessing
equilibrium concept can be tested for any 2-by-2 or 3-by-3 bimatrix game that
does not have a Nash equilibrium on pure strategies.

Upon request, the authors provide the interested reader with the script with pleasure
for testing purposes.
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Figure 2: Long-term expected payoffs of the two players depending on the
number of rounds; 3-by-3 case

5 Conclusions

Behavioral game theory has been dealing with the understanding of human
behavior in strategic interactions. Among several different approaches, we have
developed a behavioral model that aims at showing why “smarter” people
outguess their opponents and win more frequently in some well-known zero-
sum games.

Game theory is a useful modeling tool for network problems. We defined a
behavioral model in a two-player non-cooperative network.

We used the concept of iterative reasoning to define smartness. The theory
of Markov chains has proved to be a very useful technical tool to prove the
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main result of the paper. Namely, an outguessing equilibrium according to our
definition exists and can even be calculated.

A Matlab script supports the calculations and provides numerical evidence
for our concept.

The authors wish to emphasize that the introduced model can not only be
applied for the games recalled in the examples, but for any conflict situation
that can be modeled by bimatrix games.

Although the theoretical results are proved, and numerical evidence is also
provided, there have remained some interesting questions which are out of the
scope of this paper. One of these questions is rather technical: what types of
Markov chains (e.g. periodic, absorbing etc...) can emerge given a specific
bimatrix game and initial strategy profile? Another one deals with the game
theoretic assumptions: if either the number of players, or the simultanity of
decisions were altered, or we allowed for non-generic games, how would the
equilibrium outcome change? These problems are left for future research.
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